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Abstract

The growing demand for always-on and low-latency

cloud services is driving the creation of globally dis-

tributed datacenters. A major factor affecting service

availability is reliability of the network, both inside the

datacenters and wide-area links connecting them. While

several research efforts focus on building scale-out dat-

acenter networks, little has been reported on real net-

work failures and how they impact geo-distributed ser-

vices. This paper makes one of the first attempts to char-

acterize intra-datacenter and inter-datacenter network

failures from a service perspective. We describe a large-

scale study analyzing and correlating failure events over

three years across multiple datacenters and thousands of

network elements such as Access routers, Aggregation

switches, Top-of-Rack switches, and long-haul links.

Our study reveals several important findings on (a) the

availability of network domains, (b) root causes, (c) ser-

vice impact, (d) effectiveness of repairs, and (e) model-

ing failures. Finally, we outline steps based on existing

network mechanisms to improve service availability.

Categories and Subject Descriptors

C.2.1 [Computer Communication Networks]: Net-

work Architecture and Design; D.2.3 [Computer Com-

munication Networks]: Network Operations
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Figure 1: The top-5 categories of service impact observed

from the high severity incidents attributed to Intra-DC network

devices (Layer-3 routers and Layer-2 switches) and Inter-DC

network links. Connectivity loss problems (70%) and Service

Errors (43%) dominate the impact due to Intra-DC and Inter-

DC network problems, respectively.

1 Introduction

Cloud services are growing rapidly to provide a fast-

response and always-on experience to end users. Relia-

bility is critically important for these services as failures

not only hurt site availability and revenue, but also risk

data loss. For instance, Dropbox experienced two recent

widespread outages [13, 47] which prevented its users

from synchronizing files or accessing its site. In another

instance, the hurricane Sandy led to flooding of many

datacenters in NYC causing service outages [15], and

failures of many trans-atlantic fiber links peering from

NYC significantly degrading capacity [50]. In 2011,

the entire US East region of Amazon became unavail-

able due to a faulty fail-over during maintenance [3]

impacting several popular services such as Dropbox,

Foursquare, Instagram, Quora and Reddit.

To increase service availability in a cost-effective

manner, cloud providers are deploying their services

across geo-distributed datacenters [23], and building

their networks based on a scale-out design using inex-

pensive commodity hardware [17, 34, 36]. However, as



the number of devices and links in a datacenter grows,

failures become the norm rather than the exception.

Making things worse, the network infrastructure also

comprises long-haul, inter-datacenter links to synchro-

nize and replicate user data and application state [2].

These links comprise a variety of components such as

cables, optical adapters, and complex software protocol

stacks, whose failures can lead to reduced bandwidth ca-

pacity, stale data, or even service outages.

Unfortunately, despite their practical significance, lit-

tle is known about how cloud network failures impact

services. The research literature offers several real-world

studies on failures of disk and storage systems [4, 19, 38,

43], DRAM [44], personal computers [35], and errors

in software configuration [51], but they do not consider

network failures. Recent studies [46, 48] including our

own [16, 39, 40] study failures of network switches and

middleboxes, but they neither analyze their impact on

cloud services nor do they examine inter-datacenter net-

work failures; we compare to prior work in detail in §9.

1.1 Motivation

Types of Service Impact: Figure 1 shows the top-5 cat-

egories of service impact caused by network failures

based on our analysis of high severity incidents span-

ning five years (2008-13) in a cloud provider compris-

ing dozens of datacenters; an incident is high severity if

it causes high customer or business impact. The network

elements comprise both Intra-DC Layer-3 and Layer-2

devices (Access routers, Aggregation switches and Top-

of-Rack switches) and Inter-DC links. We observe that

loss of connectivity and service errors (e.g., replication

problems leading to stale data) dominate the service im-

pact. Further, we observe that Inter-DC network failures

are caused due to link flapping (36%), high link utiliza-

tion (29%) and unplanned changes (6%). In comparison,

the Intra-DC network failures are dominated by connec-

tivity errors (64%-78%), hardware failures (20%-73%)

and software problems (7%-24%) across Layer-3 and

Layer-2 devices.

Categories of Impacted Services: Our analysis of the

high severity incidents revealed that network failures im-

pact a broad range of services. The Intra-DC network

failures mainly affected messaging (e.g., email, IM ser-

vices, SMS) services in 38.9% of the incidents. SaaS ap-

plications (e.g., web hosting, CDN, data analytics) were

affected in 32% of the incidents equally due to Intra-

and Inter-DC problems where the geo-distributed ser-

vices were disrupted for up to several hours. Thus, un-

derstanding network failures at both the intra- and inter-

datacenter level is important to deliver high availability

for cloud services.

1.2 Our Contributions

In this paper, we perform one of the first characteristic

studies of cloud network failures from a service perspec-

tive. Our study using real-world data focuses on under-

standing the failure modes and correlation of network

failure logs and how they impact cloud services. Specif-

ically, we aim to answer the the following questions:

Q1 Network stamp availability of a service: What are

the failure characteristics of the network stamp (set

of all network elements rooted at a pair of Layer-

3 Access routers) of a service inside a datacenter

as well as across geo-distributed datacenters? How

effective are redundancy mechanisms in handling

intra- and inter-datacenter network failures? How

many independent network stamps are needed to

meet an uptime service-level-agreement (SLA) of a

cloud service?

Q2 Causes of network failures: What are the main root

causes of network failures?

Q3 Failure Modeling: How to model failures of net-

work components? Are failures recurrent? Are they

bursty? Are device-level repairs effective?

Q4 Capacity vs. Availability: For commodity Layer-2

switches, how do their port capacity in terms of con-

nected devices affect their availability in operation?

This paper analyzes the failure characteristics of net-

work stamp of a service comprising Access routers,

Aggregation switches, Top-of-Rack and inter-datacenter

links, based on three years’ (2010-13) worth of network

event logs collected in a cloud provider network across

thousands of devices spanning dozens of datacenters.

Our data covers a wide range of network data sources,

including syslog and SNMP alerts, network trouble tick-

ets, maintenance tracking and revision control system,

and traffic carried by links.

Our study reveals many key findings that can provide

useful guidelines to improve network reliability for geo-

distributed services. Our major findings are as follows:

1. Network failures cause significant impact to cloud

services, dominated by connectivity loss problems

(70%) and service errors (43%) due to Intra-DC and

Inter-DC network problems, respectively.

2. The number of independent network stamps for a de-

sired uptime SLA of 3 9’s (maximum 8.76 hours of

downtime per year) is three and for 4 9’s (maximum

52 minutes of downtime per year) is four.

3. Network redundancy is least effective at the Access

router-Aggregation switch layer and is most effec-

tive at the Inter-datacenter level.

4. Network device failures are not memoryless and ex-

hibit the “few bad apples” effect.
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Figure 2: Example of a datacenter network architecture. Long-haul links (typically, optical fibers) connect geo-graphically dis-

tributed datacenters and can span thousands of miles.

5. Layer-2 Aggregation switches exhibit high availabil-

ity when up to half of their port capacity is uti-

lized in terms of Top-of-Rack switch count. How-

ever, the availability quickly decreases as the Top-

of-Rack switch count increases.

6. Fiber length in Inter-DC links is not correlated with

the number of failures, and links with high utiliza-

tion exhibit 2x-3x higher downtime than expected.

7. Top-of-Rack switches exhibit an increase in prob-

ability of a successive device failure after repair,

while this probability decreases for Aggregation

switches and Access routers.

Note that there are other resiliency mechanisms de-

ployed at compute and storage layers of a service which

are complementary to the network layer studied in this

paper. While these mechanisms may be able to mask the

impact of some of the network failures, they require ser-

vice operators to carefully balance the trade-off between

consistency and availability particularly under network

partitions, due to the famous CAP dilemma [6]. We plan

to study the overall impact of redundancy mechanisms at

the storage, compute, and network layers in future work.

2 Background

In this section we present an overview of the datacen-

ter network architecture and long-haul links connecting

geo-distributed datacenters.

2.1 Intra-Datacenter Topology

A datacenter network is typically set up as a multi-root

spanning tree topology comprising different types of

devices such as routers, switches, load balancers, and

firewalls. Figure 2 illustrates an example topology of a

datacenter network based on the functional separation of

Layer-2 (trunking, VLANs, etc.) and Layer-3 (routing)

responsibilities. Top-of-Rack (ToR) switches connect

servers hosting applications via 10/100/1000 Ethernet

links, with the uplinks being either 1GE or 10GE

ports. The ToRs are connected upstream to Aggregation

switches (AGG) which serve as an aggregation point

for the Layer-2 traffic. Traffic from AGGs is forwarded

to Access routers (ARs) that use Virtual Routing and

Forwarding (VRF) to create a virtual, Layer-3 environ-

ment for each tenant. The ARs aggregate traffic from up

to several thousand servers and route it to core routers

that connect to other datacenters and the Internet.

To provide fault tolerance, network devices are typ-

ically deployed in 1:1 redundancy pairs or larger groups.

A network stamp (shown in dashed red in Figure 2)

is the set of all network elements that are rooted at a

pair of Layer-3 ARs, comprising multiple Layer-2 AGG

domains in the underlying subtrees.

2.2 Inter-Datacenter Connectivity

Geographically distributed datacenters are connected to

each other and to the Internet typically using long-

haul WDM (wave division multiplexing) optical trans-

port networks spanning about 3000 miles between two

endpoints. WDM is usually operated either in a coarse

(CWDM) or dense (DWDM) multiplexing manner.

While the former utilizes multiple wavelengths spaced at

20nm and operates in the 1271-1611nm spectrum range,

the latter utilizes many wavelengths spaced narrowly at

0.8nm and operates in the 1530-1565nm spectrum range

(C-band). Modern coherent receivers use polarization

multiplexed quaternary phase shift keying (PM-QPSK)

modulation and can achieve 100Gbps transmission on



50GHz ITU channel grid, and a total capacity of 8Tbps

in the C-band.

Long-haul fiber resources are scarce, expensive and

time consuming to construct as well as to fix as engi-

neers may have to travel to the remote physical location.

As shown in Figure 2, unlike traditional telecommunica-

tion networks that require a lot of intermediate add/drop

points (e.g., optical multiplexers, signal repeaters), inter-

dc links are mostly point-to-point fat pipe connections

with few intermediate add/drops. Fat pipes contain mul-

tiple segments spliced together to form an optical circuit

also known as a long-haul fiber.

3 Data Sources and Methodology

In this section we first describe the multiple sources

of data collected by network operators, comprising our

large-scale dataset spanning three years (July 24, 2010

- June 24, 2013). Second, we describe the key chal-

lenges in accurately extracting failures from raw net-

works events. Finally, we present a systematic method-

ology based on event processing to address them.

3.1 Network Datasets

Our dataset includes multiple sources of network

failure data spanning three years logged in monitoring

servers of a large cloud provider comprising 100k+

servers and 10k+ Layer-2 and Layer-3 devices across

10+ datacenters. These datacenters host a variety of

applications ranging from customer facing ones such

as web services, video streaming, data stores, and

enterprise applications to data intensive applications

such as search indexing and MapReduce jobs.

Network Event Logs: Network failures are typically de-

tected from monitoring alarms such as syslog and SNMP

traps and tracking the health of each device/link via

ping and SNMP polling. These logs contain information

about the network element experiencing the event, the

event type, the other end- point of this device/link, and a

short machine-generated description of the event.

High Severity Incidents: To analyze impactful inci-

dents where service outages occur and customers get im-

pacted, operators keep details of each high severity inci-

dent. Similar to the trouble ticket data, each high severity

incident has a unique ticket identifier and contains both

structured and unstructured information which we lever-

age for problem inference. We use this dataset over a

period of five years (2008-13).

Trouble Tickets: To track network faults during trou-

bleshooting, a ticketing system is used typically based

on the NOC RFC [20]. This system coordinates tasks

among network engineers working on an incident. Tick-

ets have a unique identifier and contain both structured

information about the failure (such as when and how

a failure was discovered) and a diary of steps taken

by operators to resolve the problem. Based on the re-

sults from our prior study [41], we cannot use the struc-

tured information for any problem inference due to their

high inaccuracy. Therefore, we leverage NetSieve [41]

on the network support tickets to infer root causes for

(1) high severity incidents and (2) failure events includ-

ing maintenance-related network changes.

Maintenance Data: To track activities such as device re-

pairs/provisioning, configuration changes, and software

upgrades throughout the network, operators use a main-

tenance tracking and revision control system. It serves

as a repository of syslog information and includes com-

ments from network engineers about when and why

changes were performed. Before debugging an outage,

an engineer checks this repository for on-going mainte-

nance and verifies any recent changes to the device con-

figuration. We also obtained maintenance tracking infor-

mation for inter-datacenter long-haul links where the op-

erators recorded the expected duration of a fiber or seg-

ment to be down. To avoid skewing the failure distribu-

tions due to maintenance events, we compute the down-

time of devices/links separately for unexpected failures

and planned changes.

Network Traffic Data: We utilize traffic averages ob-

served every five minutes on network interfaces logged

using SNMP [9] polling. Traffic monitoring systems use

the MIB [31] format to store the data that includes fields

such as the interface type (token ring, ethernet etc.),

other end of the interface, interface status (up/down),

number of bytes sent/received. We correlate this traffic

data with failure events to extract failures impacting net-

work traffic, and to reverse-engineer the topology using

active link-level connectivity.

3.2 Obtaining Impactful Events

We define a device failure as an event that causes a de-

vice to be inoperational to carry traffic and a link failure

as an event that causes a link to be down or that causes

excessive packet discards. While these definitions are

simple and intuitive, there are several key challenges in

utilizing the network event logs for studying device/link

failure characteristics:

1. Syslog messages can be significantly noisy with

devices logging multiple down notifications even

though a device/link is operational, or multiple down

and up messages as different events due to flapping

2. Redundant events resulting from two devices (e.g.,

neighbors) logging notifications for the same event
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Figure 4: Complementary cumulative distribution (CCDF)

plot of the number of failures logged by devices. The tail indi-

cates devices that log thousands of failures.

3. Events being triggered by devices scheduled for re-

placement or those that have been detected as faulty

by operators but awaiting repairs e.g., some devices

logged more than 1000 device down notifications

over few hours because the notification system did

not suppress them during troubleshooting.

We build upon the methodology of Turner et al.[48]

and our prior work[16] on utilizing low-level network

events, but differentiate in four important ways. First,

we apply a pipeline of event processing steps to analyze

and correlate network event data sources (Figure 3).

Second, we identify redundant events and analyze how

they contribute towards measurement noise. Third,

we remove events generated due to inactive links and

planned maintenance to identify unexpected failures.

Finally, we extract impactful failures by correlating

network events with traffic loss, and infer their problem

root causes from trouble tickets. Figure 3 shows the

effectiveness of each processing step.

Step 1: The goal of the first step is to fix various timing

inconsistencies. First, it groups all events with the same

start and end time originating on the same interface with

the same event description (thereby removing duplicate

events). Next, by picking the earliest start and end times,

multiple events within a 60 second time window on the

same interface are grouped into a single event. This

is done to avoid problems due to clock skews and log

buffering. Finally, if two events originating on the same

interface contain the same event description and have

the same start time but different end times, they are

grouped into a single event and assigned the earlier of

the end times. We take the earliest end times as events

may not be marked as cleared long after their resolution.

Step 2: The second step filters all planned network

changes based on a maintenance tracking system. Each

network change is annotated with the time window,

the device name and the type of maintenance being

carried out. Network operators likely have a good

understanding of problems being handled by scheduled

maintenance and thus, we focus on analyzing device

and link-level reliability due to unexpected outages.

Step 3: The third processing step removes redundant

events due to devices that continue logging error

messages when they are being troubleshooted or where

the events were not suppressed even after the problem

had been identified. Figure 4 shows the CCDF plot

for different types of devices in our dataset. Observe

that a small fraction of devices log up to thousands of

failure events. To filter them, we apply the following

technique based on discussion with operators: merge all

events that have the same ticket identifier as events with

the same ticket ID are likely to have the same symptoms.

Step 4: The final step aims to identify events causing

service impact based on two rules: the event caused (i)

noticeable application-level impact, or (ii) loss of traffic

(i.e., a drop in the median traffic on the device/link

during a failure compared to its median value in the

recent past e.g., preceding 2-hour window). For the

former, we leverage NetSieve [41] to extract the type



Type Mean

(hrs)

Median

(mins)

Q75

(hrs)

Q95

(hrs)

StdDev

(days)

AR 12.4 21.5 2 37.2 2.5

AGG 2.1 4.8 0.4 5.2 0.6

ToR 2.9 7.1 0.3 5.2 0.8

Table 1: Comparing TTR across ARs, AGGs and ToRs.

of application-level impact from trouble tickets. For

the latter, we leverage the network traffic logs and

performed hypothesis testing to validate that the median

traffic value is robust to short-term traffic variations [40].

Validation. We performed ground truth validation to

evaluate the fidelity of our failure analysis methodology.

Specifically, we validate our methodology along two di-

mensions: (1) accuracy i.e., are all the processed events

actionable? and (2) completeness i.e., did it miss any

events from the ground truth data? For the former, we

ensure that our result set includes all events deemed “ac-

tionable” by operators — we can recognize these action-

able events by verifying if an operator attached a trouble

ticket to it implying that the event was troubleshooted.

For the latter, we leverage the high severity incident

database described in §1. Because each such incident

caused a service impact where the network redundancy

was ineffective, we use this database as the ground truth.

We compared our result set against the high severity in-

cidents, and verified that (1) none of the events from this

incident list were missed (i.e., no false negatives) and

(2) in each case, network redundancy was in fact, unsuc-

cessful in masking the failure.

4 Network Stamp Availability

To provide uptime service-level-agreement (SLA) of a

geo-distributed service, a key requirement is to analyze

the availability of a network stamp hosting the service

and then compute the number of network stamps needed

to meet the service SLA. In particular, we need to exam-

ine two key aspects: (a) the failure characteristics of the

individual components comprising a network stamp, and

(b) the effectiveness of network redundancy, typically

deployed as a resiliency mechanism, in handling net-

work failures. We then leverage these analyses to com-

pute the network stamp availability.

4.1 Failure Characteristics of Building

Blocks of a Network Stamp

We first analyze the number of failures per device across

three types of network elements: Access routers, Ag-

gregation switches and Top-of-Rack switches. Figure 5
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Type Mean Median Q75 Q95 StdDev COV

AR 5.2 2 5 19.9 9.9 1.8

AGG 3.7 1 3 12.0 9.2 2.4

ToR 1.8 1 3 6.0 2.6 1.4

Figure 5: Comparing the number of failures per device per

year across ARs, AGGs and ToRs. In the box-plot, the hori-

zontal bolded line is the median; the box boundaries are inter-

quartile ranges; the dots are outliers. The y-axis is on log scale.

shows a box-plot of the number of failures per device

across the three device types. Notice that the mean num-

ber of failures per device is highest for ARs. ToRs ex-

hibit the lowest mean number of failures due to their

large population, which is consistent with our previous

findings [16]. Though AGGs experience fewer failures

per device with a median of one failure (table below Fig-

ure 5), the device population exhibits a high variability

with a COV1 of 2.4. This is also evident from the pres-

ence of outliers in Figure 5 (the dots present at the top of

each box) indicating the presence of a “few bad” devices

that log numerous failures.

We observe that most failures are short-lived which

occur when the device unexpectedly reloads and then

quickly comes back into an operational state. Consider

the time-to-repair distribution for these device types

shown in Table 1: both AGGs and ToRs have a small

median time to repair of ≈5-7 minutes. We confirmed

this observation from the trouble tickets associated with

these events (see §5.1). ARs had the highest mean time

to repair of ≈12 hours and a median of 21.5 minutes.

This is a surprising result considering that ARs are po-

sitioned higher up in the network hierarchy and one ex-

pects that their problems get repaired relatively faster.

We observed dominant problems related to network

modules and switching fabric errors where the module

either reloads unexpectedly or exhibits CRC packet er-

rors. Besides line card failures, AGGs also exhibited

soft-parity errors that cause the device to transition into

an unexpected state. Soft-parity errors occur when the

1COV [8] shows the extent of variability to mean of the population

and is defined as the ratio of the standard deviation σ to the mean µ .

Distributions with COV < 1 exhibit low-variance and vice versa.
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energy level within the chip changes, most often due to

radiation (e.g., gamma rays, electro-magnetic interfer-

ence from a neighboring device, electro-static discharge

due to improper handling of the device). When refer-

enced by the CPU, these errors cause the system to crash.

4.2 Effectiveness of Network Redundancy

In this section we analyze the effectiveness of redun-

dancy at both intra- and inter-datacenter level in han-

dling network failures. First, we estimate the traffic lost

by impactful failure events and then compute the effec-

tiveness of network redundancy at each layer of the dat-

acenter hierarchy.

4.2.1 Estimating Traffic Loss

Quantifying the impact of a failure is difficult as it re-

quires attributing discrete “outage” levels to annotations

used by network operators such as severe, mild, or some

impact. To circumvent this problem, we correlate the

network event logs with link-level traffic measurements

to estimate the impact of a failure event. However, it is

still difficult to precisely quantify how much data was

actually lost during a failure because of several compli-

cations: (i) traffic rerouted via alternate routes in data-

centers, (ii) temporal variations in traffic patterns, and

(iii) grey failures.

Building upon our prior work[16], we estimate the

failure impact in terms of lost network traffic that would

have been routed on a failed link in the absence of the

failure. Specifically, we first compute the median num-

ber of bytes on links connected to the failed device in the

time period preceding the failure, Medb, and the median

number of bytes during the failure, Medd . Then the esti-

mated median traffic loss per day for a failed device can

be defined as:
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Figure 7: Normalized traffic (bytes) for failure events for indi-

vidual devices and their redundancy groups

∑
∀ events ∈ day

(Medb −Medd)× f ailure duration (1)

where f ailure duration denotes how long the de-

vice/link failure lasted.

Figure 6 shows the CDF of estimated traffic loss per

day across ARs, AGGs and ToRs computed using Equa-

tion 1. We observe that the median number of bytes lost

during failures is highest for AGGs (130 GB/day), but

it is significantly less for ARs (38 GB/day) due to the

“few bad apples effect” exhibited by AGGs as observed

in §4.1. In comparison, the median traffic loss per day

for ToRs is less than 1GB/day likely due to (a) relatively

small bandwidth capacity compared to AGGs and ARs,

(b) low downtime values (from §4.1), and (c) low traffic

utilization at the ToR layer in the network hierarchy [16].

4.2.2 Analyzing Redundancy Effectiveness

We next analyze the effectiveness of network redun-

dancy in mitigating the failure impact as it is a de-

facto resiliency mechanism to handle faults in datacen-

ters. Within a redundancy group, one device is typically

designated as active (primary) and the rest as stand-

bys (backups). Other configurations are possible such as

active-active pairs where both the devices carry traffic

simultaneously. We observed several large redundancy

groups comprising up to tens of Aggregation switches

connected to a pair of Access routers in the network dat-

acenter hierarchy.

To estimate the effectiveness of network redundancy,

we first compute the ratio of median traffic (bytes) en-

tering a device across all links during a failure and the

median traffic entering the device before the failure, and

then compute this ratio across all devices in the redun-

dancy group where the failure occurred. Network redun-

dancy is considered 100% effective if this ratio is close

to one across a redundancy group. We refer to this ratio

as normalized traffic.



Figure 7 shows the normalized traffic (bytes) at each

layer of the datacenter network hierarchy. Overall, the

median traffic carried at the redundancy group level

is 92% compared with 76% at the individual level, an

improvement of 21% in the overall median traffic as a

result of network redundancy. While this redundancy is

more effective at the AGG-ToR level (an improvement

of 28.7%) and CORE-ACCR level (an improvement of

24%), it is relatively less effective at the ACCR-AGG

level (an improvement of 6.09%). The maximum gain

is observed at the CORE-CORE (inter-datacenter)

layer where failures are completely masked due to

redundancy. One reason is that network layers close

to the root carry significant service traffic and connect

application servers inside datacenters to users across the

Internet. Hence, these layers are monitored closely by

network operators to enable fast failure detection and

troubleshooting in order to minimize service downtime.

Computing number of network stamps to meet a ser-

vice uptime SLA. After computing the overall redun-

dancy effectiveness r, we can leverage it to determine the

minimum number nmin of independent network stamps

needed to meet a desired SLA uptime of a service. In

particular, we solve for the minimum integer n that sat-

isfies the following equation:

1− (1− r)n ≥ SLAdesired

⇒ log(1−SLAdesired)≥ nlog(1− r)

As log(1−r)< 0 ∀ r ∈ (0,1), dividing by log(1−r) on both

sides we get:

n ≥ log(1−SLAdesired)

log(1− r)
(2)

⇒ nmin =

⌈

log(1−SLAdesired)

log(1− r)

⌉

(3)

where ⌈⌉ is the ceiling function. For instance, to provide

99.9% availability (maximum 8.76 hours of downtime

per year), solving the above equation yields n = 3. Sim-

ilarly, for 99.99% availability (maximum 52 minutes of

downtime per year) we get n = 4. Note that as expected,

setting n to higher values would likely yield diminishing

returns in improving service availability.

Findings (1): (1) The median number of bytes lost during

failures is about 130 GB/day for ARs and 38 GB/day for

AGGs while it is about 1 GB/day for ToRs. (2) Overall, the

median traffic carried at the redundancy group level is 92%

compared with 76% at the individual level, an improvement

of 21% due to network redundancy. This redundancy is least

effective at the AR-AGG level and is most effective at the

Inter-datacenter level. (3) The number of independent net-

work stamps for a desired uptime SLA of 3 9’s (maximum

8.76 hours of downtime per year) is three and for 4 9’s (max-

imum 52 minutes of downtime per year) is four.

5 Causes of Network Failures

In this section we analyze the root causes of intra- and

inter-datacenter network failures.

5.1 Intra-Datacenter

To determine the failure root causes, we leverage the

information recorded by operators in trouble tickets at-

tached to the network events. Specifically, we leverage

NetSieve [41], an automated problem inference system

that analyzes the free-form text in a trouble ticket to gen-

erate its synopsis: (1) the problems observed e.g., link

down, misconfigured rule, switch in ‘freeze’ state, (2)

the troubleshooting performed e.g., check cable, track

configuration changes, verify BGP routes, and (3) the

actions taken for resolution e.g., replaced the supervisor

engine, reboot the device, clean the fiber.

Figure 8(a) shows the histogram of the top-k prob-

lems observed from trouble tickets associated with intra-

datacenter failures. Observe that there is a broad range of

problems such as hardware faults (e.g., device failures,

memory errors), OS bugs, and misconfigurations (e.g.,

ARP conflict). Interface-level errors, network card prob-

lems, and unexpected reloads are prominent amongst all

the three device types. Interface errors usually last for

about 5-7 minutes as observed in Table 1. During these

periods, we observe that the service would be avail-

able, but its users may experience high latency or packet

drops. For instance, due to interface errors TCP may

likely timeout and re-transmit in the slow-start phase

thus degrading the service performance. Our discussion

with operators revealed there are multiple reasons for in-

terface errors such as faulty cable installation, faulty op-

tical transceivers, and protocol convergence delays. In

addition to interface errors and hardware problems, ToR

failures were also due to OS-related problems and mis-

configurations. For instance, in some cases a specially

crafted IPv6 packet (e.g., Type-0 Routing Header[11]

packets for source routing) was found to crash the de-

vice. In others, certain types of IPv4 packets (e.g., ICMP

echo-requests) destined to a physical or virtual interface

on the device caused a memory leak.

5.2 Inter-Datacenter

We analyze the network trouble tickets associated with

Inter-DC link failures and found that link flapping (e.g.,

due to BGP, OSPF protocol issues and convergence)

dominate the problem root causes (36%) as seen in Fig-

ure 8(b). Due to optical protection configured in some

areas of the network, a physical layer problem might

end up triggering an optical re-route — a technique to

reduce the bandwidth loss by shifting existing lightpaths
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Figure 8: (a) Intra-DC root cause analysis: Interface errors dominate across all device types. (b) Inter-DC root cause analysis: Link

flapping and high link utilization are the major problems. (c) Distribution of the duration of the high link utilization events.

to new wavelengths, but without changing their route.

However, it incurs a control overhead (of about 10 sec-

onds), and more importantly, it risks a service disruption

in the rerouted lightpaths [32]. Depending on the proto-

col timers, such an event is observed as a “link flap”, yet

the true underlying cause could be an optical re-route,

possibly in response to a fiber cut (e.g., due to construc-

tion, bullet hole, vandalism, shark attack on under-sea

cables). Therefore, it may not be possible in some cases

to attribute the exact root cause. The second major root

cause is high link utilization (29%). However, note that

high utilization does not necessarily imply a physical cir-

cuit failure or take-downs, but it may be an indicator

of packet errors; we analyze them in detail next. Soft-

ware errors, misconfigurations, and unnotified mainte-

nance were observed, but they did not constitute a sig-

nificant fraction of root causes.

Next, we analyze the properties of links with high uti-

lization. By examining trouble tickets associated with

high utilization links, we observe that: (1) the percent-

age of error packets exceed the error threshold specified

by operators, and (2) the traffic utilization of the link is

above the specified utilization threshold. When there is

insufficient capacity during a congestion period, LSP2

re-routing occurs during which the traffic is switched to

an alternate LSP set up after the failure. The new route is

selected at the LSP head-end (router that requested the

LSP establishment) and may reuse intermediate nodes

in the original route. This alternate route maybe com-

puted either on demand or pre-computed, and stored for

use when a failure is reported. There is, however, a risk

that the alternate route may become out of date due to

other changes in the network. This can be mitigated to

some extent by periodic recalculation of idle alternate

routes. In practice, about 10-25 minutes are allowed for

LSP re-routing. However, we observe in Figure 8(c) that

2In MPLS wide-area networks, data transmission occurs on label-

switched paths (LSPs). LSP is a path through the network from an

ingress to an egress router established through the distribution of la-

bels (using label distribution protocol (LDP) or piggybacked on rout-

ing protocols like BGP) that define hop-by-hop forwarding.

the average incident duration is about 1.27 hours while

the median is 0.41 hours with the 95P value >3 hours,

which is about 2x-3x higher than the expected value.

Further, 80% of the high utilization events took more

than 15 minutes to resolve and 50% of the events took

more than half an hour.

Longer downtimes can be attributed to scenarios

where LSP re-routing had no alternate routes to com-

pute on demand which caused higher switching times.

Long-lived congestion is expected when there is a surge

in traffic demand that is relatively long-lived, and the

bottleneck is not the transit capacity but the capacity at

a source or sink for the traffic. This is believed to hap-

pen when there is a significant outage with lack of suffi-

cient redundant capacity. Although it was not possible to

pin point the exact root cause behind the longer down-

times in our dataset, one potential cause from discus-

sion with operators was attributed to congestion. Rather

than the entire circuit going down under congestion, the

links logged errors continuously (a significant fraction of

packets were being discarded) for long periods of time

which inflated the event duration. Note that these events

logged as “failure events” do not imply physical circuit

breaks but they risk performance degradation due to con-

gestion. The packet discards indicate that during the con-

gestion period, LSP rerouting did not have an alternate

path with sufficient capacity to forward the excess traf-

fic. There are many reasons why congestion could arise:

• Product-related: During product migration (cloud

service changing datacenters) or launch (new soft-

ware being released), there is a high volume of traffic.

• Traffic Shift: Workloads arising due to unexpected

service outages or bulk data transfer e.g., web crawl

documents, periodic data backups.

• Port-name Cleanup: As part of improving network

meta-data consistency and integrity, operators per-

form port-name cleanup on a regular basis. If these

changes are not reflected higher up in the topology,

then routes may not be available on demand.



Type Pr[1st ] Pr[2nd—1st ] Pr[3rd — 2nd ] Eff?

AR 1 in 4.0 1 in 5.2 1 in 5.8 X

AGG 1 in 3.7 1 in 6.1 1 in 8.6 X

ToR 1 in 17.1 1 in 7.7 1 in 5.4 —

Table 2: The (conditional) probability of device failures. The

last column indicates if the repairs were effective.

Findings (2): (1) Link flapping and interface errors domi-

nate problem root causes across all device types. (2) Other

dominant causes are hardware failures, unexpected reboots

and misconfigurations. (3) Links with high utilization ex-

hibit 2x-3x higher downtime than expected.

6 Failure Analysis and Modeling

In this section we aim to answer the following key ques-

tions: (1) Are repairs effective in fixing problems? (2)

Are failures transient or independent? If not, what are

their properties? (3) How soon does a device fail after

experiencing a failure? and (4) Does the length of fiber

links affect the probability of link failure?

6.1 Are repairs effective?

We begin by quantifying the probability that a device

will fail multiple times in its lifetime based on the

observed failure rates. For each device platform, we

analyze the conditional probability that a device will fail

if it previously experienced one or more failures. Table 2

shows the conditional probabilities of successive device

failures split by the three device types. An increase in

the probability with every subsequent failure indicates

that actions taken to “fix” failures are not effective and

vice versa. We make the following observations from

Table 2:

• Access Routers: ARs in general exhibit a decreas-

ing trend to fail indicating that the repairs at each fail-

ure level are effective. These devices exhibited a 1 in 4

chance of a first failure during the observation period.

After a device has failed once, its failure probability de-

creases by a factor of ≈1.5, and the probability contin-

ues to decrease with subsequent failures indicating that

it is favorable to consider repairing devices of this type

when they fail. However, note that for some device gen-

erations, repairs may not be as effective e.g., the proba-

bility of failure likely increases with each subsequent re-

pair for old devices close to their end-of-life as expected.

• Aggregation Switches: AGGs exhibit a decreasing

failure trend similar to ARs. However, some old gener-

ations of AGGs showed an increased probability of suc-

cessive failures.

Device Type KS-Value p-value

Access Routers 0.4952 2.2x10−16

Aggregation Switches 0.665 2.2x10−16

Top-of-Rack Switches 0.7236 2.2x10−16

Table 3: KS Test to determine whether failure inter-occurrence

times are exponentially distributed.
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Figure 9: Q-Q plot of inter-arrival times of device failures of

ARs, AGGs and ToRs in a datacenter — the plot indicates that

they are not exponentially distributed.

• Top-of-Rack Switches: The most surprising result re-

lates to ToRs — they exhibit the worst behavior of in-

crease in failure probability after every subsequent fail-

ure. This increase indicates that repairs carried out as

a response to failures are not quite effective in mitigat-

ing the failure root cause. One likely reason is that ToRs

have a low priority for repair and thus, a quick-fix so-

lution (e.g., reboot) typically applied may delay finding

the true root cause of the problem.

Findings (3): (1) Repairs were relatively more effective for

ARs and AGGs. (2) ToRs exhibit an increase in probability

of device failure after repair indicating that their repairs are

not quite effective.

6.2 How to model failures?

We next answer the question if failure occurrences are

independent or memoryless3. We use a Q-Q plot [49]

to check if the empirical occurrence rates (distribution

shown in Table 4) come from an exponential distribu-

tion. If the data follow an approximately straight line

with slope 1 and intercept 0, the observed values are said

to be drawn from the exponential distribution. However,

our data does not follow this trend as Figure 9 shows.

Finally, we perform the KS-test [28] on the failure

inter-arrival times of the three device types; Table 3

shows the test results. We observe that the null hypoth-

esis that failure inter-arrival times are exponentially

distributed can be rejected at a significance level of 0.05.

3Memoryless property indicates that failure inter-arrival times are

exponentially distributed
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Figure 10: Modeling Time to Failure for ToRs. (a) Kernel density plot of the log power transformed TTF, (b) Fit of a single

log-nornal distribution, (c) Fit of a mixture of two log-normal distributions.

Type Mean

(days)

Median

(hrs)

Q75

(days)

Q95

(months)

StdDev

(months)

AR 19.3 14.5 6.1 4.0 1.9

AGG 11.2 0.2 1.5 2.2 1.2

ToR 11.1 0.6 0.3 2.9 1.2

Table 4: Comparing TTF across ARs, AGGs and ToRs.

Failure Modeling. As Table 4 indicates, the range of

TTF durations can be several orders of magnitude across

devices. We build upon our prior work [40] of using the

Box-Cox transformation [42] to model the time to failure

for ToRs as an illustration.

Figure 10(a) shows the kernel density plot of the log-

power transformed TTF. We observe that the distribu-

tions are right skewed and not unimodal. We find that

the main peaks occur at 25 minutes for TTF with rel-

atively smaller secondary peaks occurring at about 2.5

days and 20 days. These findings indicate that there are

two or three qualitatively different types of failures in

effect, respectively. The peak at 25 minutes indicates

that short-term failures such as connection errors, inter-

face flaps, and unexpected reboots as seen in Figure 8(a)

dominate, and the secondary peak at 20 days indicates

problems due to both hardware faults (e.g., line card, de-

vice failures) and software bugs.

Similar to our observation for load balancers [40], ex-

isting heavy-tailed distributions did not fit our ToR fail-

ure data (the empirical data significantly deviated from

the ‘y = x’ line in the Q-Q plot in Figure 10(b)). There-

fore, we leverage a two-component mixture model to ap-

proximate the failure data. Assume that the real-valued

variables X1, ...,Xn are a simple random sample of time

periods from a finite mixture of m > 1 arbitrary distri-

bution components. The density of each Xi can then be

written as:

hθ (xi) =
m

∑
j=1

λ jφ j(xi),xi ∈ Rr
(4)

Type λ µln1
σln1

µln2
σln2

TOR 0.762147 7.080109 1.553494 13.973199 1.819118

AGG 0.184676 3.965197 0.165990 9.01190 4.125347

AR 0.333407 1.831425 1.553494 12.498570 2.395274

Table 5: Parameters for the two-component lognormal mixture

distribution for different device types

where θ = (λ ,φ ) = (λ1, ...λm,φ1, ...,φm) denotes the

model parameter and ∑m
j=1 λm = 1. If we assume that φ j

are drawn from some family F of univariate log-normal

density functions on R given by F = {φ (·|µln,σ
2
ln},

where µln and σln denote the mean and standard de-

viation in log scale, then the model parameter reduces

to θ = (λ ,(µln1
, σ2

ln1
), ...,(µlnm

,σ2
lnm

)). By substituting

these parameters, Equation (4) can be written as:

hθ (xi) =
m

∑
j=1

λ j

1

σln j
xi

√
2π

e

−
(ln(xi)−µln j

)2

2σ2
ln j ,xi ∈ Rr (5)

For a two-component lognormal mixture, Equa-

tion (4) becomes: λ f (µln1
,σln1

) +(1−λ ) f (µln2
,σln2

).
Subsequently, we use Expectation-Maximization

(EM) [33] to obtain the model parameter λ . Table 5

gives the values of the parameters for the two-

component lognormal mixture distribution to fit the

failure data for the three device types. Figure 10(c)

shows how this model fits our ToR failure data (at a

log-likelihood of -3389.3); the dotted-line is the kernel

density curve of our data and the solid lines are the

individual mixture components. We observe that our

model provides a good approximation of the real-world

data of ToR, AGG and AR failures in cloud datacenters.

Findings (4): (1) Device failures are not memoryless i.e.,

they are not independent. (2) AGGs exhibit the “few bad

apples” effect. (3) The TTF kernel density of ToRs shows

the highest peak at 25 minutes indicating dominance of

short-lived problems such as connection errors, unexpected
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Figure 11: Correlations of device failures over a week period for different device types at different time lags (curves towards the

top-left show low correlation).

reloads and interface flaps. (4) A univariate lognormal dis-

tribution is unsuitable (poor-fit) to model TTF of network

device failures; a two-component lognormal mixture distri-

bution provides a good approximation.

6.3 Are failures bursty?

To understand how quickly devices fail after experienc-

ing a failure, we compute the auto-correlation function

for the number of failures observed per device on a daily-

basis. For each device, we construct a binary time series

as tagging 1 on a day if it exhibited a failure on that day

and 0 if the device was functioning normally.

Figure 11 shows the CDF of the auto-correlation val-

ues for different device types at different lag levels (shift

in the time series). ToRs exhibit a short term stable be-

havior i.e. they do not exhibit any statistically signifi-

cant correlation with respect to next day failures indicat-

ing that fixes deployed are at least temporarily effective.

However, over the long term, as described in the pre-

vious section, their long-term reliability trends show an

increased probability of failure.

ARs and AGGs indicate that for the devices that do

fail multiple times (graph omitted), 20%-30% of this

population is likely to fail the next day or within a week

of getting fixed. We observed that this happens when ei-

ther the deployed fix is ineffective (e.g., a “reboot” was

performed as a quick-fix) or when the root cause was

mis-diagnosed (e.g., the supervisor engine was faulty,

but the cable was replaced).

Findings (5): All device types exhibit some amount of

“burstiness” in their failure patterns with ToRs showing the

least. After one failure, probability of subsequent failures is

higher in the near time window. However, the probability of

multiple failures is quite low (< 0.05) and when devices fail

multiple times, they do so within one week of getting fixed

likely due to ineffective repairs and problem mis-diagnosis.
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Figure 12: Link out per km of long-haul links

Attribute Pair Pearson Correlation

Distance vs. Segments 0.854

#Failures vs. Distance 0.238

#Failures vs. Segments 0.285

Table 6: Pearson correlation

6.4 Is fiber length correlated to failures?

Intuitively, longer the link, higher is the probability of at

least one of its components (e.g., segments) to fail. We

use the Pearson Product-Moment [5] to analyze if there

is a correlation between the number of failures observed

on a fiber and #segments per circuit;. Table 6 shows the

results. Surprisingly, we find that the fiber length has

no statistically significant correlation with the number

of failures observed. We attribute this result to the fact

that these components exhibit high reliability [18] and

fail independently (likely due to issues such as construc-

tion, rodent bites and under-water fiber cuts). Hence, the

overall reliability even for very-long links is not affected.

To understand how many seconds a link is down per

kilometer, we define link out per km as the ratio between

the duration that a link is down to the length (in kms) of

the fiber involved in the failure event. Figure 12 shows

the distribution of this metric for all fiber link failures

and the ones not due to maintenance. We observe a me-

dian link out time of 0.4 seconds/km and a 95P value of

5.9 seconds/km for the latter and ≈26.7 seconds/km for
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Figure 13: Distribution of the number of ToRs connected to

two AGG platforms.

the former with a long tail for maintenance events. Com-

puting the Pearson correlation between fiber length and

link out per km yielded -0.13 for all events with mainte-

nance and -0.16 for impactful events indicating that they

are not statistically correlated.

Findings (6): Fiber length has no statistically significant cor-

relation with the number of failures observed.

7 Capacity vs. Availability

In network design, a conventional approach is to adopt a

multi-layer architecture that breaks up the network into

small, more manageable Layer-2 domains and then use

a spanning tree to provide redundancy and network load

sharing. The size of these domains is kept small to re-

duce the delays in spanning-tree convergence (which is

sensitive to the network diameter). Due to the Layer-

2 topology, the network can scale at this layer simply

by adding more switches. However, the drawback is that

scaling Layer-2 domains increases the fault domain size

e.g., a broadcast storm caused by a malfunctioning de-

vice or human error can cause failure of the entire sub-

tree. Further, to avoid loops, all links cannot be in a

forwarding state at all times because broadcast packets

risk saturating the VLAN, thereby adversely affecting

the network performance.

This raises a fundamental question of scale-up vs.

scale-out for operators to deliver services in a cost-

effective manner: Do we deploy high-density, expensive

Aggregation switches that can provide connectivity to

hundreds of ToRs or leverage small port-count, low-cost

commodity switches (perhaps with lower reliability), but

deploy them in large numbers? Specifically, we aim to

analyze how does the availability of Layer-2 AGGs de-

pends on the number of ToRs connected to it.

Figure 13 shows the distribution of the number of

ToRs connected to two platforms of AGGs, AGG-A and
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Figure 14: Median availability based on the number of ToRs

connected to the two AGG platforms.

AGG-B, in our dataset. Observe that a small percentage

(5%-25%) of devices serve more than 100 ToRs. To un-

derstand the tradeoff between capacity and availability,

we divide each platform of Aggregation switches into

four categories based on quartiles on the ToR count (i.e.,

the first quartile forms the first category and so on). In

each category, we compute the availability of the popu-

lation based on the number of logged failure events.

Figure 14 shows the median availability of AGGs

based on the number of ToRs they are connected to. No-

tice that the category-1 devices for AGG-A exhibit 4.5

9’s availability. By analyzing the trouble tickets of AGG-

A devices in this category, we observed that the time to

troubleshoot their problems was the lowest likely due to

small number of ToRs resulting in high availability. For

AGG-B, the availability in this category was relatively

less of 3.5 9’s due to higher time to debug platform-

specific problems and relatively a wider range of up to

40 connected ToRs compared to AGG-A. f For both plat-

forms, category-2 exhibited about the same availability

as category-1 with a slight increase for AGG-B value

of 4 9’s. We also observed similar results for category-3

where AGG-A exhibited 4.5 9’s availability while AGG-

B exhibited 3.5 9’s availability. We observed from the

tickets of AGG-B devices in this category (having a ToR

count range of 95-172) that the AGGs were being pro-

visioned with new ToRs which increased the likelihood

of a failure during troubleshooting e.g., due to operator

mistakes.

In category-4, we observe the lowest availability of

3 9’s across both platforms. Note that many of these

devices were long standing in production whose ToR

provisioning was close to port capacity. Using the tick-

ets associated with this category, we found that main-

tenance becomes harder and more error-prone for high

ToR counts as also observed for category-3 AGG-B de-

vices. Further, due to these devices operating close to ca-

pacity, it was not feasible to find alternate available paths



to re-route the entire traffic load in case of a failure. This

resulted in additional downtime where the operators had

to provision a temporary set of replacement devices and

then configure them to route the service traffic.

Findings (7): Layer-2 switches exhibit high availability

when about half of their port capacity is utilized (in terms

of ToR count). However, the availability significantly de-

creases as the ToR count gets close to the full switch capac-

ity. Therefore, to deliver highly-reliable and cost-effective

services, scale-out switches with low to medium port den-

sity may deliver higher availability in comparison to their

expensive, higher capacity counterparts.

8 Research Implications

In this section we discuss the research implications

based on our study to improve network reliability for

geo-distributed services.

DNS-redirection based network load balancing: To

mask service outages (§1) and to avoid overload at any

datacenter site, one approach is to assign a URI to the

cloud service whose DNS resolution maps to a set of

globally distributed monitoring servers e.g., in a content

distribution network. These servers dynamically re-route

requests to the edge datacenter hosting the service that

will provide the lowest latency based on a client’s loca-

tion. The monitoring servers track each datacenter host-

ing site via heartbeat signals and can further execute a

specified set of mini-transactions [1] on the service to

continuously check its performance and availability.

Link Bundling and Wavelength Provisioning: To re-

duce high utilization events (§5.2) on inter-DC links and

to avoid the undesirable latency changes due to rerouting

(e.g., caused by a fiber cut) at the optical layer, several

techniques can be explored:

• Link Bundling: Link bundling, widely used in the con-

text of MPLS [24] traffic engineering, combines multi-

ple links into a single logical channel to increase aggre-

gate bandwidth and fault tolerance. For fiber links, it can

significantly reduce LSP fragmentation which arise from

large flows being unable to fit on individual circuits. In

particular, bundling allows creating many smaller, paral-

lel LSPs between core routers, bringing the bandwidth to

a packable number such as 2Gbps per LSP. The resulting

large number of LSPs can then be re-routed occasionally

and fit across a fragmented 10G optical mesh.

• Automatic Bandwidth: MPLS auto-bandwidth feature

measures the traffic flows through the LSP, adjusting the

bandwidth based on measured traffic and defined param-

eters on a per-LSP basis. While it allows the network to

react faster to sudden traffic spikes without manual in-

tervention, there are two key challenges of (a) managing

significant routing churn by small-sized LSPs, and (b)

tuning parameters to automatically create/delete LSPs.

• Mirror Physical Topology: Wavelength provisioning

and link bundling can be planned so that bundles are

created, mirroring the underlying physical topology. In

this way, the reliability of an optical network is better

modeled by the IP router topology. When there is an op-

tical failure, the whole link bundle will go down, and

should therefore be unavailable from a network and ca-

pacity planning point of view. This helps reduce com-

plexity in understanding and mitigating failures because

the IP topology closely mirrors the optical topology.

Techniques to improve network redundancy: Our

analysis of redundancy effectiveness (§4.2) revealed the

following problems to cause unsuccessful failovers:

• Misconfigurations and software version mismatch

between primary and secondary redundant pairs.

• Faulty failovers when the backup exhibited a prob-

lem unrelated to primary failure (e.g. due to software

errors, protocol bugs etc.)

• Faulty cables where the cable connected to the

backup showed a high error rate on failover

Solving these broad range of problems requires explor-

ing several research directions. Techniques from soft-

ware engineering such as static analysis which found

success in detecting BGP misconfigurations [14] can

be explored for checking configurations of Layer-2 and

Layer-3 network devices. Similarly, proactive fault in-

jection [7] techniques can be leveraged to randomly

shoot down network elements and testing service re-

silience in masking them.

Repair vs. replace: §6.3 indicated that when devices

fail multiple times, they do so within one week of get-

ting fixed. Therefore, finding and replacing the “few

bad apples” will proactively help avoid serious prob-

lems. In addition, the analysis in §6.2 indicates that

failures are not memoryless and while repairs were ef-

fective for ARs and AGGs, the probability of succes-

sive failure for ToRs increased. Thus, while a naive ap-

proach is to immediately replace a failed ToR, in prac-

tice this decision should be driven by two key fac-

tors: (1) Computing a Cost of Ownership (COO) [12]

for devices to include their capital, operational, and re-

pair and maintenance costs; §4.1 provides empirical re-

sults on some of these metrics, and (2) adopting a data-

driven approach to compute the conditional probability

PN+1|N = P((N + 1)th f ailure|Nth f ailure) for a device

type/platform and then comparing it with both a thresh-

old δ based on the network device platform’s annualized

failure rate and PN|N−1. The intuition behind the latter is

that if PN+1|N > δ ∗PN|N−1, the probability of the device

experiencing a subsequent failure is higher and thus it

becomes a candidate for replacement.



9 Related Work

This paper is one of the first large-scale study of

failures of network stamps from a service perspective,

and the first study characterizing failures on inter-

datacenter links in a cloud service provider. Several

of our analyses have not been previously examined

such as computing the number of independent network

domains to meet uptime SLAs, checking whether

network failures are memoryless or bursty, analyzing

how does Aggregation switch port capacity impact their

reliability, finding correlation of fiber length with fail-

ure rate, and studying high-utilization of inter-DC links.

Datacenter Failures: Failures in datacenters, in general,

have received significant attention in the recent years

[21, 25, 30, 37, 45, 48]. Our event processing methodol-

ogy in §3.2 draws some similarity with the analysis car-

ried out by Turner et al. [48] and Gill et al. [16]. Turner

et al. [48] used router configurations, syslog and email

records to analyze network failures in the CENIC net-

work. Gill et al. [16] study intra-datacenter network fail-

ures in a large cloud provider, but they do not analyze

reliability of network stamps from a service viewpoint

or characterize failures of inter-datacenter links. Sherry

et al. [46] conduct an operator survey of middlebox fail-

ures across several enterprise networks.

Inter-Datacenter Links: Much of the earlier work

in analyzing inter-datacenter links focused on char-

acterizing traffic flows [10, 26], providing bandwidth-

on-demand [29] or optimizing traffic flows [27, 29].

Laoutaris et al. [26] present a system for bulk data trans-

fer over wide area that employs a network of storage

nodes and uses a store-and-forward algorithm to sched-

ule data transfers. Chen et al. [10] characterize inter-

datacenter traffic using anonymized NetFlow datasets

collected at the border routers of Yahoo! data centers.

They find that peak traffic volumes between datacenters

are dominated by non-interactive, bulk data transfers.

Mahimkar et al. [29] present a globally reconfig-

urable photonic network between datacenters that im-

proves operational flexibility by providing a bandwidth-

on-demand service. Li et al. [27] present a scheduling

scheme that considers both bandwidth utilization and

ISP friendliness to reduce the inter-domain traffic. Un-

like most work in this area, we focus primarily on an-

alyzing long-haul link failures and studying properties

of inter-datacenter links with high utilization. Perhaps,

the closest work to ours is by Kandula et al. [22], who

analyze when and where congestion happens inside dat-

acenters but they do not consider inter-datacenter traffic.

In an extended abstract [39], we performed a preliminary

analysis of the causes behind intra- and inter-datacenter

network failures.

Hardware Failures: There have been several prior stud-

ies on hardware failures (e.g., [4, 19, 35, 38, 43, 44] and

the references therein), but they do not consider network

failures in datacenters. Our findings on conditional fail-

ure probability relate to the findings in recent studies on

DRAM errors [44] and disk-subsystem failures [19]. By

contrast, we found diverse trends across different device

types in our dataset which could be leveraged in a data-

driven approach to decide whether to repair or replace a

device. Nightingale et al. [35] study desktop failures run-

ning Windows and find that PC failures are not memory-

less, consistent with our observation for the three types

of network devices.

10 Conclusion

This paper presents one of the first large-scale study

of cloud network failures at both intra-datacenter and

inter-datacenter layers. We find that network failures

cause significant impact to cloud services, dominated

by connectivity loss problems and service errors. The

main takeaways from our study are: (1) A service hosted

on a single, large network stamp may risk low avail-

ability because network redundancy is least effective

at the AR-AGG layer. To improve availability, build a

small number of independent network stamps — three

for 99.9% availability and four for 99.99% availability;

(2) Network redundancy is most effective at the Inter-

datacenter level. However, long-haul links exhibit 2x-3x

higher downtime than expected under high utilization;

(3) Scale-out switches with low to medium port density

may deliver relatively higher availability in comparison

to their expensive, higher capacity counterparts; (4) Net-

work device failures are not memoryless and exhibit the

“few bad apples” effect; techniques such as regression

analysis and trend analysis can be leveraged to identify

and troubleshoot the most failure-prone devices; (5) In-

terface errors, hardware failures and unexpected reboots

dominate the problem root causes; and (6) Top-of-Rack

switches exhibit an increase in probability of a succes-

sive device failure after repair motivating the need to de-

velop automated correlation and diagnosis techniques.

We hope that our work sheds light on answering sev-

eral key questions to improve network reliability for geo-

distributed services.
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