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ABSTRACT
Closely monitoring service performance and detecting anomalies
are critical for Internet-based services. However, even though
dozens of anomaly detectors have been proposed over the years, de-
ploying them to a given service remains a great challenge, requiring
manually and iteratively tuning detector parameters and thresholds.
This paper tackles this challenge through a novel approach based
on supervised machine learning. With our proposed system,
Opprentice (Operators’ apprentice), operators’ only manual work
is to periodically label the anomalies in the performance data
with a convenient tool. Multiple existing detectors are applied
to the performance data in parallel to extract anomaly features.
Then the features and the labels are used to train a random forest
classifier to automatically select the appropriate detector-parameter
combinations and the thresholds. For three different service KPIs
in a top global search engine, Opprentice can automatically satisfy
or approximate a reasonable accuracy preference (recall ≥ 0.66 and
precision ≥ 0.66). More importantly, Opprentice allows operators
to label data in only tens of minutes, while operators traditionally
have to spend more than ten days selecting and tuning detectors,
which may still turn out not to work in the end.
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1. INTRODUCTION
Closely monitoring service quality and detecting performance

anomalies are critical for Internet-based services, such as search
engines, online shopping, and social networking. For example,
a search engine can monitor its search response time (SRT) [1]
by detecting anomalies in SRT time series in an online fashion.
However, even though dozens of anomaly detectors [1–24] have
been proposed over the years in the context of both Internet-
based services and telecom services, deploying detectors to a
given service remains a great challenge. This is, we argue,
because there exists no convenient method to automatically match
operators’ practical detection requirements with the capabilities
of different detectors. Currently, for a given service quality
metric, selecting and applying detectors usually require manually
and iteratively tuning the internal parameters of detectors and the
detection thresholds, which operators are neither interested nor feel
comfortable in doing. Instead, based on our experience of working
with operators from a large search engine, a campus network, and
an enterprise network, operators are used to specify simple require-
ments for detection accuracy and manually spot-check anomalies
occasionally. As a result, services either settle with simple static
thresholds (e.g., Amazon Cloud Watch Alarms [24]), intuitive to
operators although unsatisfying in detection performance, or, after
time-consuming manual tuning by algorithm designers, end up
with a detector specifically tailored for the given service, which
might not be directly applicable to other services.

We elaborate on the challenges of anomaly detection by review-
ing the current practice. The detectors proposed in the literature [1–
24] typically work on (time, value) pair time series data,1 which
we call KPI (Key Performance Indicator) data hereinafter. Given a
KPI, the first step for the anomaly detection practitioner is to collect
the requirements from the service operators. This step encounters
Definition Challenges: it is difficult to precisely define anomalies
in reality [21, 25]. In particular, the operators often have trouble
describing their domain knowledge completely when “put on the
spot” [25]. In addition, it is often impossible for the operators
to quantitatively define anomalies, let alone to translate the vague
definition into specific parameters and thresholds of a detector [21]
(e.g., how many times of the standard deviation [1]) . On the
contrary, according to our experience of building detection systems
with operators, they prefer to describe the anomalies qualitatively,
with anecdotal anomaly cases as examples.

1In this paper, we focus on the performance anomalies of time
series (also known as volume-based anomalies) rather than other
types of anomalies, e.g., intrusion detection using the payload
information of packets.



Detector Challenges: In order to provide a reasonable detection
accuracy, selecting the most suitable detector requires both the
algorithm expertise and the domain knowledge about the given
service KPI. The best parameters and thresholds of a given detector
often highly depend on the actual data in the studied service.
As such, it is very time-consuming to tune the parameters and
thresholds of the detector. Sometimes, it might even require a
combination of multiple detectors [8, 21, 22] for a given KPI. As a
result, many rounds of time-consuming iterations between anomaly
detection practitioners and operators are needed to find appropriate
detectors and tune their parameters and thresholds. In reality, we
observe that it is not uncommon for operators to give up after a few
rounds of iterations and settle with static threshold-based detection.

To address the definition challenge and the detector challenge,
we advocate for using supervised machine learning techniques,2

well known for being able to capture complex concepts based on
the features and the labels from the data (e.g., KPI data). Our
approach relies on two key observations. First, it is straightforward
for operators to visually inspect the time series data and label
anomaly cases they identified [1, 4, 9, 12, 14, 17, 26]. Operators can
periodically (e.g., weekly) label the cases as new data arrive, the
only manual work for operators. Because anomalies are typically
infrequent [16], the time for labeling is quite reasonable with the
help of a dedicated labeling tool, as shown in [27] and §4.2. The
second key observation is that the anomaly severities measured by
different detectors can naturally serve as the features in machine
learning, so each detector can serve as a feature extractor (see §4.3).
Opprentice then learns from the labeled data, automatically cap-
turing the domain knowledge from the operators, just as a smart
and diligent apprentice of the operators would do. Specifically,
multiple detectors are applied to the KPI data in parallel to extract
features. Then the features and the labels are used to train a
machine learning model, i.e., random forests [28], to automatically
select the appropriate detector-parameter combinations and the
thresholds. The training objective is to maximally satisfy the
operators’ accuracy preference.

The major contributions of the paper are summarized as fol-
lows. First, to the best of our knowledge, Opprentice is the
first detection framework to apply machine learning to acquiring
realistic anomaly definitions and automatically combining and
tuning diverse detectors to satisfy operators’ accuracy preference.
Second, Opprentice addresses a few challenges in applying ma-
chine learning to such a problem: labeling overhead, infrequent
anomalies, class imbalance, and irrelevant and redundant features,
elaborated on in §3.2 and addressed in §4. Third, we build and
evaluate Opprentice in a top global search engine (§5). 14 existing
detectors have been implemented and plugged into Opprentice. For
three different service KPIs, Opprentice can automatically satisfy
or approximate a reasonable accuracy preference (recall ≥ 0.66
and precision ≥ 0.66). Furthermore, although the best performing
detector-parameter combination changes with different KPIs, Op-
prentice consistently performs similarly or even better than them.
More importantly, Opprentice takes operators only tens of minutes
to label data. In comparison, operators traditionally have to spend
days learning and selecting detectors, then another tens of days
tuning them, which may still turn out not to work in the end.
We believe this is the first anomaly detection framework that does
not require manual detector selection, parameter configuration, or
threshold tuning.

2In the rest of this paper, machine learning refers particularly to
supervised machine learning.

2. BACKGROUND
In this section, we first introduce the background of KPI anomaly

detection. Then we present the goals and the challenges of
designing Opprentice.

2.1 KPIs and KPI Anomalies
KPIs: The KPI data, which Opprentice aims to work with, are

the time series data with the format of (timestamp, value). These
data can be collected from SNMP, syslogs, network traces, web
access logs, and other data sources. In this paper, we choose
three representative KPIs from a global top search engine as a
case study. Table 1 describes their basic information, and Fig. 1
shows their 1-week examples. We hide the absolute values for
confidentiality. Fig. 1(a) shows the search page view (PV), which
is the number of successfully served queries. PV has a significant
influence on the revenue of the search engine. Fig. 1(b) shows the
number of slow responses of search data centers (#SR), which is an
important performance metric of the data centers. Fig. 1(c) is the
the 80th percentile of search response time (SRT). This KPI has a
measurable impact on the users’ search experience [29].
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Figure 1: 1-week examples of three major KPIs of the search
engine. The circles mark some obvious (not all) anomalies.

Beyond the physical meanings, the characteristics of these KPI
data are also different. First, they have different levels of sea-
sonality. For example, by visually inspecting, we see that the
PV is much more regular than the other two KPIs and shows a
strong seasonality. In addition, the dispersions of the KPIs are
different too. Since we have to hide the absolute values, we use
the coefficient of variation (C

v

) to measure the dispersions. C

v

equals the standard deviation divided by the mean. In Table 1, #SR
has C

v

= 209% and is spread out the most; SRT has C

v

= 7%
and concentrates the most to the mean.

Table 1: Three kinds of KPI data from the search engine.
PV #SR SRT

Interval (minute) 1 1 60
Length (week) 25 19 16

Seasonality Strong Weak Moderate
C

v

0.48 2.1 0.07



Anomalies: KPI time series data can also present several
unexpected patterns (e.g., jitters, slow ramp-ups, sudden spikes and
dips) in different severity levels, such as a sudden drop by 20% or
50%. When identifying anomalies, operators care about certain
patterns with different severities, which can vary among KPIs.
Fig. 1 shows a few anomaly examples. However, this knowledge is
difficult to be described accurately by some pre-defined rules [1,2].
This is because operators usually determine anomalies according
to their own understandings of the KPIs and the real operational
demands. Throughout this paper, we assume that operators have no
concept drift [30] regarding anomalies. This is consistent with what
we observed when the operators labeled months of data studied in
this paper.

To identify anomalies automatically, researchers have proposed
many detectors using a variety of techniques. We call them basic
detectors in the rest of the paper. More details about detectors will
be discussed in §4.3.

2.2 Problem and Goal
The KPI data labeled by operators are the so called “ground

truth”. The fundamental goal of anomaly detection is to be
accurate, e.g., identifying more anomalies in the ground truth, and
avoiding false alarms. We use recall ( # of true anomalous points detected

# of true anomalous points )
and precision ( # of true anomalous points detected

# of anomalous points detected ) to measure the detection
accuracy. Precision describes what matters to operators bet-
ter than false positive rate (FPR), because anomalies are infre-
quent [31]. Precision is also equivalent to 1-FDR (false discovery
rate: # of false anomalous points detected

# of anomalous points detected ). Based on our experience, opera-
tors not only understand the concepts of recall and precision, but
can also specify their accuracy preference using them in the format
of “recall ≥ x and precision ≥ y ”. For example, the operators
we worked with specified “recall ≥ 0.66 and precision ≥ 0.66” as
the accuracy preference, which is considered as the quantitative
goal of Opprentice in this paper. These values come from the
operators’ experience of using other detectors and their accuracy
before. As anomalies are relatively few in the data, it is difficult for
those detectors to achieve both high recall and precision. In fact,
precision and recall are often conflicting. The trade-off between
them is often adjusted according to real demands. For example,
busy operators are more sensitive to precision, as they do not want
to be frequently disturbed by many false alarms. On the other hand,
operators would care more about recall if a KPI, e.g., revenue, is
critical, even at the cost of a little lower precision. We also evaluate
Opprentice under different accuracy preference in §5.

In addition to the above quantitative goal of accuracy, Opprentice
has one qualitative goal: being automatic enough so that the op-
erators would not be involved in selecting and combining suitable
detectors, or tuning them.

In this paper, we focus on identifying anomalous behaviors in
KPI time series. This is an important first step for monitoring
the service performance. However, further investigation and
troubleshooting of those anomalies are beyond the research scope
of this paper.

3. OPPRENTICE OVERVIEW

3.1 Core Ideas
Opprentice approaches the above problem through supervised

machine learning. Supervised machine learning can be used to
automatically build a classification model from historical data,
and then classify future data based on the model. Because of
the data-driven property, supervised machine learning has become

a popular solution where hand-crafted rules of classification are
difficult to specify in advance, e.g., computer vision and data
mining. In anomaly detection, manually pre-defining anomalies is
also challenging, which motivates us to tackle the problem through
supervised machine learning.
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Figure 2: High level idea of applying machine learning in
Opprentice.

Fig. 2 shows the high-level idea of how machine learning is
applied in Opprentice. We generate a training set from historical
KPI data, which is used by a machine learning algorithm to build
a classification model. To this end, first, operators need to label
the anomalies in the data. In the meanwhile, we use existing basic
anomaly detectors to quantify anomalous level of the data from
their own perspectives, respectively. The results of the detectors are
used as the features of the data. The features and operators’ labels
together form the training set. Then a machine learning algorithm
takes advantage of a certain technique to build a classification
model. For example, given the decision boundaries in Fig. 2, the
point represented by the question mark is classified as an anomaly.

In this way, operators’ only job in building an anomaly detection
system is to label anomaly cases, which is much easier (§4.2)
and costs less time (§5.7). The rest would be handled by the
machine learning based framework, including combining diverse
detectors and adjusting their thresholds. Note that, although
prior work has applied machine learning algorithms to anomaly
detection [16, 20, 32], they only deem machine learning algorithms
as basic detectors. To the best of our knowledge, Opprentice is the
first framework that use machine learning to automatically combine
and tune existing detectors to satisfy operators’ detection require-
ments (anomaly definitions and the detection accuracy preference).
Furthermore, to the best of our knowledge, this is the first time that
different detectors are modeled as the feature extractors in machine
learning (§4.3).

3.2 Addressing Challenges in Machine Learn-
ing

Although the above machine learning based idea seems promis-
ing, applying it in designing Opprentice poses a number of inter-
esting and practical challenges.

• Labeling overhead. Labeling anomalies requires a lot of man-
ual efforts. To help operators label effectively, we developed a
dedicated labeling tool with a simple and convenient interaction
interface. §5.7 shows that labeling time of our studied KPIs with
our tool is less than 6 minutes for each month of data.



• Incomplete anomaly cases. The performance of machine
learning algorithms can be affected by whether the training
set contains enough anomaly cases. However, since anomalies
occur less frequently in practice, an arbitrary training set is
unlikely to cover enough anomalies [16]. For example, new
types of anomalies might emerge in the future. To address
this challenge, we incrementally retrain the classifier with newly
labeled data. Through this way, Opprentice is able to catch and
learn new types of anomalies that do not show up in the initial
training set.

• Class imbalance problem. Another effect of infrequent anoma-
lies is that the normal data always outnumber the anomalies in
the training set. When learning from such “imbalanced data”, the
classifier is biased towards the large (normal) class and ignores
the small (anomaly) class [31]. It results in low detection rate,
which may not satisfy operators’ accuracy preference. We solve
this problem in §4.5 through adjusting the machine learning
classification threshold (cThld henceforth).

• Irrelevant and redundant features. To save manual efforts, we
neither select the most suitable detectors nor tune their internal
parameters. Instead, many detectors with different parameters
are used simultaneously to extract features (§4.3). In this case,
some of the features would be either irrelevant to the anomalies
or redundant with each other. Prior work has demonstrated
that some learning algorithms would degrade in accuracy when
handling such features. We solve this problem by using an
ensemble learning algorithm, i.e., random forests [28], which is
relatively robust and works well for our problem (§5).

4. DESIGN
In this section we first present the architecture of Opprentice, and

then describe the design details.

4.1 Architecture
Fig. 3 illustrates the architecture of Opprentice. From the oper-

ators’ view, they interact with Opprentice in two ways (Fig. 3(a)).
First, before the system starts up, operators specify an accuracy
preference (recall ≥ x and precision ≥ y), which we assume does
not change in this paper. This preference is later used to guide
the automatic adjustment of the cThld. Second, the operators use
a convenient tool to label anomalies in the historical data at the
beginning and label the incoming data periodically (e.g., weekly).
All the data are labeled only once.

From the Opprentice-side view, first in Fig. 3(a), an anomaly
classifier is trained as follows. Numerous detectors function as
feature extractors for the data. Based on the features together with
the operators’ labels, a machine learning algorithm (e.g., random
forests used in this paper) incrementally retrains the anomaly
classifier with both the historical and the latest labeled data. After
that, in Fig. 3(b), the same set of detectors extract the features of
incoming data, and the classifier is used to detect/classify them.
Note that, unlike the traditional way, the detectors here only extract
features rather than reporting anomalies by themselves. Next, we
introduce the design of each component in detail.

4.2 Labeling Tool
We developed a dedicated tool to help operators effectively label

anomalies in historical data. The user interface of the tool is shown
in the left part of Fig. 4, with a brief user manual on the right side.
The tool works as follows. First, it loads KPI data, and displays
them with a line graph in the top panel. To assist operators in
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Latest KPI Data
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specifies one time
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Machine Learning
（（Random Forest））

Labeling Tool

Features

Detectors

Labels Accuracy Preference
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Latest Anomaly Classifier

use

(a) Training classifier.

AnomalyIncoming
KPI Data

FeaturesDetectors
Latest

Anomaly
Classifier

？

(b) Detecting anomaly.

Figure 3: Opprentice architecture.

identifying anomalies, the data of the last day and the last week
are also shown in light colors. The operators can use the arrow keys
on the keyboard to navigate (forward, backward, zoom in and zoom
out) through the data. Once the operators have identified anomalies,
they can left click and drag the mouse to label the window of
anomalies, or right click and drag to (partially) cancel previously
labeled window. Besides, they can adjust the Y axis scale via the
slider on the right side. The data navigator in the bottom panel
shows a zoom-out view of the data.

Figure 4: Labeling tool.

The labeling tool is effective because operators do not have to
label each time bin one by one. They first see a relatively zoomed-
out view of the KPI curve. In this view, we do not smooth the curve.
Thus, even if one time bin is anomalous, it is visible to operators.
Then, operators can zoom in to locate the specific anomalous time
bin(s), and label them by a window. Labeling windows, as opposite
to individual time bins, significantly reduces labeling overhead.
§5.7 shows that it only takes operators a few minutes to label a
month of data in our studied KPIs.

One issue of labeling is that errors can be introduced, especially
that the boundaries of an anomalous window are often extended or



narrowed when labeling. However, machine learning is well known
for being robust to noises. Our evaluation in §5 also attests that the
real labels of operators are viable for learning.

Our labeling tool in spirit is similar to WebClass [27], a labeling
tool for NetFlow data. However, WebClass cannot be used directly
in our problem because it only supports NetFlow data rather
than general time series data. More importantly, it only allows
operators to label the anomalies already identified by detectors
as false positives or unknown. In contrast, our labeling tool
enables operators to freely label all the data rather than labeling
the detection results.

4.3 Detectors
We now describe how detectors function as extractors of anomaly

features in Opprentice, and introduce the considerations when
choosing detectors to work with Opprentice.

4.3.1 Detectors As Feature Extractors
Inspired by [21, 33], we represent different detectors with a

unified model:

data point
a detector with parameters−−−−−−−−−−−−! severity sThld−−−! {1, 0}

First, when a detector receives an incoming data point, it internally
produces a non-negative value, called severity, to measure how
anomalous that point is. For example, Holt-Winters [6] uses
the residual error (i.e., the absolute difference between the actual
value and the forecast value of each data point) to measure the
severity; historical average [5] assumes the data follow Gaussian
distribution, and uses how many times of standard deviation the
point is away from the mean as the severity. Most detectors are
parameterized and have a set of internal parameters. For example,
Holt-Winters has three parameters {↵,β, γ}, and historical average
has one parameter of window length. The severity of a given data
point depends on both the detector and its internal parameters.
Afterwards, a detector further needs a threshold to translate the
severity into a binary output, i.e., anomaly (1) or not (0). We call
this threshold the severity threshold (sThld henceforth).

Since the severity describes the anomalous level of data, it
is natural to deem the severity as the anomaly feature. To
produce features, for each parameterized detector, we sample their
parameters [34] so that we can obtain several fixed detectors.
We call a detector with specific sampled parameters a (detector)
configuration. Thus a configuration acts as a feature extractor:

data point
configuration (detector + sampled parameters)−−−−−−−−−−−−−−−−−−−−−−! feature

The feature extraction, training, and classification (detection) in
Opprentice are all designed to work with individual data points, not
anomalous windows. This way, the machine learning algorithm can
have enough training data, and the classifier can detect individual
anomalous data point fast.

4.3.2 Choosing Detectors
When choosing detectors, we have two general requirements.

First, the detectors should fit the above model, or they should be
able to measure the severities of data. In fact, a lot of widely-
used detectors all work in this way [1, 4–7, 10–12, 24]. Second,
since anomalies should be detected timely, we require that the
detectors can be implemented in an online fashion. This requires
that once a data point arrives, its severity should be calculated by
the detectors without waiting for any subsequent data. In addition,
the calculation time should be less than the data interval, which is
not difficult to fulfill. For example, the shortest data interval is one

minute in our studied data. Besides, some detectors, such as those
based on moving averages, need one window of data to warm up.
We cope with such detectors by skipping the detection of the data
in the warm-up window, which has no influence on the detection of
future data.

Since we intend to free operators from carefully selecting detec-
tors, the detectors meeting the above requirements are used to work
with Opprentice without carefully evaluating their effectiveness.
Although some detectors might be inaccurate in detecting certain
KPIs (§5.3.1), Opprentice can find suitable ones from broadly
selected detectors, and achieve a relatively high accuracy. In this
paper, we implement 14 widely-used detectors (introduced later in
§5.2) in Opprentice as a case study.

4.3.3 Sampling Parameters
We have two strategies to sample the parameters of detectors.

The first one is to sweep the parameter space. We observe that
the parameters of some detectors have intuitive meanings. For
example, EWMA (Exponentially Weighted Moving Average) [11],
a prediction based detector, has only one weight parameter ↵ 2
[0, 1]. As ↵ goes up, the prediction relies more upon the recent
data than the historical data. Consequently, we can sample ↵ 2
{0.1, 0.3, 0.5, 0.7, 0.9} to obtain 5 typical features from EWMA.
As for the detectors with multiple parameters and a large parameter
space, we can reduce the sampling granularity. For example,
Holt-Winters has three [0,1] valued parameters ↵, β, and γ. To
limit the number of samples, we can choose {0.2, 0.4, 0.6, 0.8}
for ↵, β, and γ, leading to 43 = 64 features. Other types of
detectors may need window parameters, and we can adopt windows
of several points, days, or weeks according to the characteristics
of the detectors. For example, moving average based detectors
with a short window aim at identifying local anomalies, while
time series decomposition [1] usually uses a window of weeks to
capture long-term violations. Although such sampling strategies
do not guarantee that we can find the most suitable parameters (or
features) due to the relatively coarse sampling granularity, we only
need a set of good enough features, and Opprentice can achieve a
promising accuracy by combining them (§5).

On the other hand, the parameters of some complex detectors,
e.g., ARIMA (Autoregressive Integrated Moving Average) [10],
can be less intuitive. Worse, their parameter spaces can be too
large even for sampling. To deal with such detectors, we estimate
their “best” parameters from the data, and generate only one
set of parameters, or one configuration for each detector. The
estimation method is specifically designed for each such detector.
For example, [35,36] provide the parameter estimation for ARIMA.
Besides, since the data characteristics can change over time, it is
also necessary to update the parameter estimates periodically.

4.4 Machine Learning Algorithm

4.4.1 Considerations and Choices
We need to be careful when choosing machine learning al-

gorithms. This is because in our problem, there are redundant
and irrelevant features, caused by using detectors without careful
evaluation. Some learning algorithms such as naive Bayes, logistic
regression, decision tree, and linear SVM, will perform badly
when coping with such training data (§5.3.2). Additionally, a
promising algorithm should be less-parametric and insensitive to
its parameters, so that Opprentice can be easily applied to different
data sets. In this paper, we choose random forests [28], which
has been proved to be robust to noisy features and work well
in practice [28, 37]. Furthermore, random forests have only two



parameters and are not very sensitive to them [38]. Our evaluation
results also show that the random forest algorithm perform better,
and are more stable than other commonly-used algorithms.

Note that we do understand that feature selection [39, 40] is a
commonly used solution to mitigate the influences of irrelevant and
redundant features. However, we do not explore feature selection in
this paper and consider it as future work, because it could introduce
extra computation overhead, and the random forest works well by
itself (§5.3.2).

4.4.2 Random Forest
In the interest of space, we only introduce some basic ideas of

random forests. More details are in [28].
Preliminaries: decision trees. A decision tree [41] is a popular

learning algorithm as it is simple to understand and interpret. It
has been used widely to uncover the relationships between features
and labels [42, 43]. At a high level, it provides a tree model with
various if-then rules to classify data. Fig. 5 shows a compacted
decision tree learned from our SRT data set. The tree contains
three if-then rules on the features of three detectors, i.e., time series
decomposition, singular value decomposition, and diff (See §5.2
for the details of the detectors). The numbers on branches, e.g.,
3 for time series decomposition, are the feature split points. The
tree is then used to classify incoming data. The tree is greedily
built top-down. At each level, it determines the best feature and
its split point to separate the data into distinct classes as much as
possible, or produce the “purest” sub nodes. A goodness function,
e.g., information gain and gini index, is used for quantifying such
an ability of each feature. The tree grows in this way until every leaf
node is pure (fully grown). In the decision tree, a feature is more
important for classification if it is closer to the root. For example,
in Fig. 5, the feature of time series decomposition is most effective
to distinguish different data.

There are two major problems of decision tree. One is that the
greedy feature selection at each step may not lead to a good final
classifier; the other is that the fully grown tree is very sensitive
to noisy data and features, and would not be general enough to
classify future data, which is called overfitting. Some pruning
solutions have been proposed to solve overfitting. For example,
stop growing the tree earlier after it exceeds a threshold of depth.
However, it is still quite tricky to determine such a threshold.

Severities measured by 
time series decomposition

<3 Severities measured by 
singular value decomposition

>=3

< 64 >= 64

>= 61< 61
Anomaly

Normal

AnomalyNormal

Severities measured by 
Diff

< 3

Figure 5: Decision tree example. The rectangles represent the
features extracted by different detectors and the ellipses are the
classification results.

A Random forest is an ensemble classifier using many decision
trees. Its main principle is that a group of weak learners (e.g.,
individual decision trees) can together form a strong learner [44].
To grow different trees, a random forest adds some elements or
randomness. First, each tree is trained on subsets sampled from the
original training set. Second, instead of evaluating all the features
at each level, the trees only consider a random subset of the features
each time. As a result, some trees may be not or less affected
by the irrelevant and redundant features if these features are not
used by the trees. All the trees are fully grown in this way without

pruning. The random forest then combines those trees by majority
vote. That is, given a new data point, each of the trees gives its own
classification. For example, if 40 trees out of 100 classify the point
into an anomaly, its anomaly probability is 40%. By default, the
random forest uses 50% as the classification threshold (i.e., cThld).

The above properties of randomness and ensemble make random
forests more robust to noises and perform better when faced with
irrelevant and redundant features than decision trees.

4.5 Configuring cThlds

4.5.1 PC-Score: A Metric to Select Proper cThlds
We need to configure cThlds rather than using the default one

(e.g., 0.5) for two reasons. First, when faced with imbalanced data
(anomalous data points are much less frequent than normal ones
in data sets), machine learning algorithms typically fail to identify
the anomalies (low recall) if using the default cThlds [31]. Second,
operators have their own preference regarding the precision and re-
call of anomaly detection. Configuring cThlds is a general method
to trade off between precision and recall [31]. In consequence, we
should configure the cThld of random forests properly to satisfy the
operators’ preference.
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Figure 6: PR curve of a random forest trained and tested on the
PV data. Different methods select different cThlds and result
in different precision and recall. The two shaded rectangles
represent two types of assumed operators’ preferences.

Before describing how we configure the cThld, we first use
Precision-Recall (PR) curves to provide some intuitions. PR curves
is widely used to evaluate the accuracy of a binary classifier [45],
especially when the data is imbalanced.3 A PR curve plots preci-
sion against recall for every possible cThld of a machine learning
algorithm (or for every sThld of a basic detector). Typically,
there is a trade-off between precision and recall. Fig. 6 shows
an exemplary PR curve derived from a random forest trained and
tested on PV data. Two types of assumed operators’ preferences
(1) “recall ≥ 0.75 and precision ≥ 0.6” and (2) “recall ≥ 0.5
and precision ≥ 0.9” are represented by the shaded rectangles.
Configuration of cThlds is to seek a proper point on the PR curve.
In Fig. 6, the triangle symbol is selected by the default cThld 0.5.
Besides, we also show the results of another two accurate metrics:
a F-Score based method, which selects the point that maximizes
F-Score = 2·precision·recall

precision+recall

; SD(1,1), a metric similar to that
in [46], which selects the point with the shortest Euclidean distance
to the upper right corner where the precision and the recall are
both perfect. We see that in Fig. 6, the PR curve has points inside
both the rectangles, however, the default threshold only satisfies
the preference (2) but not (1); F-Score and SD(1,1) do not satisfy

3A similar method is Receiver Operator Characteristic (ROC)
curves, which show the trade-off between the false positive rate
(FPR) and the true positive rate (TPR). However, when dealing
with highly imbalanced data sets, PR curves can provide a more
informative representation of the performance [45].



either of the preferences. This is because these metrics select cThld
without considering operators’ preferences.

Motivated by the above fact, we develop a simple but effective
accuracy metric based on F-Score, namely PC-Score (preference-
centric score), to explicitly take operators’ preference into account
when deciding cThlds. First, for each point (r, p) on the PR curve,
we calculate its PC-Score as follows:

PC-Score(r, p) =

(
2·r·p
r+p

+ 1 , r ≥ R and p ≥ P

2·r·p
r+p

, otherwise

where R and P are from the operators’ preference “recall ≥ R and
precision ≥ P ”. Basically, the PC-Score measures the F-Score of
(r, p). In order to identify the point satisfying operators’ preference
(if one exists), we add an incentive constant of 1 to F-score if r  R

and p  P . Since F-Score is no more than 1, this incentive constant
ensures that the points satisfying the preference must have the PC-
Score larger than others that do not. Hence, we choose the cThld
corresponding to the point with the largest PC-Score. In Fig. 6, we
see that the two points selected based on the PC-Score are inside the
two shaded recectangles, respectively. Note that, in the case when
a PR curve has no points inside the preference region, the PC-Score
cannot find the desired points, but it can still choose approximate
recall and precision.

4.5.2 EWMA Based cThld Prediction
The above describes how to configure cThlds based on the PC-

Score in an offline or “oracle” mode. That is, we configure cThlds
after the data to be detected (also called a test set) have already
arrived. These cThlds are the best ones we can configure for
detecting those data, and are called best cThlds. However, in online
detection, we need to predict cThlds for detecting future data.

To this end, an alternative method is k-fold cross-validation [47].
First, a historical training set is divided into k subsets of the same
length. In each test (k tests in total), a classifier is trained using k−
1 of the subsets and tested on the rest one with a cThld candidate.
The candidate that achieves the smallest average PC-Score across
the k tests is used for future detection. In this paper we use k = 5,
and sweep the space of cThld with a very fine granularity of 0.001,
that is, we evaluate 1000 cThld candidates in a range of [0, 1].

However, we found that this cross-validation method does not
work quite well in our problem (§5.6). A potential explanation is
that, as shown in Fig. 7, the best cThlds can differ greatly over
weeks. As a result, in the cross-validation, the cThld that achieves
the highest average performance over all the historical data might
not be similar to the best cThld of the future week.
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Figure 7: Best cThld of each week from the 9th week. The first
8-week data are used as the initial training set.

Our method is motivated by another observation in Fig. 7. That
is, though the best cThlds changes over weeks, they can be more
similar to the ones of the neighboring weeks. A possible explana-
tion is that the underlying problems that cause KPI anomalies might
last for some time before they are really fixed, so the neighboring
weeks are more likely to have similar anomalies and require similar
cThlds. Hence, we adopt EWMA [11] to predict the cThld of the

i

th week (or the i

th test set) based on the historical best cThlds.
Specifically, EWMA works as follows:

cThldp

i

=

(
↵ · cThldb

i−1 + (1− ↵) · cThldp

i−1 , i > 1

5-fold prediction , i = 1

cThldb

i−1 is the best cThld of the (i − 1)th week. cThldp

i

is the
predicted cThld of the ith week, and also the one used for detecting
the i

th-week data. ↵ 2 [0, 1] is the smoothing constant. For
the first week, we use 5-fold cross-validation to initialize cThldp

1 .
EWMA is simple but effective here as it does not require a lot of
historical data to start. As ↵ increases, EWMA gives the recent
best cThlds more influences in the prediction. We use ↵ = 0.8
in this paper to quickly catch up with the cThld variation. Our
results show that the EWMA based cThld prediction method gains
a noticeable improvement when compared with the 5-fold cross-
validation (§5.6).

5. EVALUATION
We implement Opprentice and 14 detectors with about 9500

lines of python, R, and C++ code. The machine learning block
is based on the scikit-learn library [48]. In this section, we evaluate
Opprentice using three kinds of KPI data from a top global search
engine. These data are labeled by the operators using our labeling
tool.

Fig. 8 shows the evaluation flow. In the first four steps, we com-
pare the accuracy of each component of Opprentice with different
approaches. The accuracy of Opprentice as a whole is shown in the
§5.6. In addition to the accuracy, the qualitative goal of Opprentice,
i.e., being automatic, is also evaluated through directly applying
Opprentice to three different KPIs without tuning. The only manual
effort is to label the KPI data. We also interviewed the operators
about their previous detector tuning time, and compare it with the
labeling time (§5.7). Last, we evaluate the online detecting lag
and the offline training time of Opprentice (§5.8). Next we first
describe the data sets in §5.1 and the detectors we select in §5.2,
then we show the evaluation results.

1. PV 2. #SR
Data sets

Static
combinations

Other machine 
learning

Random
forest

Detection
approaches

First 8-week
data

All historical data
(Incremental retraining)

Training sets

F-ScoreSD(1,1)PC-ScoreAccuracy metrics

5-Fold cross-validationEWMAcThld predictions

Opprentice
Other approaches

Default cThld

3. SRT

Recent 8-week
data

Basic
detectors

(Opprentice as a whole)

§ 4.3

§ 4.4

§ 4.5

§ 4.6

Labeling time vs. tuning time
Detecting lag and training time

§ 4.7
§ 4.8

Figure 8: Evaluation flow.

5.1 Data sets
We collect three representative types of KPI data (i.e., PV, #SR,

and SRT) from a large search engine (§2.1). These data are
labeled by the operators from the search engine using our labeling
tool. There are 7.8%, 2.8%, and 7.4% data points are labeled as
anomalies for PV, #SR, and SRT, respectively. Although the data



we used are from the search engine, they are not special cases only
for the search engine. For example, based on previous literature and
our experience, the PV data we used are visually similar to other
kinds of volume data. For example, the PV of other Web-based
services [1, 49], the RTT (round trip time) [6] and the aggregated
traffic volume [5] of an ISP, and online shopping revenue. So we
believe that these three KPIs are sufficient to evaluate the idea of
Opprentice, and we consider a more extensive evaluation with data
from other domains beyond search as our future work. Table 2
shows several ways to generate training sets and test sets from the
labeled data sets.

Table 2: Training sets and test sets. The test sets all start from
the 9th week and move 1 week for each step. The training
sets use different data before the test sets. I1 is the fashion
of Opprentice (incremental retraining). Others are used for
evaluating different strategies of training sets.

Training set Test set ID

All historical data 1-week moving window I1
4-week moving window I4

Recent 8-week data 4-week moving window R4
First 8-week data 4-week moving window F4

5.2 Detector and Parameter Choices
According to the detector requirements (§4.3.2), in this proof

of concept prototype, we evaluate Opprentice with 14 widely-used
detectors (Table 3).

Table 3: Basic detectors and sampled parameters. Some
abbreviations are MA (Moving Average), EWMA (Exponen-
tially Weighted MA), TSD (Time Series Decomposition), SVD
(Singular Value Decomposition), win(dow) and freq(uency).

Detector / # of configurations Sampled parameters

Simple threshold [24] / 1 none
Diff / 3 last-slot, last-day, last-week
Simple MA [4] / 5 win = 10, 20, 30, 40, 50

pointsWeighted MA [11] / 5
MA of diff / 5
EWMA [11] / 5 ↵ = 0.1, 0.3, 0.5, 0.7, 0.9
TSD [1] / 5

win = 1, 2, 3, 4, 5 week(s)TSD MAD / 5
Historical average [5] / 5
Historical MAD / 5
Holt-Winters [6] / 43 = 64 ↵, β, γ = 0.2, 0.4, 0.6, 0.8

SVD [7] / 5⇥ 3 = 15
row =10, 20, 30, 40, 50
points, column =3, 5, 7

Wavelet [12] / 3⇥ 3 = 9
win = 3, 5 ,7 days, freq =
low, mid, high

ARIMA [10] / 1 Estimation from data
In total: 14 basic detectors / 133 configurations

Two of the detectors were already used by the search engine we
studied before this study. One is namely “Diff”, which simply
measures anomaly severities using the differences between the
current point and the point of last slot, the point of last day, and the
point of last week. The other one, namely “MA of diff”, measures
severities using the moving average of the difference between
current point and the point of last slot. This detector is designed
to discover continuous jitters. The other 12 detectors come from
previous literatures. Among these detectors, there are two variants
of detectors using MAD (Median Absolute Deviation) around the

median, instead of the standard deviation around the mean, to
measure anomaly severities. This patch can improve the robustness
to missing data and outliers [3, 15]. In the interest of space, the
details of these detectors and the ways they produce severities are
not introduced further, but can be found in the references in Table 3.
The sampled parameters of each detector are also shown in Table 3.
Here, the parameter of ARIMA is estimated from the data. For
other detectors, we sweep their parameter space.

In total, we have 14 detectors and 133 configurations, or 133
features for random forests. Note that, Opprentice is not limited to
the detectors we used, and can incorporate emerging detectors, as
long as they meet our detector requirements in §4.3.2.

5.3 Accuracy of Random Forests
Now we present the evaluation results. First, we compare the

accuracy of random forests with other detection approaches in an
offline mode. Since we are not aware of the thresholds of other
approaches, we cannot compare specific recall and precision fairly.
Alternatively, we use the area under the PR curve (AUCPR) [50]
as the accuracy measure. The AUCPR is a single number summary
of the detection performance over all the possible thresholds. The
AUCPR ranges from 0 to 1. Intuitively, a detection approach with
a large AUCPR is more likely to achieve high recall and precision.

5.3.1 Random Forests vs. Basic Detectors and Static
Combinations of Basic Detectors

First, in Fig. 9, we would like to compare random forests
with the 14 basic detectors with different parameter settings (133
configurations) in Table. 3. We also compare random forests with
two static combination methods: the normalization schema [21]
and the majority-vote [8]. These two methods are designed to
combine different detectors, but they treat them equally no matter
their accuracy. For comparison purposes, in this paper, we also use
these two methods to combine the 133 configurations as random
forests do. All the above approaches detect the data starting from
the 9th week. The first 8 weeks are used as the initial training set
for random forests.

Table 4: Maximum precision when recall ≥ 0.66. The precision
greater than 0.66 is shown in bold. The top 3 basic detectors
are different for each KPI (see Fig. 9 for their names).

Detection approach Precision
PV #SR SRT

Random forest 0.83 0.87 0.89
Normalization scheme 0.11 0.30 0.21

Majority-vote 0.12 0.32 0.19
1st basic detector 0.67 0.71 0.92
2nd basic detector 0.39 0.70 0.61
3rd basic detector 0.37 0.67 0.24

Focusing on the left side of Fig. 9, we see that for the AUCPR,
random forests rank the first in Fig. 9(a) and Fig. 9(b), and rank the
second in Fig. 9(c), where the AUCPR of random forests is only
0.01 less than the highest one. On the other hand, the AUCPR of
the two static combination methods is always ranked low. This
is because most configurations are inaccurate (having very low
AUCPR in Fig. 9), as we do not manually select proper detectors
or tune their parameters. However, the two static combination
methods treat all the configurations with the same priority (e.g.,
equally weighted vote). Thus, they can be significantly impacted
by inaccurate configurations.

The right side of Fig. 9 shows the PR curves of random forests,
two combination methods, and the top 3 highest-AUCPR basic



�

���

���

���

���

�

� �� �� �� �� ��� ���

��
�
��

AUCPR ranking

Configurations
Normalization schema

Majority-vote
Random forest

�

���

���

���

���

�

� ��� ��� ��� ��� �

��
��
��
��
�

Recall

1st
2nd
3rd
Random forest
Majority-Vote
Normalization Scheme

(a) KPI: PV. The basic detector ranking first in AUCPR is TSD
MAD (win = 5 weeks), the 2nd one is historical MAD (win = 3
weeks), and the third one is TSD (win = 5 weeks).
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(b) KPI: #SR. The basic detector ranking first in AUCPR is simple
threshold, the 2nd one is SVD (row = 50, column = 3), and the third
one is wavelet (win=3, freq=low).

�

���

���

���

���

�

� �� �� �� �� ��� ���

��
�
��

AUCPR ranking

Configurations
Normalization schema

Majority-vote
Random forest

�

���

���

���

���

�

� ��� ��� ��� ��� �

��
��
��
��
�

Recall

1st
2nd
3rd
Random forest
Majority-Vote
Normalization Scheme

(c) KPI: SRT. The basic detector ranking first in AUCPR is SVD
(row = 20, column = 7), the 2nd one is TSD MAD (win = 3 weeks),
and the third one is TSD (win = 2 weeks).

Figure 9: The left side is the AUCPR rankings of different
detection approaches. The right side is the PR curves. Only
the top 3 highest AUCPR ranking configurations from instinct
detectors are shown in PR curves.

detectors. We observe that the best basic detectors are different
for each KPI, which indicates that the operators are interested
in different kinds of anomalies for each KPI. Table 4 shows the
maximum precision of these approaches when their recall satisfies
the operators’ preference (recall ≥ 0.66). We find that for all the
KPIs, random forests achieve a high precision (greater than 0.8).
The result shows that random forests significantly outperforms the
two static combination methods, and perform similarly to or even
better than the most accurate basic detector for each KPI.

5.3.2 Random Forests vs. Other Algorithms
We also compare random forests with several other machine

learning algorithms: decision trees, logistic regression, linear
support vector machines (SVMs), and naive Bayes. All these
algorithms are trained and tested on I1 in Table 2. To illustrate
the impact of irrelevant features (e.g., the configurations with low
AUCPR in Fig. 9) and redundant features (e.g., a detector with
similar parameter settings), we train these learning algorithms by
using one feature for the first time, and adding one more feature
each time. The features are added in the order of their mutual
information [51], a common metric of feature selection. In Fig. 10,
we observe that, while the AUCPR of other learning algorithms
is unstable and decreased as more features are used, the AUCPR
of random forests is still high even when all the 133 features are
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Figure 10: AUCPR of different machine learning algorithms as
more features are used.

used. The result demonstrates that random forests are quite robust
to irrelevant and redundant features in practice.

5.4 Incremental Retraining
After demonstrating the accuracy and stability of random forests,

we want to show the effects of different training sets. We will
focus only on random forests in this and the following evaluation
steps. We compare three methods of generating training sets: I4,
F4, and R4 in Table 2. Fig. 11 shows the AUCPR of random forests
on different training sets. We see that I4 (also called incremental
retraining) outperforms the other two training sets in most cases.
This result is consistent with the challenge mentioned earlier that an
arbitrary data set is unlikely to contain enough kinds of anomalies.
In Fig. 11(b) we see that the three training sets result in similar
AUCPR. This implies that the anomaly types of #SR are relatively
simple and do not change much, so that they can be captured well
by any of these training sets. Overall, since labeling anomalies does
not cost much time (§5.7), we believe that incremental retraining is
a more general and accurate method to generate training sets.
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Figure 11: AUCPR of different training sets.
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Figure 12: Offline-fashion evaluation for the four accuracy metrics. In each sub-figure, the left side heat maps show the points of
(recall,precision) produced by the four accuracy metrics, respectively. Different rows show different kinds of operators’ preferences,
represented by the boxes at the top-right corner. The right side line charts depict the percentage of points inside the boxes as the
boxes scale up (starting from the original preferences, i.e., a scale ratio of 1).

5.5 PC-Score vs. Other Accuracy Metrics
So far, we have showed the offline AUCPR of random forests

without a specific cThld. Next, we evaluate different accuracy
metrics that are used to configure cThlds. We compare the PC-
Score we proposed against the default cThld, the F-Score, and
SD(1,1). Specifically, we train and test random forests on I1 in
Table 2, and let those four metrics determine the cThlds for each
one-week test set. Then, we measure their performance using recall
and precision of each week. Notice that, this evaluation considers
an offline or oracle setting where we assume we have the test set
when configuring the cThld. We will show the cThld prediction for
future test set (online detection) in §5.6.

Fig. 12 shows the results of the four metrics for three KPIs,
respectively. In the left-side heat maps, each point represents the
recall and the precision of one week. The first row shows the results
under the preference (recall≥0.66 and precision≥0.66), called a
moderate preference. We also evaluate another two preferences:
sensitive-to-precision (recall≥0.6 and precision≥0.8) in the second
row and sensitive-to-recall (recall≥0.8 and precision≥0.6) in the
third row. The preferences are represented by the top-right boxes
in the heat maps. The right-side line charts show the percentage of
the points inside the boxes (satisfying the preferences) if we use the
original or lowered preferences, e.g., scaling the boxes up.

Focusing on the heat maps, we see that while the points ob-
tained by the other three metrics remain unchanged for different
preferences, the PC-Score has the ability of adjusting the recall
and precision according to different preferences. Because of this
advantage, we see in the line charts that PC-Score always achieve
the most points inside the boxes for both the original preference
and the scaled-up ones.

We also notice that it is not easy to satisfy the preference for
all the weeks, because anomalies are very rare in some weeks.
For example, we find that for the weeks where no point satisfies
the moderate preference, anomalies are 73% and 78% fewer than
other weeks for PV and #SR, respectively. Thus it is inevitable
to generate more false positives in order to identify those few
anomalies, leading to low precision. In addition, missing just a few

anomalies can lead to an obvious degradation in recall. Fortunately,
as the anomalies are few in those weeks, relatively low precision or
recall would not cause a large number of false positives or false
negatives. For example, if there are ten anomalous data points
and we identify four of them (40% recall), we would miss only
six anomalous data points; in such case, if we have 40% precision,
we would just identify six false positives. The operators we work
with suggest that they are actually OK with this small number of
false positives or false negatives.

5.6 EWMA vs. 5-Fold for cThld Prediction
Previously, we show the offline evaluation of different metrics

for cThld configuration, and find that PC-Score outperforms the
other three. Now we evaluate the performance of online cThld
prediction based on the PC-Score, which is also the detection
accuracy of Opprentice as a whole. We compare the EWMA
based method used by Opprentice with 5-fold cross-validation. The
evaluation is similar to §5.5 except that the cThld prediction only
uses the historical data (the training set) rather than the future data
(the test set). As aforementioned, the result of each week can vary
greatly because anomalies are quite rare in some weeks. To obtain
a stable result, we calculate the average recall and precision of a
4-week moving window. The window moves one day for each
step so that we can obtain a more fine-grained result. Here, we
show the result under the operators’ actual preference (recall≥0.66
and precision≥0.66). The recall and precision of each window are
shown in Fig. 13. The offline result (called the best case here) is
also shown as a baseline.

The result shows that, for PV, #SR, and SRT, the EWMA
achieves 40%, 23%, and 110% more points inside the shaded
regions, respectively, when compared with the 5-fold cross vali-
dation. In total, 8403 (7.3%), 2544 (2.1%), and 86 (6.4%) data
points are identified as anomalies by Opprentice in the test sets
(after the 9th week) for the three KPIs, respectively (not shown).
We notice that there are some points falling outside of the shaded
regions, such as the window between 58 and 70 in Fig. 13(a). It
is mainly because the anomalies during those weeks are quite rare.
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Figure 13: Online detection accuracy of Opprentice as a whole. The best case is obtained from offline mode. The shaded regions
represent to the operators’ accuracy preference (recall ≥ 0.66 and precision ≥0.66).

For example, there are only on average 4% anomalous points in
the ground truth of PV data for the window between 58 and 70.
However, as mentioned earlier in §5.5, in such case, a little low
precision or recall would not generate many false positives or false
negatives for operators. In summary, Opprentice can automatically
satisfy or approximate the operators’ accuracy preference.

5.7 Labeling Time vs. Tuning Time
Next, we show the time cost of labeling, the only manual job

required for operators when they use Opprentice. Fig. 14 shows
the operators’ labeling time when they label the three types of KPI
data using our tool (§4.2). The result shows that the labeling time
of one-month data basically increases as the number of anomalous
windows in that month. An anomalous window refers to a window
of continuous anomalies derived from one label action. Among the
three KPIs, SRT requires less labeling time for each month of data
because it has less data points in a month as its data interval is 60
minutes. Overall, the labeling time of one-month data is less than
6 minutes. The total labeling time for PV, #SR, and SRT is 16,
17, and 6 minutes, respectively. One intuitive reason for the low
labeling overhead is that the operators each time label a window
of anomalies rather than labeling individual anomalous data points
one by one. The anomalous windows can be much fewer (Fig. 14)
than the anomalous points in the data.
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Figure 14: Operators’ labeling time vs. the number of
anomalous windows for every month of data.

To show the value of how Opprentice help reduce operators’
manual efforts, we also present some anecdotal examples of op-
erators’ tuning time of detectors, including the time they learn the
detectors and understand their parameters. We interviewed three
operators from the search engine, who have experienced tuning
detectors before. The first operator uses SVD, and he said it took
him about 8 days to tune the detector; the second operator uses
Holt-winters and historical average, and he spent about 12 days
tuning these two detectors; the third operator applies time series
decomposition, and he said that after the detector was implemented,

it further cost him about 10 days to test and tune the detector. In the
above cases, after days of tuning, only the first operator’ detector
works relatively well; yet, the other two operators are still not
satisfied with the accuracy of their detectors, and finally abandon
them. We have compared the accuracy of Opprentice with these
basic detectors in §5.3.1.

Although the time reported above is not the exactly time used for
tuning, it provides a basic idea of the overhead and the difficulty
of manually tuning detectors. The operators we interviewed
confirmed that detector tuning is very time-consuming, and they
are neither interested nor feel comfortable in doing so. In sum-
mary, Opprentice can help replace the time-consuming and boring
detector tuning with fast and convenient anomaly labeling.

5.8 Detection Lag and Training Time
The detection lag, in principle, consists of the feature extraction

time and the classification time. We run Opprentice on the Dell
PowerEdge R420 server with the Intel Xeon E5-2420 CPU and
24GB memory. The total time of extracting 133 features is on
average 0.15 second for each data point. The classification takes
trivial time, which is on average less than 0.0001 second per data
point. Besides, the offline training time is less than 5 minutes each
round. Since all the detectors can run in parallel, and training of
random forests is also able to be parallelized, we believe that one
can get a better performance by taking advantage of multi-threaded
techniques and distributed computing on server clusters.

6. DISCUSSION
Anomaly detection is complex in practice. In this section, we

discuss some issues regarding anomaly detection and clarify the
scope of Opprentice.

Anomaly detection, not troubleshooting. Sometimes, although
the operators admit the anomalies in the KPI curve, they tend
to ignore them as they know that the anomalies are caused by
some normal activities as expected, such as service upgrades and
predictable social events. However, since our study focuses on
identifying abnormal behaviors of the KPI data (called anomaly
detection in this paper), we ask the operators to label anomalies
based on the data curve itself without considering the reasons
behind. Anomaly detection is a first important step of monitoring
service performance. We believe that the detection results should
be reported to operators and let operators decide how to deal
with them, or more ideally, input into a troubleshooting system
for analyzing the root causes and generating more actionable
suggestions. For example, the troubleshooting system may find
that the anomalies are due to normal system upgrades and suggest



operators to ignore them. However, troubleshooting anomalies
itself is outside our research scope.

Anomaly duration. The duration of continuous anomalies
could be another important consideration of raising alarms. In this
paper, we do deliberately omit this factor. One reason is that it will
make our model too complex to show the core idea. Another one
is that it is relative easy to implement a duration filter based upon
the point-level anomalies we detected. For example, if operators
are only interested in continuous anomalies that last for more than
5 minutes, one can solve it through a simple threshold filter.

Detection across the same types of KPIs. Some KPIs are of the
same type and operators often care about similar types of anomalies
for them [5]. For example, the PV originated from different ISPs.
When applying Opprentice to such case, operators only have to
label one or just a few KPIs. Then the classifier trained upon those
labeled data can be used to detect across the same type of KPIs.
Note that, in order to reuse the classifier for the data of different
scales, the anomaly features extracted by basic detectors should be
normalized. We plan to explore this direction in future work.

Dirty data. A well known problem is that detectors are often
affected by “dirty data”. Dirty data refer to anomalies or missing
points in data, and they can contaminate detectors and cause errors
of detectors. We address this problem in three ways. (a) Some of
our detectors, e.g., weighted MA and SVD, can generate anomaly
features only using recent data. Thus, they can quickly get rid of the
contamination of dirty data. (b) We take advantage of MAD [3,15]
to make some detectors, such as TSD, more robust to dirty data; (c)
Since Opprentice uses many detectors simultaneously, even if a few
detectors are contaminated, Opprentice could still automatically
select and work with the remaining detectors.

Learning limitations. A supervised learning based approach
requires labeled data for initialization. This is an additional
overhead when compared with applying basic detectors directly.
Fortunately, the KPI data, nowadays, are easy to obtain [1, 4, 9, 12,
14, 17, 26]. Meanwhile, labeling can also be effective and cost less
time as we demonstrated earlier with out labeling tool. Another
issue is that a learning based approach is limited by the anomalies
within a training set. For example, anomalies can be rare, and new
types of anomalies might appear in the future [16]. We solve this
problem by incrementally retraining the classifier to gather more
anomaly cases and learn emerging types of anomalies.

Detection accuracy. Because of the many practical challenges
mentioned above, anomaly detection is a complex and challenging
task. It is intractable to achieve high precision and recall all the
time. We also cannot guarantee Opprentice to be able to always
satisfy the operators’ accuracy preference. But our evaluation
shows that the accuracy of Opprentice is still promising, especially
for the operators’ preference in the studied service.

7. RELATED WORK
Many efforts have been put into the field of anomaly detection.

Researchers have developed numerous detectors using different
techniques [1–24]. In addition, researchers try to address several
challenges of applying detectors in practice. (a) For auto-tuning
the internal parameters of detectors, Krishnamurthy et al. [11]
proposes a multi-pass grid search to find appropriate parameters
from data. Himura et al. [23] searches for the parameters to
maximize the ratio of detected events. In comparison, beyond
detector internal parameters, we also consider automatically se-
lecting detectors and their thresholds. (b) Some work uses ROC
curves to evaluate the performance of different detectors regardless
of their thresholds [9, 14, 26]. This technique is also used in our
work. (c) MAD is used to improve the robustness of detectors to

dirty data [3, 15]. We also implement two detectors with MAD.
(d) Some solutions attempt to statically combine different detectors
together [8, 21]. We compared Opprentice with them. (e) Machine
learning has also been applied in anomaly detection [16, 20, 32],
but it serves as basic detectors. On the contrary, we use machine
learning to combine different existing detectors.

Another important challenge of anomaly detection is to obtain
the ground truth to evaluate detectors. Three commonly-used
solutions are: (a) using the real anomalies identified or confirmed
by domain operators [1,4,9,12,14,17,26]; (b) generating synthetic
anomalies by injecting real or pre-defined anomalies into the
background data [9, 14, 18, 19]; (c) pair-wise comparisons, which
treat the anomalies reported by other detectors as the ground
truth [1, 8, 10, 17, 18]. Because our fundamental goal is to satisfy
operators’ demands, we believe that solution (a) makes more sense
in this paper.

8. CONCLUSION
Applying anomaly detection to an Internet-based service has

been challenging in practice. This is because the anomalies
are difficult to quantitatively define, and existing detectors have
parameters and thresholds to tune before they can be deployed.
Our proposed framework, Opprentice, tackles the above challenges
through a novel machine learning based approach. The unclear
anomaly concepts are captured by machine learning from real data
and operators’ labels, while numerous existing detectors can be
automatically combined by machine learning to train a classifier
to identify the anomalies. Our evaluation on real-world search
KPIs show that Opprentice consistently performs similarly or even
better than the best performing basic detectors which can change
for different data sets.

To the best of our knowledge, Opprentice is the first detec-
tion framework to apply machine learning to acquiring practical
anomaly concepts and automatically combining and tuning diverse
known detectors to satisfy operators’ accuracy preference. Emerg-
ing detectors, instead of going through time-consuming and often
frustrating parameter tuning, can be easily plugged into Opprentice,
making the former be deployed more easily and the latter more
accurate. In addition, although machine learning is a promising
solution, applying it in designing a practical system needs to
be careful as it presents several interesting challenges, such as
imbalance class and irrelevant and redundant features. We explore
and solve some of them in this paper. We believe that Opprentice
provides a new schema to bridge the gap between practical opera-
tional demands and the state-of-art anomaly detectors. In our future
work, we plan to work on the several issues mentioned in §6, and
apply the idea of Opprentice to other network operation tasks such
as automating intrusion detection and network troubleshooting.
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