
Narrowing Down the Debugging Space of
Slow Search Response Time

Dapeng Liu†, Youjian Zhao†, Dan Pei†⇤ , Chengbin Quan†

Qingqian Tao‡, Pei Wang‡, Xiyang Chen‡, Dai Tan‡, Xiaowei Jing§, Mei Feng§
†Tsinghua University ‡Baidu §PetroChina

†Tsinghua National Laboratory for Information Science and Technology (TNList)

Abstract—When using search engines, users often care about search
response time (SRT) in addition to result accuracy. It is thus the
operators’ responsibility to closely monitor and improving SRT. The
first critical step of improving SRT is to pinpoint the root causes of
slow SRT. However, this task is very challenging because SRT can be
impacted by many factors, e.g., networks, data centers, browsers, and
the page content.

In this paper, we propose FOCUS, a systematic framework to narrow
down the debugging space of slow SRT by identifying the bottleneck of
slow SRT regarding various factors. The bottleneck provides operators
more specific direction for further investigation. We deployed FOCUS in
a global top search engine. Based on the output of FOCUS, operators
successfully identified four potential causes which would not have been
easy to find without FOCUS. Our what-if simulation analysis shows that,
the proposed solutions, focusing on these bottlenecks, can improve SRT
significantly, and they are more effective than some ad hoc solutions.

I. INTRODUCTION

Search engine is no doubt one of the most prevalent applications
of the Internet. Billions of queries are launched from all over the
world everyday, and then handled by search engines such as Google,
Baidu, Yahoo, Yandax, and Bing [1]. Operating such a giant search
system is very challenging, and operators have to work very hard to
satisfy dozens of KPIs (key performance indicators). Among them,
search response time (SRT) is one of the biggest concerns for search
providers [2]. SRT refers to the user perceived waiting time between
when a query is submitted and the time when the result page is fully
rendered. As such, SRT has a measurable impact on users’ experience
as well as providers’ profit. [3], [4] found that less than half a second
increase of SRT can lead to 0.6% fewer searches and 1.2% drop in
revenue. As a result, operators are responsible for monitoring and
improving SRT, especially the slow SRT, so that it can satisfy the
growing requirement. For example, the search engine we studied
requires the 80

th percentile of SRT less than 1 second.
Recently, many acceleration solutions have been proposed [5], [6],

[7], [8], [9], [10], [11] . They aim to fix particular problems in the
fourth step. Yet, a key missing part before applying a solution is
to identify the bottleneck of slow SRT. In particular, we want to
answer the following two questions: Under which conditions queries
are slow? Which components of SRT is slow? These two questions
can help operators debug slow SRT.

In this paper, we propose a novel systematic framework, called
FOCUS, to systematically answer the above two questions. FOCUS
intends to automatically identify the bottleneck conditions, and the
bottleneck SRT components. The results, outputted by FOCUS,
provide operators specific investigation directions and enable them
to further identify the root causes. For example, if we find that many
queries triggering ad are responded slowly, and their DOM (document
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object model) load time is long, operators should investigate whether
the modual regarding ad is inefficient, or contains some bugs.

The task of FOCUS in practice is challenging due to the following
aspects. First, SRT can be affected by many factors such as servers,
networks, browsers, and users’ devices. Second, since these factors
inherently overlap each other, it is difficult to identify which factor
is responsible for the slow SRT. For example, a condition that
Chrome runs on a less powerful device. Third, the output should be
specific and straightforward for operators. For example, the output
of traditional clustering methods like k-means do not have clear
boundaries, thus unintuitive.

To tackle these challenges, we first develop a multi-dimensional
hierarchy clustering to provide clear and meaningful boundaries of
the bottlenecks. This ensures that the clusters we find out are specific
for operators. Then we leverage a technique called hierarchical heavy
hitter (HHH) [12], that has been commonly used to locate iceberg
in network traffic. This technique can help identify in the multi-
dimensional hierarchy which clusters are the real bottlenecks and
which ones are redundant. Once bottleneck clusters have been found,
we design a method based on Occam’s razor to further determine
which SRT components can best explain the slow SRT.

We deploy FOCUS in one of the global top search engines.
Based on the bottlenecks identified by FOCUS, operators successfully
locate four causes of slow SRT and propose solutions. Our what-if
simulation further demonstrates that, the solutions focusing on the
bottlenecks by FOCUS are much more effective than ad hoc solutions
in improving SRT. Some of these ad hoc solutions were actually being
considered by the operators for deployment in the studied search
engine before using FOCUS. These results highlight the value of
FOCUS in the field of debugging slow SRT.

The remainder of the paper is organized as follows. Section II
provides the basic background of SRT and our problems. Section III
describes the details of FOCUS. Section IV shows the results of
FOCUS over real data and the simulation. Section V reviews the
related work, and Section VI concludes the paper.

II. BACKGROUND AND PROBLEM

A. About SRT and Requirement

To better understand SRT, we first introduce the events happened
after submitting a query. Instead of discussing the details, we here
only provide a simplified view to build high level intuitions. Fig. 1
shows five steps. (1) When query is submitted (if the result is not
cached by the client), the host name of the search engine will be
resolved by the the provider’s DNS. The DNS responds the IP address
of a close data center. (2) Then the browser sends a query to the search
data center. The data center conducts a series of complex processes,
such as results ranking, ad strategies, and page constructing, before
sending the result page to the browser. (3) The browser starts parsing
the page and loading DOM. (4) Embedded images of the page are978-1-4799-7575-4/14/$31.00 c�2015 IEEE



acquired. These images are geographically distributed among plenty
of CDN (content delivery network) nodes for accelerating. (5) At
last, the page is completely visible for the user.

 Search DNS

Search Data Center

CDN

3. DOM Loading

1. DNS Resolving

2. Query and Results

4. Embedded images
5. Page Complete

Fig. 1. Typical steps of a search.
The time between submitting a search query and the result page

being completely rendered is called search response time (SRT). SRT
is the user perceived waiting time. It thus has significant influence on
users’ experience, and can further affect providers’ revenue. Hence,
operators need to carefully monitor and improve SRT, so that it can
satisfy the SRT requirement. The requirement is usually to focus on
percentiles rather than the average, as percentiles can describe how
many queries should be served as expected. For example, the 80

th

percentile of SRT less than 1000ms means that the SRT of 80% of
queries should be no more than 1000ms.

B. Data Collection

In this paper, we leverage two categories of data for each query, i.e.,
the SRT measures and impact factors1. As shown in Fig. 2, the SRT
measures include SRT and its components, and the impact factors are
several conditions that can potentially affect SRT. Their details are
described later.

A Query Record

Impact  factors：
Computing power (CP) Network status (NS ) Browser#Image Ad

SRT Tnet Tsrv Tdom Tembed

SRT measures：

Fig. 2. The content of query records.
Though web servers are usually configured to maintain web access

log, this sort of data lacks detail. For example, the response time
logged is actually the server processing time, which is only a part
of SRT. Additionally, only a few impact factors is logged, e.g.,
browser types. Therefore, we build our data collection agent to gather
necessary information for identifying SRT bottlenecks. The agent
takes advantage of a technique called web instrumentation, which
is commonly used by search providers [2]. Specifically, the agent is
a piece of javascript codes, that equipped into the pages and run at
user side. During a search, it is responsible for recording the SRT
and its components, as well as several impact factors. It can also
receive information from servers, such as the server processing time.
Finally, the query record is logged by the agent and sent back to
storage servers. The advantage of the agent is that it can be deployed
at large scale. But as it can introduce extra overhead for users, we
have to simplify the agent and give up fine grained data. Now, we
characterize how the query records are measured by the agent.

1In compliance with confidentiality constraints, the specific names and
values in this paper are anonymized and normalized.
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Fig. 3. The timeline of a search. During the search, four time points are
recorded. SRT and four components are calculated based on them.

1) SRT and Components: Fig. 3 shows the timeline of a search.
Four critical time points are recorded by the agent. When a user
launches a search query, we record t1. After an alternative DNS
resolving, the query is sent to a search data center and the result
page is returned. When the page is completely received, we record
t2. Then the browser starts parsing and loading DOM, and after the
DOM has been fully loaded, we record t3. At this time, the page
appears like V1. The main frame and the result list are visible, but
the images are empty. Next, the embedded images are acquired from
CDN and rendered into the pages. When this process is finished, the
page is completely visible like V2, and we record t4 then.

Though we omit more details, these four deliberate time points are
sufficient to calculate SRT and its key components. The SRT for a
query is time between t1 and t4. The server processing time T

srv

is recorded by the server and sent back to the agent. Then we have
T
net

= t2 − t1 − T
srv

, including the DNS time and the network
transmission time of the query and the result page. The DOM load
time of the browser is T

dom

= t3−t2 and the time consumed by other
embedded elements is T

embeded

= t4−t3. We see that SRT is the sum
of T

net

, T
srv

, T
dom

, and T
embeded

. These four major components
reflect different parts of SRT, and are useful for debugging slow SRT.

2) Impact factors: Another job of the agent is to gather impact
factors, that can potentially affect SRT. The factors we collect are
shown in Fig. 2. (1) Computing power (abbreviated CP ): this factor
is measured by a piece of benchmark code. The code is executed
by the users’ browser, and its runtime is used to estimate CP . So,
CP captures the synthetical performance of CPU, browser, etc. (2)
Network status (abbreviated NS): it intends to measure the network
performance of users. We approximate this factor by T

net

. As the
DNS server takes advantage of efficient cache, the DNS revolving
takes very short time at the DNS server. Besides, the page size does
not vary a lot, so we ignore the error caused by different sized
pages. (3) browser: we distinguish browsers by their basic types
and major version numbers, and we have 8 major browsers, denoted
as x1, x2, ..., x8. For nondisclosure reasons, we cannot report their
specific names. (4) #image: as many images can considerably slow
down the page load, we record the number of embedded images of
each page. (5) ad: the page with ad contains more complex codes
to realize business function and enable advanced interaction effects.
We simply use “yes” or “no” to represent whether a page includes
ads or not.

We collect the above representative factors based on domain
knowledge. But our analysis framework is not limited to the factors
we used, and can be easily extended to other factors.



C. Problem Statement and Goal

First, we define the gap to the SRT requirement. Let R(p%, t) be
the SRT requirement, which means reducing the pth percentiles of
SRT to t milliseconds. We call t the desired SRT. R(p%, t) can also
be interpreted as that the SRT of at least p% of queries should be no
more than t. The requirement can be reflected by a CDF. As shown
in Fig. 4, the dashed line indicates a SRT distribution that satisfies
the requirement. We call a query slow query if its SRT is larger than
t, or fast query otherwise. Then R(p%, t) is equivalent to owning
p% fast queries. Yet within the current query records, we only have
p0% fast queries, as shown by the solid line in Fig. 4. Consequently,
to achieve the requirement, at least  = p%−p%0 slow queries need
to be changed to fast ones, after considering the case of fast queries
changed to slow ones. We use  to denote the gap between current
SRT and the requirement.

p%

p %

t

Fast query Slow query

SRT

CDF

Current SRT Distribution

SRT requirement

Δ

Fig. 4. SRT requirement.
Subsequently, operators need to debug at least  slow queries,

in other words, locating their causes. Then they can take action to
accelerate them2 and filling in the gap, e.g., deploying accelerating
solutions or fixing bugs.

Our goal is to help narrow down the debugging space. Specifically,
we first aim at identifying what kinds of impact factors generate at
least  slow queries. These factors are namely bottleneck clusters.
Then, in each bottleneck clusters, we further find out which compo-
nents can best explain the slow SRT. These components are namely
bottleneck components. These bottlenecks can provide operators a
more specific debugging direction to identify the root causes. In
this paper, we use the requirement of the search engine we studied:
R(80%, 1000ms). Here, 1000ms is the time that can potentially
interrupt users’ flow of thought [13] and the time that search engines
like Google [14] and the one we studied try to avoid.

III. DESIGN

At a high-level, as shown in Fig. 5, FOCUS take as input the SRT
requirement and the query records, and identify the bottlenecks of
SRT as output. In the first steps, we hunt for the clusters of impact
factors that contains at least  slow queries. To ensure intuitive
clusters, we employ a novel schema to define the boundaries of
clusters on each factors. In nature, all these clusters are organized
in multi-dimensional hierarchy, and we exploit HHH to identify the
bottleneck clusters in this structure. Afterwards, for each bottleneck
cluster, we determine bottleneck components based on Occam’s
razor. The basic idea is that the most succinct one should be
the best explanation. The above bottlenecks are the output of
FOCUS. Operators can further investigate along the directions of
the bottlenecks to locate potential causes, and design solutions. We
also conduct what-if simulation to evaluate the effectiveness of these
solutions (Section IV).

2In this paper, accelerating slow queries refers particularly to improve them
to fast ones, in other words, reducing their SRT from > t to  t.
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Fig. 5. High level overview of FOCUS.

A. Defining Cluster

The impact factors are measured with either classes such as
browser or numeric values such as #image and CP . Generally
evaluating all possible subset of each factor will generate unneces-
sarily large number of clusters. Moreover, such clusters would be too
spotty for operators to understand. Instead, we first group the values
of each factor into meaningful units, then define clusters upon these
units. This kind of clusters are much more intuitive to be used.

For ad, it has just two units, ad = yes or ad = no, as it appears
originally. For browser, we treat some browsers as the same unit,
as they have the same compatibility and similar performance. As
a result, there are five units out of 8 browsers, U1 = {x1, x2},
U2 = {x3}, U3 = {x4}, U4 = {x5, x6, x7}, and U5 = {x8}.

On the other hand, for the other three numeric valued factors,
i.e., #image, CP , and NS, we divide them all into four units,
which are fine-grained enough for our problem, and they also have
clear meanings, such as the #image can be fewer, few, many,
and more. Now we take #image as an example to show our
determination of each unit. For practice, we design an automatic
splitting schema rather than divide units statically. The schema starts
with the observation that when we decide the #image is many or
few, we actually consider SRT. For example, if the SRT of queries wit
10 images is faster than the SRT of overall queries, then 10 images
seem not a lot; on the contrary, if 15 images can result in a slower
SRT than the overall SRT, 15 images are many. As such, we first
decide SRT ranges in current queries, which is quite straightforward,
and use these ranges to determine the units of each factors.

Here, we also use pth percentile as the metric of SRT. Let t0 be
the pth percentile of SRT in current queries. Then we have four SRT
ranges (0, t0− ✏], (t0− ✏, t0], (t0, t0+ ✏], and (t0+ ✏,1), representing
varying deviations from t0. Here ✏ is a time interval and can be set
according to demands, e.g., 100ms or 10% · t0. Note that we do not
use the desired SRT t to divide SRT, because t is relatively small and
independent of current SRT, thus the SRT ranges based on t cannot
decide the units appropriately.

Subsequently, for an arbitrary #image, it is called fewer, few,
many, or more respectively if the pth percentile of its SRT is within
(0, t0−✏], (t0−✏, t0], (t0, t0+✏], or (t0+✏,1). By this means, the four
units of #image are dynamically determined and also meaningful.

Another practical issue is that from Fig.6 (a), we see that though
more images can inflate SRT more significantly, the SRT is not
monotonically increasing with #image from the perspective of real
data. This fluctuation can be due to other confounding factors. As
a result, strictly following the above dividing schema can make the
#image in the same unit inconsecutive. For example, in the unit of
(0, t0−✏], #image can be 0, 1, 2, and 6, as the SRT of 6 images is a
small valley and fall into (0, t0− ✏] too. This kind of units is actually
confusing for operators. To avoid this, we employ a trick based on
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Fig. 6. Splitting numeric factors. The dotted lines are the split lines at t0 − ✏, t0, and t0 + ✏. The split points of each factor are denoted as s1, s2, and s3.

the assumption of that #image and SRT are positively correlated.
Specifically, instead of checking the SRT of each #image, we decide
three split points of #image. As shown in Fig.6 (a), along SRT
axis, we draw three split lines at t0 − ✏, t0, t0 + ✏. The #image
most close to the first cross point of each split line from left side
is defined as the split point, which are s1, s2, and s3. These three
split points finally generate four consecutive units of #image, that
is [0, s1], (s1, s2], (s2, s3], (s3,1). CP and NS are handled in
the same way, as shown in Fig.6 (b) and (c), except we preliminarily
discretize their values into small equal-sized bins, e.g., bins of 20ms.
The four units for CP and NS are both called better, good, bad,
and worse respectively. Notice that units can be empty as well. For
example, the first unit of CP has only one bin, and a larger ✏ will
make it empty.

Eventually, a cluster is defined on each factor by either a particular
unit or wildcard * for all possible units. For example, cluster C =

(#image = many, browser = U1, CP = ⇤, NS = ⇤, ad = ⇤)
represents the queries originated from browsers of U1 and their
numbers of embedded images are many. For brevity, we omit
those factors with *, so the cluster C can be simply denoted as
(#image = many, browser = U1). We also use (⇤) to denote
the cluster with ⇤ on every factors.

B. Bottleneck Cluster and Identification

All the clusters are organized into a 5-dimensional hierarchy (since
we have five factors). Now, we introduce some basic concepts of
multi-dimensional clusters. Fig. 7 shows an example of 2-dimensional
clusters. The two dimensions are a and b. In this structure, if a cluster
is more specific than another cluster, they are linked by one or more
directed edge(s), from the general one to the specific one, e.g., a1 !
a1b1. For cluster C, we name the cluster directly linked from C the
child of C, and name the set of clusters that can be reached from C
via one or more edge(s) the descendants of C. Correspondingly, C is
called the parent of its children and the ancestor of its descendants.
Within this multi-dimensional hierarchical structure, a cluster can
have multiple children and parents along different dimensions, e.g.,
for (⇤), it has children a1 and a2 along dimension a, and children
b1 and b2 along dimension b; for a1b1, it has two parents a1 and b1
from dimension a and b respectively.

Let S
C

be the number of slow queries in C (relative number w.r.t.
the total number of queries). Basically, a bottleneck cluster refers to
the cluster with no less than  slow queries, i.e., S

C

≥ . However,
the nature of multi-dimension of clusters can lead to a lot of redundant
bottleneck clusters under this definition. This is because a cluster is
the superset of its descendants, and its slow queries must be no less
than the ones contained by its descendants. For example, S

b1 =

10% ≥ S
a2b1 = 6%. As such, according to the basic definition,

many clusters in Fig. 7 ( = 5%) are bottleneck clusters as they
contain more than 5% slow queries. Yet, reporting all these clusters
are more than necessary, and some of them are too general to narrow
down the debugging direction, e.g., reporting (⇤) is helpless at all.

To overcome this drawback, we introduce the concepts of duplicate
and valid number of slow queries to help define bottleneck clusters in
multi-dimensional hierarchy. This definition is inspired by HHH [12].
The main idea is to attribute slow queries to descendant bottleneck
clusters rather than ancestors, as descendant clusters are more
specific.

Normal cluster

Bottleneck cluster

Parent to child

a1b2 a2b2b2

7%
10%

3%

(*)

a2

a2b1
b1

a1b1

a1 13%

6%

20%

10%

4%

7%

Fig. 7. An example of 2-dimensional clusters. The two dimensions are a and
b respectively. We use abbreviation to denote clusters, e.g., a1b1 is short for
(a = 1, b = 1) and a1 is short for (a = 1, b = ⇤). Each circle represents a
cluster. The number in the circle is the (relative) number of the slow queries
contained by the cluster. In this example, we set  = 5%.

The duplicate number of slow queries of a cluster C is denoted by
D

C

, and it represents the number of slow queries that have already
been attributed to the descendants of C and C . Thus, these slow
queries should not be counted repeatedly by the ancestors of C. We
also define Dd

C

=

P
D

C

0 , where C0 is the children of C along
dimension d. If C has no children along dimension d, we treat Dd

C

as 0. Then the valid number of slow queries of C is defined as
S?

C

= S
C

−max{Dd

C

|d 2 D}, where D is the dimension set, i.e.,
five factors in our problem. Finally, we have the following definition:

C =

⇢
bottleneck cluster , if S?

C

≥

normal cluster , if otherwise

We can see that a bottleneck cluster should still contain enough
slow queries after excluding those attributed to descendant clusters.
For bottleneck cluster C, we attribute its slow queries to it by setting
D

C

= S
C

, so that its ancestors will not further recount them; for
normal cluster C, as no more slow queries are attributed, we set
D

C

= max{Dd

C

|d 2 D} to pass on only the slow queries that have
been already attributed.

In this definition, the slow queries of a normal cluster can be
counted by its multiple ancestors of different dimensions, yet this
should not be regard as redundancy. Because the bottleneck clusters
of different dimensions actually uncover different problems.

Based on the above bottleneck cluster definition, one can see that
the bottleneck clusters are identified bottom up in nature. We use
the example in Fig. 7 to show how it works. First, we evaluate the
leaf clusters, a1b1, a1b2, a2b1, and a2b2. As they do not have any
children, we have S?

i

= S
i

for them. For these four clusters, only



S?

a2b1 = 6% ≥  and S?

a2b2 = 7% ≥ , so a2b1 and a2b2 are
identified as bottleneck clusters. Accordingly, we set D

a1b1 = 0,
D

a1b2 = 0, D
a2b1 = 6%, and D

a2b2 = 7%. Then come to the
next level of a1, a2, b1, and b2. For a1, it has children only on
one dimension (i.e., dimension b). So we have Db

a1 = D
a1b1 +

D
a1b2 = 0, and S?

a1 = S
a1 − Db

a1 = 7% > . As such, a1 is
a bottleneck cluster, and set D

a1 = 7%. For b1, similarly, we have
Da

b1 = D
a1b1 +D

a2b1 = 6%, then S?

b1 = S
b1 −Da

b1 = 4% < .
So b1 is a normal cluster, and set D

b1 = 6%. Likewise, a2 and b2
are normal clusters too. The last root cluster (⇤) has children along
two dimensions. We first calculate Da

(⇤) = 20%, and Db

(⇤) = 13%.
Then we get S?

(⇤) = S(⇤)−max{Da

(⇤),D
b

(⇤)} = 0 < . As a result,
(⇤) is not qualified for a bottleneck cluster.

The bottleneck clusters can be identified by a typical post-order
traverse of the multi-dimensional tree, such as [12]. Due to the
limitation of space, we omit the particular algorithm.

C. Bottleneck Components

Once a bottleneck cluster has been identified, we attempt to find
out bottleneck components. Our definition of bottleneck components
is based on Occam’s razor, which is also used by [15]. It suggests
that the most succinct components that can explain the extra SRT
should be the bottleneck components. Now we introduce the basic
idea via a mock example.

Table I shows each component of the fast queries and the slow
queries in a bottleneck cluster. Suppose that the desired SRT t =

1000ms, then the average SRT of the slow queries is 500ms longer
than that. Ideally, we should identify which components of slow
queries can best explain this extra 500ms. To achieve this, we
should first determine the extra time each components of the slow
queries take. This step requires the desired time of each component to
compare. However, only t rather than its components is provided. In
order to tackle this problem, we exploit the fast queries to estimate
those components of t. For example, in Table I, for fast queries,
T
net

is 100ms and the SRT is 500ms. Compare with slow queries,
we see that while the SRT increases by 1000ms, T

net

increases by
400ms. We assume that each component is linearly increases as SRT,
so that we can estimate that the increase of T

net

accounts for 40%

of the total increase of SRT. As a result, for t = 1000ms, which
is 500ms longer than the SRT of fast queries, we can estimate the
increase of its T

net

as 500 ⇤ 40% = 200ms and finally we have
its T

net

= 100 + 200 = 300ms. Similarly, we can estimate other
components of t, and they are shown in Table I.

Based on the estimated components, we identify which components
can explain H of this extra 1300ms. H is a threshold of explanatory
power. The rule of thumb is that H should neither be small (e.g.,
30%) nor over large (e.g., 90%), which can both lead to less helpful
results. In our problem, we set H = 80% and it works well. The
last column in Table I shows the extra time each component of slow
queries takes when comparing with that of estimated ones. Then,
according to Occam’s razor, the most succinct set of components,
whose extra time is at least H ⇥ 1300ms, is the bottleneck
components. In this example, the bottleneck components are T

net

and T
embed

. This is because the sum of their extra time is 425ms,
longer than 500 ⇥ 80% = 400ms, and they also the most succinct
set (with two components) to satisfy the this condition.

Actually, under the linear increasing assumption, explaining t is
equivalent to explaining the SRT of fast queries. For example, in
Table I, if we try to explain why the SRT of slow queries is 1000ms
longer than that of fast queries, we would get the same results. Hence,

we formally define the bottleneck components by explaining the SRT
difference between slow queries and fast queries.

TABLE I
THE AVERAGE TIME (MS) OF THE COMPONENTS OF FAST QUERIES AND

SLOW QUERIES IN A BOTTLENECK CLUSTER. COLUMN 4 IS THE
ESTIMATED COMPONENTS OF THE DESIRED SRT. THE LAST COLUMN IS
THE DIFFERENCES BETWEEN THE COMPONENTS OF SLOW QUERIES AND

ESTIMATED ONES.

Components Fast Slow Estimation Extra
queries queries time (ms)

T
net

100 500 300 200
T
srv

250 300 275 25
T
dom

100 200 150 50
T
embed

50 500 275 225
SRT 500 1500 1000 500

Given a bottleneck cluster, let δ be the difference between the
average SRT of the slow queries and that of the fast queries. Similarly,
for a component T

i

, where i 2 {net, srv, dom, embed}, let δ(T
i

)

be the difference between T
i

of the slow queries and T
i

of the
fast queries. The explanatory power of T

i

is denoted as EP (T
i

),
and EP (T

i

) = δ(T
i

)/δ. The bottleneck components is a set of
components, denoted as BC, that satisfies

P
T2BC

EP (T ) ≥ H , at
the same time, minimizing |BC| (i.e., succinctness). While there exist
multiple qualified BC, we further select the BC with the maximum
of

P
T2BC

EP (T ).
Since there are only four components, we identify bottleneck

components using a brute force approach of enumerating all possible
candidate sets. One can design more efficient algorithm, such as the
greedy algorithm proposed in [15], to deal with large-scale data.

IV. EVALUATION

We have deployed FOCUS in a global top search engine. During
one week in October, 1% of the provider’s queries are collected by
our agent (as described in Section II-B). Overall, there are over 28
million query records.

We first present the bottlenecks identified by FOCUS from those
query records, and discuss our observations. Then we show the
further case studies on the results conducted by the operators of the
search engine. It turns out that those bottlenecks successfully help the
operators pinpoint some potential causes, and come up with solutions
to fix them. Last, we perform what-if simulation of these solutions.
In comparison, several ad hoc solutions are also simulated, some of
which were actually proposed by the operators before FOCUS. The
simulation results prove that the solutions focusing on the bottlenecks
can improve SRT strikingly; conversely, the improvement of those ad
hoc solutions are much less.

A. Results and Observations

FOCUS identify bottlenecks based on the real SRT requirement
of the search engine. The requirement focus on the 80

th percentile
of SRT. The desired SRT is not shown due to confidentiality. Under
this requirement, 75.4% of the queries are fast queries and the other
24.6% are slow queries. As such, the gap to the requirement is  =

4.6% slow queries.
The bottlenecks identified are listed in Table II, ranked by the

fraction of slow queries in each bottleneck (the column of %Slow
query). Each row displays one bottleneck, including the clusters,
components, and other details. We now characterize some key
observations from the results.

Observation 1: Focusing on the bottleneck clusters, we see
that they concentrate on different units of each factor. Particularly,
bottleneck clusters do not always have bias on the worst units of



TABLE II
THE BOTTLENECKS IDENTIFIED FROM ONE-WEEK QUERY RECORDS. EACH ROW REPRESENTS ONE BOTTLENECK, INCLUDING ITS ID, THE BOTTLENECK

CLUSTER AND COMPONENTS. LAST THREE COLUMN ALSO SHOWS THE RELATIVE NUMBER OF FAST AND SLOW QUERIES (#FAST QUERY AND #SLOW
QUERY) AND THE FRACTION OF SLOW QUERIES IN THIS BOTTLENECK (%SLOW QUERY). .

ID Bottleneck Clusters Bottleneck Components #Fast #Slow %Slow
CP NS #image browser ad T

net

T

srv

T

dom

T

embed

query query query

B1 * worse * * yes X X X 2.1% 4.6% 68.8%
B2 * worse many * * X X 3.4% 7.0% 67.1%
B3 * worse * U4 * X X 3.8% 6.1% 61.6%
B4 * worse * * no X X 5.2% 8.2% 61.0%
B5 good worse * * * X X 4.1% 5.9% 59.1%
B6 worse * * * * X X X 6.7% 7.8% 53.9%
B7 * * many * yes X X X 10.9% 5.7% 34.5%
B8 * * * U1 * X X X 13.6% 5.0% 26.9%
B9 * * many * no X X 24.7% 8.3% 25.1%

B10 * * many U4 * X X 22.8% 6.9% 23.2%
B11 good * many * * X X 23.0% 6.2% 21.1%
B12 * * few * no X X X 19.4% 5.0% 20.5%
B13 good * * U4 no X X 23.5% 4.7% 16.5%
B14 * better * * * X X 47.4% 5.3% 10.0%

each factors. For example, for #image, many bottlenecks appear
in #image = many rather than #image = more; as for CP ,
CP = good is more popular in bottlenecks. Since bottleneck clusters
intend to find out at least  slow queries, we take #image, CP and
NS as examples to explain how slow queries are distributed.

TABLE III
THE DISTRIBUTION OF SLOW QUERIES IN EACH FACTOR. THE UNITS ARE

DIVIDED BY SPLIT POINTS s1, s2, AND s3 IN FIG. 8. THE UNITS THAT HAS
APPEARED IN BOTTLENECK CLUSTERS ARE HIGHLIGHTED.

Factors Unit1 Unit2 Unit3 Unit4
[0, s1] (s1, s2] (s2, s3] (s3,1)

#image

fewer few many more

7% 27% 57% 9%

CP

better good bad worse

11% 44% 14% 31%

NS

better good bad worse

21% 18% 8% 53%

Table III gives the distributions of slow queries along the three
factor. As expected, the units of each factor, that appear in bottleneck
clusters in Table II, also contain a large number of slow queries
(highlighted cells). Now the question is why the slow queries are
distributed like this. For each unit, we have #slow queries = #query
⇥ %slow query. As shown in Fig. 8 (a), (c), and (e), it is true that
as #image increases, and CP and NS become worse, the %slow
query rise up. In other words, bad factors can impact SRT more
significantly. However, the #slow queries is mainly determined by
#query. In Fig. 8, compare the left figures (#query) with the right ones
(#slow query), the distributions of slow queries are more similar with
that of queries, other than that of the %slow query. This is because
the distribution of queries changes sharply, yet the %slow query only
varies in relative small range. As a result, slow queries are mainly
distributed to the popular units (high #query) other than the poor unit
(high %slow query), and so do bottleneck clusters. The split points
in Fig. 8 have been introduced before in Section III-A. Note that as
CP and NS both have a long tails, their last units (i.e., units of
worse) receive a substantial number of slow queries, and also appear
in the bottleneck clusters.

In addition, this observation also demonstrate that even for a single
factor, where slow queries concentrate cannot be decide directly. It
is far more complicated when multiple factors overlap each other.

Observation 2: As for the bottleneck components in Table II,
overall, T

embed

, T
net

are the two dominated ones. They are the bot-
tleneck components for every bottleneck, except T

net

missing B14,
where the NS = better. This indicates that the major constraints for
current SRT are the extra time introduced by images, and the network
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Fig. 8. The distribution of queries, the percentage of slow queries, and slow
queries in each factor. The spilt points divide each factor into four units, i.e.,
[0, s1], (s1, s2], (s2, s3], and (s3,1), as described in Section III-A.

transmission time between users and search data centers. One should
pay more attention to troubleshoot their causes. In addition to the
slow access network of users, the search engine can be responsible
for these problem as well. Further debugging is described latter in the
case studies. On the other hand, T

srv

and T
dom

appear less frequently
in the bottleneck components. This implies that for some bottlenecks,
they are not critical for the slow SRT.

We also calculate EP of the four components for all the slow
query, and their CDF is illustrated in Fig. 9. Focusing on the 80%

level, we can get that EP (T
embed

) = 83%, EP (T
net

) = 46%,
EP (T

srv

) = 23%, and EP (T
dom

) = 14%. These results, once
again, prove that T

embed

and T
net

are the most important reasons
for slow SRT. Additionally, an interesting phenomenon is that despite
that T

dom

has the least EP in Fig. 9, T
dom

appears in 4 bottlenecks
(B1, B6, B7, and B8). Whereas, T

srv

only shows up in 2 bottlenecks
( B12 and B14). The reason is that DOM load can be seriously
affected by the factors of ad (B1 and B7), worse CP (B6), and
browsers of U1 (B8), which turns out to be a set of old-fashion
browsers. On the other side, server process is basically independent



of all these factors. Therefore, those queries with high EP (T
srv

) are
evenly distributed among different clusters, which makes EP (T

srv

)

small in each cluster.
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Fig. 9. CDF of explanatory power of different components.

B. Case Study for Debugging Bottlenecks

By leveraging the bottlenecks in Table II, the operators from
the search engine further debug along three directions. They finally
identify some causes and propose corresponding solutions.

Case 1 (B1-B5): These bottlenecks shows that a plenty of slow
queries originate from NS = worse. Through further investigating,
the operators find out that other than the users’ slow access network,
the provider’s DNS is to blame as well. The DNS is responsible for
directing each query to a close data center. However, the DNS policy
is not always optimal. The main reason is that the DNS policy updates
every two weeks, so that the DNS lacks the ability of choosing best
path in the face of realtime events, e.g., ISP network congestions and
DDoS attack. To prove this, operators leverage another measurement
by a client software of the search provider. The software is used by
over 12,000,000 users every day. These users are widely distributed
and also use the provider’s search engine. Every client downloads
a 20KB image from a random search data center every hour. The
data center is accessed via IP directly instead of following the DNS
direction. As the image costs negligible time of the data center to send
out, the download time can be deemed as network transmission time.
Operators use this data to generate a speed map of all the search
data centers every minute for every province. For a province, the
fastest path is called ideal path. They compare the speed of the ideal
path with the path suggested by the DNS, and find out that only in
19% of the cases, the path specified by DNS is the optimal. For other
cases, the ideal path can yield, on average, 26% faster download from
search data centers. So, they believe that a dynamic DNS based on
the speed map can, in principal, improve T

net

of worse NS greatly.
Case 2 (B10): Many embedded images can inflate SRT greatly. An

underlying reason is that the browser acquire these images only after
the result page is completely received from the server. This problem
seems unavoidable at first glance, but after noticing that U4 is a set
of advanced browsers, the operators come up with a solution, called
image pre-fetching, to solve the dilemma. The main idea is that after
a query arrived, the server immediately responds the image URL list
to the client, in the meanwhile it prepares the result page. By this
means, the images can be fetched in advance and loaded into the
page when it is arrived. This function is only supported well by U4.
An offline experiment shows that it can improve T

embed

by 20%.
Case 3 (B1, B7): These two bottlenecks suggest that ad can

increase T
dom

obviously. Though further debugging, the operators
find out that the page with ad usually includes some external
resources, which can block the DOM load. A comparison with ad
free pages shows that ad can delay T

dom

by 41% on average. A
possible solution is to eliminate the external dependency, and make
ad code self-contained.

Case 4 (B8): U1 is a set of old-fashion browsers. Besides the
common bottleneck components T

embed

and T
net

, U1 also suffers
from long T

dom

. It is due to both its low performance and the bad
compatibility, that hamper page code optimization. When compare
with other advanced browsers, U1 has 65% longer T

dom

. Actually,
facing such browsers, operators’ hands are tied. Although operators
have already prepared pages with low overhead for U1, but it seems
not enough. To avoid U1 impacting SRT, operators need to prepare
simpler pages with less overhead for U1.

Above experience proves the value of FOCUS. The bottlenecks
identified by FOCUS can help the operators quickly focus on the
right debugging directions, and arrive at the causes of slow SRT.

C. What-if Simulation

Furthermore, we quantify the benefit of using FOCUS via a
series of what-if simulations. We simulate the SRT improvements of
different solutions, including the ones in the above case studies, that
focus on the bottlenecks by FOCUS, and several ad hoc solutions.
Some of these ad hoc solutions are proposed by the operators before
using FOCUS. By comparing their improvements, we demonstrate
that FOCUS is an effective tool for realizing the SRT requirement.

1) Simulation Methodology: Given a solution, we first decide the
affected cluster after it is deployed. This is based on the constraints
and the characteristic of the solution. For example, the solution of
“self-contained ad” in Case 3 can only affect the queries that trigger
ad. Afterwards, in the affected cluster, the solution can improve a
particular SRT component according to the problem it intends to
solve. For example, “self-contained ad” is designed to eliminate the
blocking of DOM load introduced by ad, so it can improve T

dom

.
Last, we divide the overall queries into two parts, one suffers from
the problem that the solution aims at, the other do not. We measure
the difference of the components from the two parts, e.g., T

dom

of
the pages without ad is 41% shorter than that of the pages with
ad. In some cases, we also conduct offline control experiments to
measure the difference. We use this measurement as the assumed, or
estimated improvement of the solution. For example, according to the
measurement, we assume that “self-contained ad” can improve T

dom

by 41%. All the solutions are simulated on the same query records.
Table IV shows the simulation assumptions for each solution. The

first four solutions are designed based on the output of FOCUS,
and their details have been described in the prior four case studies.
In contrast, we also simulate another five ad hoc solutions without
considering the bottlenecks given by FOCUS. Some of these solutions
were actually being considered by the operators for deployment in
the studied search engine. Their descriptions are as follows.

• Reduce images. This solution intends to improve T
embed

by
simply limiting the number of embedded images of a page.
Specifically, #images = more is not allowed. As a result,
original queries with #images = more can be changed to
queries with #images = many. The measurement shows that
under #images = many, T

embed

is on average 27% shorter
than that under #images = more. Therefore, the assumed
improvement of the solution on T

embed

is 27%.
• Disable DAT. About 11% users experience an advanced page

effect, called “display as typing”, or DAT for short. It auto-
matically exhibits the result pages after each query has been
typed. This kind of frequent page loading can bring in high
transient computing overhead, and based on the measurement,
it can noticeably affect T

dom

for CP = worse, about 38%

longer. This solution is turning DAT off for CP = worse.
The measurement shows that, 5% queries from CP = worse



trigger DAT. So the affected cluster of disabling DAT is 5% of
CP = worse.

• Complete IP Dictionary. The DNS direct queries based on
an IP dictionary. Unfortunately this dictionary is incomplete.
The query, whose IP is not in the dictionary, is directed to
a default data center, which can be less than optimal. The
measurement proves that the average T

net

of queries hitting
the dictionary is 36% shorter than those missing the dictionary.
This solution aims at completing the dictionary. As a result, if
a query originally misses the dictionary, we reduce its T

net

by
36% to simulate the improvement of the complete dictionary.
According to the measurement, dictionary miss happens to 9%

of NS = worse and 4% of other NS. These are the affected
clusters for this solution.

• Improve CDN cache. The CDN is an effective infrastructure
to decrease T

embed

. Besides its close location to users, it can
further accelerate the download speed of images by caching
them. In fact, the cache hit rate is around 90%, and it turns
out that the cache miss can add 50% extra time for T

embed

.
So this solution tries to improve the CDN cache hit rate. We
assume the ideal situation of no cache miss, which means that
10% queries can yield a 50% reduction in T

embed

. These 10%

queries are randomly selected from the whole queries.
• Fast ad process. If a query triggers ad, the server needs a

little more time to prepare the content. This solution focuses
on decreasing the extra T

srv

for ad. Our measurement shows
that ad can increase T

srv

by 5% when comparing with ad free
queries. As such, the simulation of the solution is to reduce T

srv

by 5% for queries that trigger ad.
TABLE IV

THE SIMULATED SOLUTIONS AND THEIR ASSUMPTIONS.

Sources Solutions Affected Improved Assumed
Clusters SRT Comp Imprv %

FOCUS

Dynamic DNS NS=worse T

net

26%
Image pre-fetching browser=U4 T

embed

20%
Self-contained ad ad = yes T

dom

41%
Simple Page browser=U1 T

dom

65%

Ad hoc

Reduce images #image=more T

embed

27%
Disenable DAT 5% of CP=worse T

dom

38%

Complete IP Dict. 9% of NS=worse
T

net

36%4% of NS=other
Improve CDN cache 10% of (*) T

embed

50%
Fast ad process ad = yes T

srv

5%

To compare the effectiveness of different solutions, we adopt
a criterion, called the percentage of requirement completion. As
described earlier, another  = 4.6% slow queries need to be
accelerated to satisfy the requirement. In the simulation, solution i
can accelerate N

i

slow queries. Therefore, we define the percentage
of completion of solution i as N

i

/. It indicates how much the
requirement has been achieved by solution i, and can be used to
measure the effectiveness of solution i. We conduct two types of
simulations, one is simulating the individual deployment of each
solution, and the other is for combined solutions.

2) Results of Individual Solution: The individual result of each
solution is shown in Fig. 10. Overall, we see that the first four
solutions, designed according to FOCUS, yield a relative high
percentages of requirement completion, ranging from 25% to 36%.
On the other hand, the other five ad hoc solutions achieve much less,
only from 1% to 12%. The reasons are two folds:

The first one is whether the affected clusters are the bottleneck
clusters. In Table IV, we see that the affected clusters of the first
four solutions are the bottleneck clusters, which ensure at least

slow queries. Conversely, the affected clusters of the ad hoc solutions

are not. In particular, solutions of “Reduce images” is deployed on
#image = more, which is not a bottleneck cluster. As a result,
though “Reduce images” and “Image pre-fetching” are both designed
to improve T

embed

, and the former even has a higher improving
percentage, the results in Fig. 10 shows that “Reduce images” is
much less effective than “Image pre-fetching”. This demonstrates the
importance of bottleneck clusters for improving SRT. Additionally,
“Disable DAT”, “Complete IP Dict.”, and “Improve CDN cache”
only affect a small part of the bottleneck clusters, they thus cannot
accelerate too many slow queries either.
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Fig. 10. Individual simulation result of each solution. Each bar represents
the percentage of requirement completion of a solution.

The second reason is whether the improved components is the
bottleneck components. We see that “Fast ad process” is deployed
for ad = yes, which indeed covers bottleneck clusters. Whereas, it
tries to improve T

srv

, which is not in the bottleneck components.
This indicates that T

srv

only accounts for a small part of slow SRT.
The point is further verified by the real measurement. It shows that
the T

srv

with and without ad only differs by 5%, and improving
T
srv

is thus less worthy here. On the contrary, “Self-contained ad” is
deployed on the same cluster, but it targets at T

dom

, which turns out
to be a bottleneck component. As expected, the measurement shows a
high improving percentage for “Self-contained ad”, i.e., 41%. Finally,
“Self-contained ad” performs much better than “Fast ad process” in
the simulation.

3) Results of Combined Solutions: Although the solutions from
FOCUS present much more effectiveness than the ad hoc ones, the
results in Fig. 10 suggest that they cannot realize the requirement
individually. This is because even in the same bottleneck cluster, the
slow queries are caused by different SRT components. As such, a
solution, improving only one component, can hardly accelerate all
the slow queries in the bottleneck cluster.

In practice, many solutions are deployed simultaneously to improve
SRT. Therefore, we also simulate the effectiveness of combined
solutions. As the improvements of those ad hoc solutions are relative
small, we only simulate the combinations of solutions from FOCUS,
i.e., the first four solutions in Table IV. We evaluate the situation of all
the four solutions deployed simultaneously, as well as the situations of
any three of them working together. The results are shown in Fig. 11.
For the case of four solutions deployed together, the percentage of
requirement completion is 113%, implying that the requirement has
been better achieved. If three of them are deployed, the requirement
cannot be fully satisfied, but the results are still reasonably good,
ranging from 80% to 92%. When comparing this result to those ad
hoc solutions in Fig. 10, we find that requirement completion of
FOCUS based solutions is four times higher than those ad hoc ones.

In summary, without the outcome of FOCUS, one might come up
with any solutions. At first glance, they all seem like promising. Yet,
from the simulation results, we see that the solutions, focusing on
the bottlenecks, can work more effectively.
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Fig. 11. Simulation results of combined solutions ( from FOCUS). The bar
of ”All” is the result of all the four solutions combined together. The other
four bars represent the results of combining any three of the four solutions,
where the label of X axis indicates the omitted one.

V. RELATED WORK

Web acceleration. Many efforts have been put into the improve-
ment of web page load, which can also benefit SRT, such as TCP fast
open [16], TCP timeout mitigation [5], host name pre-resolving and
TCP pre-connecting [6], [7], CDN technologies [8], [9] and front-end
architecture [10], [11]. While these approaches can accelerate some
aspects of SRT, our work focus on revealing the bottlenecks of slow
SRT and help operators debug the problem. We argue this job is the
step before deploy any acceleration methods.

Web performance analysis. To help locate reasons of slow web
page, some researchers have built elaborate tools. For example, [17],
[18] leverage browser instrumenting techniques to demystify the page
objects loading dependency. [19] seeks the bottleneck of page load
time from the home gateway. Also, there are many other tools such
as online services [20], [21] and browser plugins [22], [23] that can
help providers debug the page load time. However, neither these
active measurements can deploy at a large scale, nor they can reveal
the experience of real users. As a result, they are not feasible for
debugging slow SRT from the perspective of search providers.

SRT and debugging. [2] conducts a research for understanding
SRT variations from the provider side view. They attempt to diagnose
the significant change of SRT, but their empirical decision logic is
not general. Many papers performs debugging in network [24], [25]
and ad system [15]. The solution of [15] inspirits our definition of
bottleneck components. Besides, machine learning is a general and
effective tool. Especially unsupervised learning (e.g., k-means and
DBSCAN [26]) can identify patterns of data automatically and seems
feasible for our problem. However, they involve several obstacles.
In addition to the drawback of specifying intrinsic parameters, the
clusters they identified do not have clear boundary along each
dimension and are usually represented by their centroid and deviation
level, thus difficult to interpret. Instead, we take advantage of another
approach, i.e., hierarchical heavy hitter(HHH) [12], which can lead
to more meaningful results.

VI. CONCLUSION

Search response time (SRT) is a very critical KPI for search
engines. Milliseconds increase in SRT can lead to millions of searches
lost. In order to improve SRT, debugging slow SRT is indispensable
as the first step. But so far, it has not been explored very much.
In this paper, we propose FOCUS, a systematic framework to
automatically identify bottlenecks of slow SRT. We collect diverse
impact factors and SRT components, and use HHH and explanatory
power to pinpoint the bottlenecks. With FOCUS narrowing down the
debugging space, operators can further investigate the root causes of
slow SRT in a more specific direction. We deploy FOCUS in one
of global top search engines. The bottlenecks provided by FOCUS

successfully help the operators locate four main causes of slow
SRT, which, without FOCUS, would have been the needles in a
haystack. Our what-if simulation also proves that, for the given SRT
requirement, the solutions focusing on those bottlenecks are much
more effective than ad hoc ones.

As far as we know, FOCUS is the first work towards systematically
debugging slow SRT. Since both the data collection and analysis
methodology of FOCUS are general, FOCUS can be easily applied
to other search engines as well.
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