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Firewall Fingerprinting and Denial
of Firewalling Attacks

Alex X. Liu, Amir R. Khakpour, Joshua W. Hulst, Zihui Ge, Dan Pei, Jia Wang

Abstract— Firewalls are critical security devices handling all
traffic in and out of a network. Firewalls, like other software
and hardware network devices, have vulnerabilities, which can
be exploited by motivated attackers. However, just like any
other networking and computing devices, firewalls often have
vulnerabilities that can be exploited by attackers. In this paper,
first, we investigate some possible firewall fingerprinting methods
and surprisingly found that these methods can achieve quite
high accuracy. Second, we study what we call denial of fire-
walling (DoF) attacks, where attackers use carefully crafted
traffic to effectively overload a firewall. To the best of our
knowledge, this paper represents the first study of firewall
fingerprinting and DoF attacks.

Index Terms— Network Security, firewalls.

I. INTRODUCTION

A. Motivation

THE security and reliability of firewalls are critical because
they serve as the first line of defense in examining all traf-

fic in and out of a network and they have been widely deployed
for protecting both enterprise and backbone networks. How-
ever, just like any other networking and computing devices,
firewalls often have vulnerabilities that can be exploited by
attackers [1], [2]. To exploit firewall vulnerabilities, the first
step that attackers need to do is firewall fingerprinting, i.e.,
identifying the particular implementation of a firewall includ-
ing brand name, software/firmware version number, etc. For
example, in the seminal work by Qian and Mao [3], the attacks
discovered by them assumes that the attackers knows the
particular implementation of the firewall under attack. On the
defense side, we first need to know how attackers possibly can
fingerprint a firewall so that we can design countermeasures
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accordingly; second, we need to know how attackers can
possibly attack a firewall over the Internet.

In this paper, first, we investigate some possible firewall
fingerprinting methods and surprisingly found that these meth-
ods can achieve quite high accuracy. Second, we study
what we call Denial of Firewalling (DoF) attacks, where
attackers use carefully crafted traffic to effectively overload
a firewall. To our best knowledge, this paper represents
the first study of firewall fingerprinting and Denial of Fire-
walling attacks. The attack presented in this paper can be
used in conjunction with the attack presented in Qian and
Mao’s work [3]. Designing countermeasures for firewall fin-
gerprinting and Denial of Firewalling attacks is out of the
scope of this paper, but is the next step of this line of
research.

B. Limitation of Prior Art
Prior art mostly focused on operating system fingerprint-

ing [4]–[9]. Many tools such as NMAP [4] have been
developed to identify a target host’s operating system using
TCP and UDP response characteristics. There are several
approaches to finding out the operating system ranging from
simple banner observation to highly complicated TCP, UDP
and ICMP-header analysis. However, none of these methods
can be used for firewall fingerprinting because firewalls, like
other network middleboxes, forwards the traffic and cannot
be targeted directly. For security purposes, some firewalls are
configured in bridge mode with no IP address to be remotely
accessible by the administrator. Hence, such approaches can-
not be effective for firewall fingerprinting.

C. Technical Challenges
This work has three major technical challenges. First,

finding the firewall implementation characteristics that we can
use for fingerprinting is difficult because firewalls are mostly
closed source and it is difficult to infer any implementation
details from them. Moreover, there are many parameters and
configuration details that can affect the performance of a
firewall. Second, inferring the type of a target firewall is
hard for attackers as they have no remote access to the
firewall. Third, finding effective attack strategies on a firewall
is difficult. Knowing some performance characteristics is not
enough for designing effective attacks. Furthermore, for dif-
ferent firewall products, the DoF defense mechanisms may be
different.

D. Our Approach
In this paper, for the first time, we propose a set of

techniques that can collect some information about a firewall
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using packet processing time of probe packets and use the
collected information to identify the particular implementation
of the firewall. For our study, we build a testbed consisting
of three popular firewalls (including an open-source firewall
and two enterprise firewalls [10]), two computers hosting eight
virtual machines for generating traffic to the firewalls, and one
computer for sending probe packets and measuring the firewall
processing time of the probe packets. Because firewalls are
very expensive and our budget was limited, we could only
support three firewalls in our testbed. Moreover, due to privacy
and legal reasons, we are obligated to keep the brand and
model of firewalls confidential.

We address the three technical challenges as follows.
To address the first challenge, we measure packet processing
time to identify the type of packet classification algorithms in
use by the three firewalls, sensitivity of firewall performance to
traffic load, and some other characteristics of firewalls. We use
four different techniques to send probe packets to identify the
type of caching mechanism that a firewall uses in both stateful
and stateless modes. We also examine the sensitivity of firewall
performance to transport protocol types (i.e., TCP or UDP)
and packet payload size. To address the second challenge, we
first study firewall decisions for TCP packets with unusual
flags to find fingerprints for different firewalls. We also use
machine learning techniques to identify firewalls using features
extracted from probe packet processing time. To address the
third challenge, we put the firewalls under different attacks
and compare probe packet processing time under each attack.
We then identify the most effective attack strategy based on
the magnitude and standard deviation of the processing time
of probe packets.

E. Assumptions

We have three assumptions. First, we assume that the
attacker has access to a compromised host inside the network
(behind the target firewall) to measure packet process time and
decisions of the firewall. This can be achieved by host attack-
ing methods such as infecting a host through web browsing.
In general, this assumption is needed for firewall attacking
methods such as Qian and Mao attacks [3]. Second, we assume
that we can accurately measure the packet process time.
This can be achieved using latency measurement methods
such as COLATE [11]. Third, we assume that the attacker
can build a similar testbed as ours consisting of as multiple
different firewall models from different manufacturers to build
classification models. Note that this is a one time cost.

F. Key Contributions

We made three key contributions in this paper. First, we
identified firewall implementation characteristics that one can
evaluate for black box firewalls. Second, we proposed methods
for inferring the implementation of a target remote firewall.
Third, we identified some attack strategies for overloading an
identified remote firewall.

The organization of the rest of the paper is as follows.
We first give an overview of related work in Section II.
We then provide background information on firewalls in

Section III. In Section IV, we present an overview on different
steps of our study on firewall fingerprinting and describe our
testbed specifications. Section V presents the results of our
experiments for identifying firewall implementation charac-
teristics. We present methods for inferring the implementa-
tion of a remote firewall in Section VI. We examine the
effectiveness of our designed attacks on different firewalls in
Section VII. We conclude our studies and present future work
in Section VIII.

II. RELATED WORK

To the best of our knowledge, this is the first study
of firewall fingerprinting and Denial of Firewalling attacks.
Salah et al. [12] propose a method of attack on firewalls that
perform sequential search. The basic idea is to send packets
that match the last rule in a firewall. However, it is extremely
difficult, if not impossible, for an attacker to find the packets
that match the last rule in a firewall without knowing the policy
and implementation of the firewall. Furthermore, our results
actually show that attack traffic consisting of accepted packets
is more effective than attack traffic consisting of the packets
discarded by the last rule.

Work has also been done on firewall performance evalua-
tion [13]–[16]. Lyu and Lau [13] measured the performance
of a firewall under seven different policies, where each policy
is for one security level. In a similar vein, Funke et al. [14]
evaluated the firewall performance (mostly firewall through-
put) under policies with differing number of rules. They also
show that more rules do not necessarily imply poorer firewall
performance.

There are some industrial reports on comparing com-
mercial firewalls in terms of performance under different
circumstances. Bosen in [15] compared Secure Computing
Sidewinder [17] with Checkpoint’s NGX [18] and reported
better throughput for Sidewinder when high-level of protection
including packet and protocol inspection is required. Tolly
Group, one of the independent test labs that performs extensive
tests on different IT devices from different vendors, compared
independent Checkpoint Firewall (VPN-1 Pro), PIX Fire-
wall 535 [19], and NetScreen-500 [20]. The report indicated
that the Checkpoint Firewall outperform the other two firewalls
in most of the tests run [16].

III. BACKGROUND

A. Firewall Policies

For each incoming or outgoing packet, a firewall decides to
accept or discard it based on its policy. A firewall policy is
composed of a sequence of rules, where each rule specifies a
predicate over five different fields: source and destination port,
source and destination IP address, and IP protocol. Typically,
firewall policies do not check the source port field. The rules
in a firewall policy may overlap and conflict. To resolve
conflicts, firewalls follow the first-match semantic, i.e.,, the
decision of the first rule that a packet matches is the decision
of the firewall for the packet. An example firewall policy is
in Table I.
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TABLE I

AN EXAMPLE FIREWALL POLICY

B. Caching and Statefulness

One method of increasing firewall performance is to cache
rules or flows based on temporal locality. Rule caching stores
the four-tuple of source IP, destination IP, destination port, and
protocol type for packets that a firewall has performed a full
lookup on its policy for. The decision associated with each
entry is stored in the cache.

When a firewall with rule caching receives a packet, it first
checks whether the four-tuple header of the packet is in its
cache; if found, the decision for the packet can be made
without checking the packet against the main firewall rules;
if not found, the firewall checks the packet against its policy
and then caches the four-tuple of the packet with the decision.
Flow caching stores the five-tuple, which includes the source
port field in addition to the four fields used in rule caching.
The lookup process for flow caching is similar to that for
rule caching. The purpose of flow caching is to have a fine-
grained access control beyond firewall policies. For example,
to protect against SYN flooding attacks, some firewall products
stop accepting new SYN packets with new source ports when
they see too many open flows from a specific source address
with different source ports.

Commercial firewalls often support both stateful or stateless
modes. A stateful firewall tracks TCP sessions in a state table
by examining the TCP flags of incoming TCP packets. This
ensures that the packet in a TCP session follows the correct
order that includes a proper handshake and tear-down. The
firewall drops any packet with an illegitimate flag. After a
correct handshake, an entry is made in the state table. The
packets that match the session entries bypass the firewall. Once
a session goes through the correct termination procedure, its
table entry is removed.

C. Packet Classification Solutions

The process of checking a packet against a firewall policy
is called packet classification. Packet classification solutions
fall into two main categories: software based solutions and
Ternary Content Addressable Memory (TCAM) based solu-
tions. Software based packet classification solutions include
the simple sequential search algorithm and other algorithms
based on complex data structures (e.g.,, [21]–[25]). The
sequential search algorithm compares a packet with each
rule in a firewall policy sequentially until a match is found.
Complex data-structure-based packet classification algorithms
include Recursive Flow Classification (RFC) [23], Aggregated
Bit-Vector [24], Tuple space [25], HiCut [21], and
HyperCut [22], etc. For TCAM based packet classification,
firewall rules are stored in a special memory chip; for any

given packet, the hardware circuit of the chip compares the
packet with every stored rule in parallel and returns the
decision of the first rule that matched the packet. TCAM
based packet classification is widely used in high performance
routers and firewalls because the lookup is done in constant
time.

IV. OVERVIEW

A. Roadmap

To study DoF attacks and defenses, we design a testbed with
three popular firewalls for conducting extensive experiments
and performance measurements. Of the three firewalls tested,
two are software firewalls while the other is hardware based.
A software firewall is implemented fully in software and
may reside on a multipurpose machine as one of many ser-
vices being provided. Typically, software firewalls are highly
configurable and offer more customization and services than
their hardware counterparts. Hardware firewalls are made
specifically tailored for packet classification. Generally, they
are more limited in capabilities than software firewalls but are
usually very fast in classification as they are purpose built.

Our measurements are mostly based on probe packet
processing time taken on remote hosts before and after a fire-
wall. In our initial experiment we study firewall characteristics
induced by their implementation. We examine firewall packet
classification algorithms to understand whether or not they
use sequential search for packet filtering. We then measure
the sensitivity of firewall packet classification algorithms to
firewall background traffic load. We continue our studies by
inspecting the firewall caching techniques and specifying their
caching effectiveness. We finalize our study by looking at
firewall processing time with respect to probe packet payload
size to understand if they have an impact on the firewall packet
processing time (PPT).

The second experiment is to determine if an attacker can
infer the implementation of a firewall remotely by sending
probe packets through the firewall. The firewall implementa-
tion inference process is studied from two perspectives. First,
we try to find a signature for each firewall based on the
decision of a sequence of TCP packets with an unusual set
of flags. The results show that the three firewalls, especially if
they are in stateful mode, discard TCP packet sequences with
unusual TCP flags. As administrators rarely define policies
on TCP flags, the obtained signature usually has a close
association with the firewall implementation. An attacker can
use this signature to infer firewall implementation remotely
with high confidence. Second, as a complementary method, we
use PPT of a sequence of probe packets to train a classification
model for each firewall and use it accordingly to infer the
implementation of a target firewall. Note that in the attacking
scenario, the attacker needs to build simple testbeds including
all speculated firewall brands to acquire signatures and the
classification model. He then needs to (1) compromise a host
inside the network, (2) use security scanner tools such as
nmap [4] to find the packets that can go through the target
firewall and reach the compromised host and (3) generate and
send probe packets to measure their PPT. An attacker can
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Fig. 1. The testbed.

also obtain more information using other monitoring tools
(e.g., traceroute) to understand the number of hops and
the extra delay between the probe packet sender and receiver
to create more accurate models for firewall implementation
inference.

The third experiment evaluates which attack is more effec-
tive for a given firewall. We compare probe packet processing
time when the firewall is under random DoF attacks and
some customized DoF attacks, which are designed based on
the firewall’s characteristics. The results indicate that some
firewalls can be easily overloaded while other firewalls are
fairly resilient to customized DoF attacks. Note that as it is not
feasible to measure PPT for discarded packets in commercial
firewalls, all the measurement in this paper are based on
accepted packets.

We finally propose some techniques to protect firewalls from
DoF attacks by adding some dummy rules for TCP flags or
adding hybrid queuing mechanisms to randomize the pattern
of the probe PPT. Indeed, firewall vendors can also use these
results and modify their implementation so that their products
are more resilient against DoF attacks.

B. Measurement Environment

Figure 1 shows the testbed topology for our testing of
three different firewalls. Firewalls FW1 and FW2 are software
firewalls running on a Linux machine with SMP kernel 2.6.
Each firewall has 2 quad-core Intel Xeon 2.66GHz CPUs and
16GB of RAM. FW3 is a hardware firewall that runs on a
routing engine board with a 850MHz processor, 1,536MB
DRAM, and 256MB compact flash. Each firewall is config-
ured with the same policy comprised of 375 rules. The first
374 rules are set to accept traffic with the final rule discarding
all traffic that is not specified previously. The firewall policy
is chosen from real-life firewall policies used in a university
campus network. The rules are defined over four packet header
fields: source IP, destination IP, destination port number, and
protocol. As with most real-life firewall policies, only a few
rules overlap. Moreover, there is no rule hidden by another
rule (i.e., there is no rule with lower index that completely
covers a rule with higher index). Furthermore, the firewalls
are only configured for packet filtering; other services such as
VPN or NAT are disabled.

In addition to the firewalls, the testbed has two machines,
VM1 and VM2, running VMWare ESX 3.5.0 on a similar

machine with 2 quad-core Intel Xeon 2.66GHz CPUs and
16GB of RAM Each VMWare instance has four Linux virtual
machines connected to each other by virtual switches. These
virtual switches are connected directly (without an intermedi-
ary switch) to each firewall (FW1, FW2, and FW3). The virtual
machines on VM1 and VM2 are used to place background
traffic load on the firewalls by sending a substantial amount of
packets to different interfaces of the firewall. The traffic is gen-
erated by Mausezahn network traffic generators (aka mz) [26],
an open-source traffic generator. Using both VM1 and VM2,
we are able to sustain a traffic rate of up to 300Mbps. Based
on the design of experiments and attacks, the generated traffic
can be accepted or discarded by the firewall to which it is
sent. To put maximum load on the firewalls, the generated
traffic has no packet payload. This maximizes the number
of packets that a firewall needs to process. If packets have
payloads, firewall throughput will increase, but traffic packet
rate (i.e., packets per second) will decrease. As mentioned, the
virtual switches are directly connected to the firewalls. This
is to separate the generated traffic for each firewall and make
firewall experiments independent from each other.

The last portion of the testbed is the Probe Machine & Traf-
fic Analyzer (PMTA): a Linux machine with Dual Quad-core
Intel Xeon 2.66GHz CPUs and 16GB of RAM. We send probe
packets by PMTA directly (i.e., no switch in between) to each
firewall using an open-source packet generator hping2 [27].
If the probe packets are accepted by the target firewall they are
routed back to PMTA through another interface (as it is shown
in Figure 1). In order to measure firewall packet processing
time, we use packet trace time-stamps. We use tcpdump [28]
to dump packets with time-stamps with microsecond reso-
lution. For the software firewalls (FW1 and FW2), we can
analyze the packet traces and calculate the PPT based on
the difference of packet trace time-stamps of outgoing and
incoming interfaces. However, the hardware firewall (FW3)
does not support tcpdump or any traffic monitoring (i.e., packet
dumping) feature. Therefore, since we cannot measure the
packet processing locally on the firewalls, the probe packets
are forwarded to PMTA and we calculate the time-stamp
difference of the packet traces on PMTA. The time-stamp
differences calculated on PMTA comprise the firewall PPT
plus probe packet round trip time (RTT) which in turn reduces
the accuracy of firewall PPT.

V. FIREWALL CHARACTERISTICS

To study firewall characteristics, we first give an overview
on the methodology basics such as how the probe packets
are sent and how the PPT is measured by PMTA. We then
show the results for different firewall features containing
firewall packet classification algorithm, firewall statefulness
and caching, and packets protocol and payload size impact.

A. Methodology Basics

The probe packets are sent by the PMTA in four modes as
follows:

• TCP Fix: A sequence of TCP packets with the same
packet header.
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Fig. 2. The PPT for probe packets that match against a rule in the firewall policy. (a) Remote measurement on FW1. (b) Local measurement on FW1.
(c) Remote measurement on FW2. (d) Local measurement on FW2. (e) Remote measurement on FW3.

• TCP Vary: A sequence of TCP packets with the same
packet header except the source port which is chosen
randomly for each probe packet.

• UDP Fix: A sequence of UDP packets with the same
packet header.

• UDP Vary: A sequence of UDP packets with the same
packet header except the source port which is chosen
randomly for each probe packet.

We conduct two sets of experiments with and without
background traffic load in the testbed. The first set of exper-
iments are performed under no background traffic load, i.e.,
the probe packets are the only packets that are transmitted in
the testbed during the experiments. In contrast, the second set
of experiments are performed under background traffic load.
In this case, all virtual machines send dummy packets with
no payload to the target firewall as the background traffic.
The header of dummy packets are chosen such that they will
be discarded by the rule configured in the firewall, i.e., these
dummy packets never pass through the firewall. The dummy
packet rate varies from 870,000 packets to 1,875,000 packets
per second. Since packets have no payload, the dummy traffic
varies from 250Mbps to 300Mbps. Because the firewalls
are installed on powerful machines, they are not under any
type of resource constraints in terms of CPU and memory
when the firewalls are under the background traffic load. This
indicates that the experimental results for the firewalls under
the background traffic load may not be affected by hardware
resource constraints.

We use two methods for measuring PPT: (1) Local mea-
surements are based on packet traces collected from the
incoming and outgoing interfaces of the firewall. (2) Remote
measurements are based on the packet traces collected from
the PMTA’s incoming and outgoing interfaces. The local
measurements of PPT are more accurate than the remote
measurements of PPT, but they require (1) local access to the
firewalls and (2) the firewall interface must support packet
analyzers which dump packets passing through the firewall’s
interfaces. In contrast to local, the remote measurement of PPT
includes the packet transmission time, reducing the accuracy.
Because FW3 does not support any packet analyzers, we
use local measurement for FW1 and FW2 as well as remote
measurement for all three firewalls to compare between FW1,
FW2, and FW3.

B. Packet Classification Algorithm

Identifying the exact packet classification algorithm that the
firewall uses is very difficult if we treat the firewall as a black

box. However, we can design experiments to test (1) whether a
firewall adopts a sequential search based algorithm for packet
classification, (2) whether the performance of a firewall is
sensitive to its traffic load; and (3) how a firewall performs
in terms of the PPT.

1) Using Sequential Search: To test if a firewall uses
sequential search for packet classification, we generate a
sequence of probe packets where each packet matches exactly
one of the rules in the firewall policy. We then measure the
PPT for the probe packets. If the PPT increases linearly as we
progress further down the rule list, it is likely that the firewall
uses a sequential-search-based approach for packet classifica-
tion. If the PPT exhibits a different change pattern or lack
of change (i.e., remains flat), the packet classification algo-
rithm used by the firewall is not sequential-search-based and
could be any of other algorithms described in Section III-C.
We repeat this test 10 times and compute the median value
of the PPT. The median value is preferred over mean
value because it is less sensitive to outliers, which can be
caused by the variability of network congestion and interface
packet buffering, especially when the firewalls are under load.
Figure 2 shows the median value of the PPT.

Figures 2 (a) and (b) show the median value of PPT
measurements with and without background traffic load for
FW1. Using the remote measurement method, we observe
that the median PPT increases as the rule index when there
is no background traffic load. A similar increasing trend is
also observed on median PPT under background traffic load
when the local measurement method is used. The slopes for the
regression lines for PPT of FW1 using remote measurement
in Figure 2(a) for with-load and no-load curves are 0.1176
and 0.1645, respectively. Similarly, the corresponding slopes
for curves in Figure 2(b) are 0.1411 and -0.0317, respectively.
This observation implies that FW1 is likely to use a sequential-
search-based packet classification algorithm. The very small
negative slope of the median PPT using local measurement
under no background traffic load may indicate that FW1 uses
some type of rule pre-fetching or caching, yet as the slope is
very small the effect is not significant.

The results for FW2 (shown in Figures 2 (c) and (d)) suggest
similar sequential-search-based classification algorithms, espe-
cially when the firewall is under load. The slopes for regression
lines for PPT curves for with and without background traffic
load in Figure 2(c) are 0.1339 and 0.0208, respectively. Sim-
ilarly, the corresponding slopes for PPT curves in Figure 2(d)
are 0.3809 and −0.0073, respectively. We can also observe
that FW1 and FW2 has considerably different transmission
delay especially when FW1 is under load by comparing
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the differences between graphs in remote measurement (i.e.,
Figures 2(a) and (c)) with their corresponding ones in local
measurement (i.e., Figures 2(b) and (d)). Since the experiment
environment is the same for FW1 and FW2, it seems that such
difference is due to the different queuing implementation in
FW1 and FW2, yet because we do not have access to both
firewalls source codes, it is difficult to ensure.

We have different observations on median PPT for FW3.
The slopes for regression lines for PPT curves for with and
without background traffic load in Figure 2(e) are 0.0033 and
0.0082, respectively. The fairly flat regression lines for FW3
implies that FW3 likely uses some other techniques rather
than sequential search based algorithm for packet classifi-
cation. As FW3 is a hardware firewall, we believe it uses
TCAM-based packet classification methods, which use parallel
exhaustive search.

2) Sensitivity to Traffic Load: Using the same experimental
settings, we also evaluated the sensitivity of firewall perfor-
mance to traffic load. We observe that, among all firewalls,
FW1 is most sensitive and FW3 is the least sensitive to the
traffic load. Considering all remote measurements shown in
Figures 2 (a), (c), and (e), the median PPT when the firewalls
are under background traffic load is 4.6034, 2.7385, and
0.9874 times larger than the median PPT when the firewalls
are under no background traffic load for FW1, FW2, and FW3,
respectively.

We observe that the PPT curves for FW1 and FW2 have
sharper slopes when the firewalls are under the load. This
implies that the packet classification mechanism, including
packet classification algorithm and possible caching scheme,
depends on the current traffic and load on the firewall.

We also find that the traffic load on the firewall has an
impact on the variance and dispersion of the PPT of probe
packets, which directly relate to the stability of the firewall
and firewall packet reordering. Figure 3 shows the standard
deviation (STD) of the PPT for probe packets. We observe
in Figure 3(a) that on average the STD of the PPT for FW2 has
52.4749 times larger than that for FW1 in local measurements.

To show the relation between the STD of the PPT of probe
packets in local and remote measurement, let SL

i and SR
i

denote the vector of PPTs obtained in local and remote
measurements for the i -th firewall, respectively. Let T denote
the transmission delay from PMTA to the firewall and from
the firewall to PMTA. Therefore, SR

i = SL
i + T . The STD

of the PPT for local measurement can be calculated from the
STD of the PPT for remote measurement as follows:

ST D(SR
i ) = ST D(SL

i + T )

=
√

ST D(SL
i )2 + ST D(T )2 + C OV (SL

i , T )

As PPT and transmission time are independent,
C OV (SL

i , T ) = 0. Also, STD of transmission time can
be represented by a constant vector c . Hence,

ST D(SL
i ) =

√
ST D(SR

i )2 − c2

Note that the transmission time and its standard deviation
can be different based on the load on the firewalls and the
way the firewalls handle queuing and packet forwarding. With

Fig. 3. The STD of the PPT for probe packets that match against a rule in
the firewall policy. (a) Local measurement. (b) Remote measurement.

that in mind, Figure 3(b) shows the STD of the firewall PPT
calculated from the remote measurements. We observe that,
on average the STD of PPT on FW2 is 1.7910 and 33.3 times
larger than those on FW1 and FW3, respectively. In con-
clusion, the hardware firewall (FW3) shows less sensitivity
to the traffic load and seems to be more stable in terms of
performance under different network traffic loads.

3) Average PPT: In general, Figure 2 shows that FW3 yields
the lowest PPT regardless of the background traffic load on
the firewall. The average PPTs without background traffic
load on FW1, FW2, and FW3 are 151.7891, 77.5470, and
60.3360 microseconds in the remote measurements (shown
in Figures 2 (a), (c), and (e)), respectively. Similarly, the
corresponding figures with traffic load on FW1, FW2, and
FW3 are 672.8522, 98.7970, and 57.8777 microseconds,
respectively. However, in the local measurements (shown in
Figures 2(b) and (d)), FW1 and FW2 have similar average
PPTs (50.3710 and 49.7796 microseconds, respectively) when
there is no background traffic load on the firewalls. On the
other hand, when there is background traffic load on the
firewall, the average PPTs for FW1 and FW2 are 126.7352 and
92.8078 microseconds, respectively. This result again indicates
the high sensitivity of FW1 to the traffic load. Overall, FW3
outperforms FW1 and FW2 with the lowest average and
minimum STD of PPTs, and the least sensitivity to the traffic
load.

C. Caching and Statefulness

As explained, modern firewalls often use different caching
mechanisms for rule and flow caching to reduce the per-
formance overhead of packet classification. To identify if
a firewall uses caching and how effective the caching is,
we define cache effectiveness (C) as the ratio of the PPT for
the first probe packet in a sequence of probe packets, whose
header is not in the cache table, to the median PPT of the rest
of the probe packets in the same sequence, whose headers are
supposedly in the cache. If C > 1, the firewall uses caching
effectively. If C ≃ 1, the firewall either does not use caching,
or the caching that the firewall uses is not effective.

In our experiments, we measure the firewall’s C value as
follows. For each experiment we first send 10 probe packets
and measure the PPT for each probe packet and calculate
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TABLE II

CACHE EFFECTIVENESS BASED ON LOCAL AND REMOTE MEASUREMENTS

C value accordingly. The C value reported in this paper is the
median C values for 10 repeated experiments. To determine
the effectiveness of a firewall caching in stateless and stateful
modes, we conduct experiments using four types of probe
packet modes: TCP Fix, TCP Vary, UDP Fix, and UDP Vary.
If the firewall has effective caching in TCP Fix and UDP Fix
probe packets, it means that the firewall caches all 5 packet
header fields in its cache table. i.e., it performs flow caching.
However, if a firewall has effective caching in TCP Vary and
UDP vary probe packets, it means the firewall caches only
4 packet header fields (excluding source port) in its cache
table. i.e., it performs rule caching.

Table II presents the C values calculated based on local
and remote measurements for experiments on three firewalls
FW1, FW2 and FW3. In the local measurements, the results
show that FW1 performs very effective flow caching on
UDP packets as the cache effectivenesses for UDP Fix are
significantly more than 1 (7.4931 < C < 16.75). However,
FW1 flow caching on TCP packets is not as effective since
the cache effectivenesses for TCP Fix are variable around 2
(1.9038 < C < 2.3411). In addition, the results imply that
FW1 does not support rule caching because the cache effec-
tivenesses for UDP Vary and TCP Vary are around 1. However,
there is one exception case where the cache effectiveness for
TCP Vary probe packets when FW1 is under the background
traffic load and configured in stateless mode is 3.2020. This
could be an indication of some caching mechanisms that are
enabled when FW1 is under load.

For FW2, the caching effectivenesses for UDP Fix and TCP
Fix experiments range from 5.4214 to 9.8167, while the cor-
responding figures for UDP Vary and TCP Vary experiments
range from 2.8588 to 4.6833. Because the cache effectiveness
values for FW2 are much larger than 1 for all experiments,
it seems that FW2 uses rule caching. In addition, because the
cache effectivenesses for UDP Fix and TCP Fix experiments
are larger than those for UDP Vary and TCP Vary experi-
ments, seemingly the FW2 uses separate flow caching and
rule caching mechanisms. Comparing the cache effectiveness
results for FW1 and FW2, the flow caching mechanism on
FW1 is more effective on UDP packets, whereas the flow
caching mechanism on FW2 is more effective on TCP flows.

In the remote measurements, the transmission delay is quite
larger than the actual PPT. Therefore, the cache effectiveness
calculated based on remote measurement are not as expressive.
However, there is one exception where FW3 has a cache
effectiveness of larger than 2 in UDP Fix probe packets when
FW3 is in the stateful mode. The result indicates that FW3
performs flow caching in this typical case. In addition, we
find a unique feature on FW3. When FW3 is in stateful mode,
once PMTA sends the first TCP SYN packet, FW3 does not
accept any other TCP packet with the same packet header
for a while until it receives a TCP ACK packet from the
packet destination. Thus, calculating C for TCP Fix for FW3
in stateful mode is not applicable.

Another observation that we can make from the results is
that in most of the cases, the cache effectivenesses when a
firewall does not have background traffic load are slightly
higher than those when a firewall has background traffic load.
One possible explanation is that when a firewall is under load,
the cache table has a large number of entries. This results
in longer search time (and PPT) for the rest of the probe
packets. This makes the cache less effective compared to
no-load experiments, where the firewall’s cache table has a
small number of entries.

D. Impact of Packet Protocol and Payload Size
Firewalls usually perform queuing management techniques

to improve their PPT. Such techniques can be made to be
aware of the protocol and payload size of packets. In order
to evaluate the impact of packet protocol and payload size,
we configure all three firewalls in the stateless mode and repeat
the same set of experiments while varying the packet payload
size. Figure 4 shows the median PPT results for packet payload
size of 0, 500, 1000, 1400 bytes.

We have three main observations from the results. First,
Figures 4(a), (b), (d) and (e) show that software firewalls
FW1 and FW2 have different PPT in TCP Fix, TCP Vary,
UDP Fix, and UDP Vary experiments. We observe that the
PPTs are smaller in TCP Fix and UDP Fix probe packets
than those in TCP Vary and UDP Vary probe packets. This
can be a result of effective flow caching on FW1 and FW2.
More specifically, this observation on FW2 seems to indicate
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Fig. 4. The remote PPT for probe packets with different packet payload sizes. (a) FW1 with load. (b) FW2 with load. (c) FW3 with load. (d) FW1 with no
load. (e) FW2 with no load. (f) FW3 with no load.

that flow caching is more effective than rule caching on FW2.
Note that the above observations are made regardless of the
packet payload size. However, Figures 4(c) and (f) shows that
FW3 has the same PPT for all of the TCP Fix, TCP Vary,
UDP Fix, and UDP Vary packets. This indicates that if FW3
has the same rule caching mechanism for all TCP and UDP
packets (when it is in stateless mode). Second, the results in
Figures 4(a), (b), (d) and (e) indicate that the packet payload
size does not impact the PPT on FW1 and FW2. However,
Figures 4 (c) and (f) show that the PPT increases linearly with
regression slope of 0.1945±0.0014 as the packet payload size
increases. Finally, we observe from Figure 4 that the impact
of packet protocol and payload size on PPT is independent
from whether the firewall has background traffic load.

VI. FIREWALL INFERENCE

The first step toward defeating an opponent is to know
them – the same principle applies when it comes to attacking
a firewall. If attackers can successfully infer the type (e.g.,,
vendor/version) and the characteristics (e.g.,, statefulness) of
the target firewalls, they can potentially render a much more
effective attack. In this section, we examine the feasibility and
effectiveness of firewall implementation inference using probe
packets.

Our approach is motivated by the wide range of so-called
operating system (OS) fingerprinting [29]–[31] techniques.
The idea is that different OSes respond to non-conforming pro-
tocol (such as TCP, HTTP) interactions differently. By tracking
the error-handling responses, one may uniquely identify the
OS of the target host. In our case, we study the decision of
firewalls for sequences of TCP probe packets with varying
TCP header flags – the decision of the firewall is limited
to a binary sequence of whether the corresponding packet
is accepted or discarded by the firewall. To distinguish the
firewall’s accept/discard decision due to its configured policy,
we force all probe packets in the same sequence to share
the same source IP, destination IP and destination port. This
ensures that these probe packets hit the same firewall rule

in the typical firewall settings. However, in some uncommon
cases, certain types of firewalls support policies that are
based on TCP flags in addition to the other common TCP
header information. This makes our binary sequence decision
unreliable. Hence, we further supplement the decision binary
sequence with the PPT of the probe packets and use them
to infer the target firewall implementation. Note that in the
remainder of the paper, all PPTs are measured remotely.

To extract the firewall behavior fingerprints and construct
classifiers, we first establish a controlled environment, which
includes various candidate firewalls of interest, devices outside
the firewall that can be used to launch probe packets and
devices behind the firewall that can be used to receive the
probe packets and measure the delays. The testbed network
shown in Figure 1 is an example of such a set up. The
signatures and classifiers identified herein can then be applied
in the “battlefield”. We next describe in detail the methodology
we applied for firewall implementation inference and present
the result for the three firewalls in our testbed. While our
testbed is limited to the three different firewalls available to us,
we believe that our methodology is more generally applicable
for fingerprinting other firewalls in the market.

A. Firewall Inference Using TCP Probe Packets

As there are eight different TCP flags defined in a TCP
header, one can construct 28 different combinations in each
probe packet. This can be further compounded by the per-
mutations of different probe packet sequences. In our limited
testbed case, we find that it is sufficient to use two consecutive
probe packets to distinguish the behavior of different firewalls
(and different modes – stateful and stateless). We show the
results when we enable the TCP SYN flag along with one other
TCP flag in each of the two packets. Table III and Table IV
present the results for the stateful and the stateless firewalls,
respectively. For the ease of presentation, we condense the
information in the table such that the columns represent the
different TCP flags enabled in the first probe packet (besides
the TCP SYN flag) and the rows represent the different TCP
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TABLE III

STATEFUL FIREWALL

TABLE IV

STATELESS FIREWALLS

flags enabled in the second probe packet (besides SYN flag).
In each cell, there are three indicators representing the firewall
decision from the firewall FW1, FW2 and FW3 respectively.
Indicator “*” means that both probe packets are accepted by
the firewall and successfully received at the receiving device
behind the firewall; indicator “-” means that one or both probe
packets are discarded, or more strictly speaking, missed by the
receiver.

The result in Table III and IV demonstrates that tracking
the firewalls’ feedback to well-crafted TCP probe packets can
be effective in obtaining valuable information to distinguish
different firewalls. Unlike FW1 and FW3 that filter out some
probe packets, for the stateful and stateless setting of FW2,
both probe packets have passed through the firewall in all
98 cases. While our example uses certain combinations of TCP
flags, other combinations can prove useful for other firewall
types and settings. We next demonstrate that one can use
supplement information from the PPTs to distinguish these
cases.

B. Firewall Inference Using Packet Processing Time

Although firewall fingerprinting using a sequence of TCP
packets is a deterministic method used to infer firewall imple-
mentation, firewall rules on TCP flags can change the default
decision of the firewall and cause misidentification of the fire-
wall implementation. Thus, we propose an alternate method to
use implementation characteristics including PPT and firewall
cache effectiveness to infer firewall implementation and its
statefulness. In this method, we build a classification model
for each firewall and for their statefulness modes based on
their median PPT, STD of the PPTs, and cache effectiveness.
We then use this classification model to infer firewall imple-
mentation.

To build a classification model and analyze its accuracy, we
first create a dataset containing 3,600 data points. For each data
point, we send 11 consecutive probe packets in four different
modes (TCP Fix, TCP Vary, UDP fix and UDP vary) with

and without payload (total of 8 times). Each data point is
represented by x = ⟨x1, · · · , x24⟩ that has 24 features where
x3i−2 is the median of the PPTs, x3i−1 is the STD of the
PPTs, and x3i is the cache effectiveness for the 11 probe
packets. The data points are collected when the firewalls are
under three different load levels: no load, medium load, and
full load. We also use three set of labels: the labels for
the firewall type (Y1 = {‘FW1’,‘FW2’,‘FW3’}), the labels
for the firewall statefulness (Y2 = {’stateful’, ’stateless’}), and
the labels for firewall type and statefulness (Y3 = {‘FW1-SF’,
‘FW2-SF’,‘FW3-SF’,‘FW1-SL’,‘FW2-SL’,‘FW3-SL’}).

For the classification, we use multi-class Support Vector
Machines (SVMs) with Radial Basis Function (RBF) kernel
with parameters, (γ = 0.01, C=500). Note that the value for
RBF kernel parameters have been chosen by model selec-
tion algorithms that we used to maximize the classification
accuracy. We conduct classification separately for each set
of labels, under two conditions (1) if the attacker somehow
knows the firewall load and (2) if the attacker does not know
the firewall load when he tries to infer firewall implementation
and its statefulness.

The classification problem under first condition is a classic
one, where the data point is x with an additional feature of
firewall load level, denoted by z. However, the classification
problem under the second condition is not as straightforward.
When we train the classifier we know the firewall load level,
but when we use it for testing we do not know the load
level. To solve this problem, we first formulize the problem
as follows:

P(Y |x) =
∑

z

P(Y, z|x) (1)

=
∑

z

P(Y |z, x)P(z|x) (2)

Formula 2 indicates that we need two probabilistic classi-
fiers: the first one is to speculate the firewall load level (z)
given test data point (x), and the second classifier is to predict
the firewall label, given the test data point and the speculated
load level. Using the probabilistic classifiers, we first calculate
the probability of each label for a given data point and then
choose the label with the highest probability as the final
label of the data point. For the probabilistic classifier, we use
multi-class libsvm with probability estimates [32].

Before classification, we use feature selection to maximize
classification accuracy rates. By using feature selection, we
not only alleviate the curse of dimensionality, but also find the
most important and distinctive features in our feature set. Thus,
we use Sequential Forward Searching (SFS) algorithm [33] for
feature selection for each set of labels. The results indicate
that: (1) To infer the firewall implementation, we only need
6 features that contain median of PPTs for probe packets
in TCP Fix and TCP Vary modes with payload, and cache
effectiveness for all probe modes with payload. (2) To infer the
statefulness, we need 16 features that contain all probe packets
with payload features as well as cache effectiveness of probe
packets with no payload features. (3) To infer the firewall
implementation and statefulness, we need 7 features that
contain the cache effectiveness for all probe test modes with



1708 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 12, NO. 7, JULY 2017

TABLE V

ACCURACY AND MISCLASSIFICATION FOR FIREWALL TYPE LABELS

TABLE VI

ACCURACY AND MISCLASSIFICATION FOR STATEFULNESS LABELS

payload, median of PPTs for probe packets in TCP Fix and
UDP Vary modes with payload, and cache effectiveness for
probe packets in UDP Vary mode with no payload. Note that
when using different methods of classification, the important
features may be different. However, our results show that
the most distinctive features are the cache effectiveness for
the probe packets with payload which clearly complies with
Figure 4.

The accuracy results for the classification under
two conditions for each set of labels are reported
in Tables V, VI, and VII. The results are the mean of
10 cross-validation accuracy and misclassification results for
the dataset.

The results in Table V indicate that we can predict the
firewall implementation with 94.56% and 94.61% accuracy
for known load and unknown load, respectively. The results
also show that while the accuracy of predicting FW1 is 100%,
the accuracy of predicting FW2 is 84.36% (and 84.58% for
unknown load) because in 12.13% (and 12.41% for unknown
load) of the time it is misclassified by FW1. The closeness of
the accuracy rates for known load and unknown load assump-
tions shows that the firewall load level plays an insignificant
role in classification. Note that if we use other classification
methods or other set of firewalls, the firewall load level can
be an important factor in classification. Thus, it should not be
overlooked.

The results in Table VI show that we can predict the state-
fulness of the firewall with 85.79% and 85.72% of accuracy
for known load and unknown load, respectively. Surprisingly,
the accuracy rate is very good knowing that the statefulness
of a firewall has a trivial impact on the PPT.

The results in Table VII show that we can predict the type
of a firewall and its statefulness with 74.04% and 74.06%
of accuracy for known load and unknown load, respectively,
which is relatively good as we have six classes and random
classification accuracy rate is 16.67%. As show in Table V,
FW1 is classified with high accuracy, while FW2 is classified
with relatively low accuracy. Inferring FW3, on the other hand,
can be done with very good accuracy. The misclassification
rates also suggest that both stateful FW1 and FW2 are mis-
classified as stateless FW1 and FW2 with high probability
of 30.61%.

If we use a different set of firewalls we may have different
results for accuracy and misclassification rates. However, the
results for this set of firewalls indicate that an attacker can
effectively use these two methods to predict a network firewall
and design attacks accordingly to either seriously impact
performance or exploit possible vulnerabilities. Nevertheless,
in practice, the accuracy results will be lower because of the
impact of the transmission delay induced by other middleboxes
along the probe path. Yet, the attacker can obtain the number of
routers in the probe path (using tools such as traceroute)
and build a similar testbed for learning to reduce such impact.

VII. DENIAL OF FIREWALLING ATTACKS

In order to effectively attack firewalls, we first use firewall
characteristic measurements (conducted earlier in section V)
to design effective customized attacks on the firewall. We then
examine the effectiveness of the customized attacks by com-
paring the firewall performance under the customized attacks
with the firewall performance under blind attacks.

The experimental methodology herein is to create an attack
scenario and monitor the firewall performance on legitimate
traffic. In our testbed setup, we drive attacks from all machines
in VM1 and VM2 and send (legitimate) probe packets from
the PMTA machine. We use the PPT observed by the probe
as the performance indicator metric. We also use the CPU
utilization on the firewall device as a measure of the firewall
“stress” level. In our testbed, this CPU utilization information
is available from FW1 and FW2, obtained through Simple Net-
work Management Protocol (SNMP). FW3 does not provide
access to this information.

In a blind attack, VM1 and VM2 send random UDP and
TCP packets with no payload, which are mostly discarded
by the firewall. In contrast, the customized attack pack-
ets are chosen to be accepted by the firewall. The attack
packets are generated in TCP Vary and UDP Vary modes.
Figure 5 and Figure 6 show the packet processing time for
500 probe packets sent with one second interval when the
firewalls are under blind attack, UDP Vary attack and TCP
Vary attack. Note that in Figure 5 the customized attack
packets have no payload, while in Figure 6 they have packet
payload.

Figure 5(a) and 5(d) show the probe PPTs for FW1 when
it is in the stateless and stateful modes, respectively. The
results indicate that the TCP and UDP Vary attacks are more
successful than blind attack, whereas UDP Vary and TCP Vary
almost have the same effect on FW1. The average PPT for
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TABLE VII

ACCURACY AND MISCLASSIFICATION FOR FIREWALL TYPE AND STATEFULNESS LABELS

Fig. 5. The PPT of probe packets when the firewall is under attack with packet with no payload. (a) FW1 - Stateless. (b) FW2 - Stateless. (c) FW3 -
Stateless. (d) FW1 - Stateful. (e) FW2 - Stateful. (f) FW3 - Stateful.

probe packets when FW1 is in stateless mode under UDP and
TCP Vary attacks are 686.10 and 673.86 microseconds, which
are 1.68 and 1.65 times larger than when it is under blind
attack. However, TCP and UDP Vary attacks impose up to
2.08 and 2.06 times more load than the blind attack, meaning
that the firewall needs more than twice the processing power
to handle the attack. The average PPT results are almost the
same when the firewall is in the stateful mode. However, the
firewall load has 21.36% increase when it is in the stateful
mode. Hence, if the attacker knows an accepted rule, the attack
on that rule will be much more effective. Note that for firewalls
like FW1 which use sequential search for packet processing, if
an attacker finds a rule with a higher rule index in the firewall
policy, it can increase the effectiveness of the attack. However,
this depends highly on the size of the firewall policy and the
firewall caching algorithm [12].

Figure 5(b) and 5(e) show the probes PPT for FW2 when
it is in the stateless and stateful modes, respectively. First,
the results indicate that the average PPT of probe packets
when the firewall is under blind attack is 1.82 times more than
when the firewall is under UDP attack. Second, the average
PPT of probe packets when the firewall is under TCP Vary
attack is 22.4 and 25.77 times more than when the firewall
is under blind attack for the stateless and stateful modes,
respectively. Moreover, when the firewall is under TCP Vary
attack 36.20% and 34.40% of the probe packets are discarded
before reaching the destination (i.e., packet loss) when the
firewall is in the stateless and stateful modes, respectively.
However, looking at the average load of the firewall, there
is only 0.14 increase for TCP Vary attack compared to a
blind attack. This can somehow imply that the caching table
is flooded by new flows, which reduces the performance
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Fig. 6. The PPT of probe packets when the firewall is under attack with packets with payload. (a) FW1 - Stateless. (b) FW2 - Stateless. (c) FW3 - Stateless.
(d) FW1 - Stateful. (e) FW2 - Stateful. (f) FW3 - Stateful.

of the system tremendously, while the system has enough
resources to forward attack packets with small PPT. Thus,
amongst all of the attacks, the TCP Vary attack is quite
effective on FW2 and FW2 is quite resilient against UDP Vary
attack.

Figure 5(c) and 5(f) show the probes PPT for FW3 when it
is in the stateless and stateful modes, respectively. The results
indicate that none of attacks has considerable impact on the
firewall. More specifically, when the firewall is in the stateless
mode, the average PPT is 66, 67 and 67 microseconds for
blind, UDP and TCP Vary attacks. When the firewall is in the
stateful mode, the average PPT increases by 6 times to 401,
397 and 397 microseconds. Unlike the other two firewalls it
seems that the generated attacks on FW3 do not have much
impact on the firewall performance. It is also notable that
although it seems that FW3 have the least fluctuation around
the mean value, there are some spikes for TCP and UDP Vary
attacks whose value is 9 times larger than the mean value
when firewall is in the stateless mode. Such spikes can be
seen on Figure 5(e) for stateful results as well as spikes for
blind attacks. The standard deviation of PPT for blind attacks
when FW3 is in the stateful mode is 11.5 times more than
when FW3 is in the stateless mode.

Figure 6 shows the impact of attack traffic on probe packets
when attack traffic has payload. In this figure, the UDP and
TCP Vary with payload PPT results for each probe packet
are calculated as the mean of the PPT for the probe packet
with three different payload sizes: 500B, 1000B, and 1400B.
Figure 6(a) and 6(d) show the packet payload size on
attack traffic have almost no effect on FW1. However,
Figure 6(b) and 6(e) show the packet payload on attack traffic
increases the STD of PPT on probe packets sent to FW2 by
2.38 times for the UDP Vary test when the firewall is in the
stateful mode and decreases the STD of PPT by 1.61 times

for the TCP Vary tests in all the firewall modes. Similarly,
Figure 6(c) and 6(f) show that the packet payload on attack
traffic does not have any impact on average PPT of probe
packets sent to the FW3. However, the STD of PPT of
probe packets is decreased by 1.88 and 1.72 times when
the firewall is in the stateless mode for TCP and UDP Vary
attack, respectively. Similarly, when FW3 is in the stateful
mode, the STD of PPT of probe packets is decreased by
2.17 and 2.67 times when the firewall is in the stateless
mode for TCP and UDP Vary attack, respectively. Therefore,
to attack these firewalls effectively, packets with no payload
are preferred. On the other hand, this implies that the main
focus of an administrator who is working to detect and
stop such attacks should be on attack packets that have no
payload as they can have an impact on the stability of the
firewall.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we present methods for finding the firewall
characteristics that are introduced by firewall implementations.
Such characteristics can be exploited by attackers to identify
black box firewalls with high accuracy and launch effective
attacks on firewalls. We show two methods for inferring
firewall implementation using these characteristics. The first
method is based on the firewall decision on a sequence of
TCP packets with unusual flags, which could be used as a
firewall fingerprint for identification. The second method is
based on machine learning techniques. We further study the
impact of different attacks on different firewalls and show
that different firewalls are vulnerable to different attacks.
While the best defense would involve working with firewall
manufacturers to improve firewall implementations to mini-
mize the impact of attacks, as future work we are willing



LIU et al.: FIREWALL FINGERPRINTING AND DoF ATTACKS 1711

to propose defense mechanisms from the firewall adminis-
trators’ perspective, particularly in preventing attackers from
gaining information about the firewall deployed and hence
forcing attackers to use less-effective, blind attacks. Such
mechanisms are designed to increase the chance of incorrect
firewall implementation inference by concealing firewall TCP
flag fingerprints and obscuring the pattern in probe PPT.
To evaluate the effectiveness of these defense mechanisms
and measure their impact on firewall performance, we need
to conduct extensive experiments, for which we will need to
expand our testbed. The techniques proposed in this paper
can be potentially useful for many other applications as
well [34]–[69].
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