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Abstract—Page Views (PVs) are very crucial for search engines due to
their close relationship to the revenue. When PVs change significantly,
operators must be informed so that they can diagnose and fix the problem
quickly, and prevent further loss. In reality, PVs can be counted in
many ways (e.g., PVs originated from different ISPs), and different PVs
are of different interest to operators (e.g., the PVs of a larger ISP
is more important). As a result, different PVs often require different
detection standards, or thresholds. However, attempts to tune a number of
thresholds have been hampered by the cost of the manual effort involved.

To address the above problem, we propose a practical framework,
called PTL (practical threshold learning). Operators only need to
provide a few simple labels about the detection results, then PTL will
automatically tune the thresholds for different PVs. Using 4-month PVs
from a global top search engine, our evaluation demonstrates that PTL
can improve the accuracy of detection dramatically. More importantly, it
introduces very little labeling overhead for operators. For example, when
detecting the PVs of 103 ISPs, PTL can reduce the overall false negative
rate from 96% to 9% using only 29 labels per week on average.

I. INTRODUCTION

Search engine has become one of the most used Internet applica-
tions. According to the data from ComScore [1], each of the global
top search engines, such as Google, Baidu, Yahoo, Yandex, and Bing,
has billions of searches monthly. The display ad and click ad that
immediately follow the search results are the major revenue sources
of search engines. It is thus critical for search engines to detect in
real time any unexpected significant change in the number of searches
served, or called Page Views (PVs), because these symptoms are to
be potentially caused by anomalies, such as DDoS attach, data center
failure, and service upgrade bugs. Those significant changes need to
be timely reported so that operators can troubleshoot the possible
causes, and fix them to prevent unnecessary potential revenue loss.

Our interview with the operators from one of the largest search
engines shows that, both short-time dramatic PV changes and long-
time gradual PV changes should be detected. In other words, the
operators have potential thresholds of two aspects, i.e., change sever-
ity and duration, for deciding whether the PV change significantly
or not. These thresholds are also necessary for different change
detection approaches [2], [3], [4], [5], [6], [7], [8]. However, the
operators cannot easily quantify the thresholds in advance, as [9]
can also attest. On the other hand, the default thresholds, assumed
in literatures, often require onerous manually tuning in practice to
achieve a reasonable detection accuracy. We argue that the threshold
tuning is neither convenient nor scalable for the PV change detection
due to the following challenges:

First, for the purposes such as fine-grained monitoring and revenue
debugging [10], PVs are always counted in many ways (e.g., the
PVs from different ISPs, data centers, devices or advertisers). This
requirement leads to a lot of different PVs for detection. Second,
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operators often have various detection standards for different PVs,
mostly due to their different importance. For instance, a large ISP
is deemed more crucial as it contributes a majority of PVs, thus
deserving more careful detection. On the contrary, operators do not
want to receive frequent alarms from a small ISP, unless its PV
change is very serious. Therefore, the operators have to configure a
number of thresholds to obtain a detection system as they expected.
Third, some change detection approaches adopt complex techniques
to measure the change [2], [3], [4], [5], [7], [6], and it is not
intuitive for the operators to translate their detection standards into
the corresponding thresholds. Last, the concepts of the significant
PV changes in operators’ mind could drift over time [8], so that the
thresholds are often not set once and for all.

As a consequence of the above unaddressed challenges, the PV
change detection in practice is still ad hoc and needs a lot of
manual efforts. The operators we interviewed suggest that this kind
of manually tuning is both inefficient and time-consuming. In this
paper, we propose a novel thresholds learning framework, called
PTL, standing for Practical Threshold Learning, to address the above
challenges. Our contributions are as follows:

• PTL provides a practical way of automatically tuning the
thresholds of an anomaly or change detectors. Operators just
need to label the detection results, e.g., whether the reported
anomalies are true or there are anomalies missed. Given these
operators’ simple labels, PTL can tune the detection thresholds
of a detection approach. More importantly, to be more practical,
PTL does not require strictly precise labels from operators. For
example, PTL tolerates incomplete and inaccurate labels.

• We propose a sharing mechanism to learn a number of thresh-
olds for different ISPs more effectively. First, we identify the
similarities of different ISPs from operators’ labels. Then, PTL
shares the learning outcomes of a single label on a certain ISP
among the similar ISPs. Through this way, the number of labels
required can be reduced obviously, and also the learning can be
more effective.

• We use 4-month real PV data collected from one of the global
top search engines to evaluate PTL. The results demonstrate that
PTL can improve the detection accuracy greatly regardless what
initial thresholds are set. Moreover, PTL introduces very little
labeling overhead for operators. For example, PTL can reduce
the false negative rate from 96% to 9% using only 29 labels per
week on average.

The remainder of the paper is organized as follows. Section II
presents the background of detecting significant PV changes and
summarizes the goals. Section III describes the design details of PTL.
Section IV evaluates PTL with real PV data. Section V reviews the
related work, and Section VI concludes the paper.978-1-4799-7575-4/14/$31.00 c�2015 IEEE



II. BACKGROUND AND PROBLEM

In this section, we first introduce some basic concepts of significant
PV changes. Then we motivate our design by modeling the existing
change detection approaches and characterizing the threshold prob-
lem. Last, we give our goals and observations for solution intuitions.

A. PV

A Page View (PV) is defined as a successful response to a user’s
search request [11]. PVs are one of the most biggest concerns of
search engines as they are very closely related to the ad revenue. In
fact, there are many ways to count PVs, such as the PVs of different
ISPs, devices and advertisers. In this paper, we focus on the ISP
PVs. Specifically, the PVs of a ISP refer to the PVs whose source
IP addresses are originated from that ISP. In the search engine we
studied, there are 103 different ISPs in total.

B. Significant PV Change

To figure out the significant PV changes concerned by operators,
Fig. 1 shows several real examples collected from the search engine
we studied. Three main observations are as follows:
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Fig. 1. Examples of significant PV changes concerned by operators. In
compliance with confidentiality constraints, the PVs are all normalized in
each plot. The shaded areas indicate the significant changes.
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Fig. 2. Average PVs per day of the 103 ISPs. The PVs are normalized by
the maximum value observed in the plot. The Y axis is in log scale.

• ISP PVs more detailed than overall PVs. This is because
the overall PVs are too coarse to capture details. Also, they
cannot help to diagnose the problem, e.g., which ISP should be
blamed for the PV change. As shown in Fig. 1 (a) and (b), while
the overall PVs seem relatively smooth, the PVs of ISP A drop
obviously in the same day due to a failure of the access network
of ISP A. The problem lasts for 46 minutes, yet we see that it
is completely invisible in the overall PVs.

• Two metrics: the change severity and the duration. Fig. 1
(c) shows a dramatic PV change of ISP B at about 11:00.
The operators expect that this event can be detected at its very
beginning. On the other hand, Fig. 1 (d) shows a gradual PV
change of ISP B as well. The dashed line denotes its PVs of
yesterday that is used as a baseline here. We observe that the PVs
of ISP B start dropping slowly at 8:00 when compared to the
baseline. However, the alarm should not be raised immediately.
This is because the changes of such moderate severity are very
common but rarely turn into real problems like Fig. 1 (d).
From these two examples, we found that the operators take the
change severity and the duration into account simultaneously
to determine significant PV changes. Furthermore, these two
metrics are interdependent. For example, in Fig. 1 (c), when
the change severity is high, the threshold for the duration would
be short.

• Different detection standards for different ISPs. Fig. 2
illustrates the average PVs per day of the 103 ISPs, which are
called ISP (PV) scales in the rest of paper. We see that the ISP
scales can differ greatly from each other. As such, those ISPs are
considered differently by the operators. For example, in Fig. 1
(e) and (f), while there happens a PV change of similar shape
for both ISP C and ISP D, the operators are only interested in
the case of ISP D. This is because ISP D is of a large scale but
ISP C is not (see Fig. 1 (f), where the PVs of ISP C in Fig. 1
(e) is plotted with the PVs of ISP D together under the same
Y axis). Therefore, the PV change of ISP C would not affect
enough users to trigger the operators’ further investigation. Note
that, besides the decreases, the abnormal increases of PVs can
also indicate problems such as DDoS attacks and flash crowds,
thus they should also be detected.

The above examples clearly demonstrate the complicated and
flexible demands for PV change detection. To realize such detection,
in addition to change detection approaches, a number of thresholds of
the change severity and the duration for different ISPs are inevitable.

C. Thresholds Tuning: A Missing Puzzle of Existing Change Detec-
tion Approaches

Recently, many change detection approaches have been proposed
and employed in real systems. Table I shows four examples of
approaches and their high level ideas. Typically, the process of a
change detection approach can be divided into several steps as shown
in Fig. 3, which is similar to the detection models given by [9], [12].

• Step 1: When the data arrive, the change detection approach first
quantify the change of each data point using a certain technique.
For example, in Table I, [4] adopts a forecast based method
called Holt-Winters and [5] uses a method of wavelet analysis.
The change measures depend on both the technique used and
its internal parameters, e.g., the three weighted parameters ↵, β,
and γ in Holt-Winters [4].

• Step 2: The change measures are further normalized, such as
using the mean and the standard deviation of historical data [3],
[2].

• Step 3: Single point change detection is then applied on each
normalized change measure. Specifically, if the measure exceeds
the severity threshold, it is identified as a significant change
point.

• Step 4: To avoid triggering alarms more than necessary, those
significant change points do not individually trigger alarms, but
are filtered by the duration detection. That is, if the continuous
significant change points exceed the duration thresholds, a



TABLE I
A SUMMARY OF FOUR CHANGE DETECTION APPROACHES. THE DEFAULT THRESHOLDS ARE ASSUMED IN THE RELATED LITERATURES.

Detection approaches Change measures Normalization Thresholds
Historical average [3] First, divide the data into hourly intervals, expecting that

each interval avoids capturing the time-of-day effect. In this
way, each data value V itself is directly used to measure
the change of that point.

Based on the Gaussian distribution,
use C = |V − µ|/ to normalize
change measures, where µ is the
mean and  is the standard devia-
tion of each interval.

C > 2

Time series decomposition [2] Decompose every data value V into three components: the
trend, the season and the noise. Measure the changes using
noise N .

Also use C = |N − µ|/ to
normalize the change measure.

C > 1.96

Holt-Winters [4] Predict the data value of the t-th slot, P
t

, using exponential
smoothing processes on three components: the baseline, the
linear trend, and the season. Measure the change with the
residual R

t

= |P
t

−V
t

|, where V
t

is the real value of the
t-th slot.

Maintain historical residuals HR
t

via exponential smoothing and nor-
malize the change measures with
C = D

t

/HR
t−s

, where s is the
season length.

C > 2

Wavelet analysis [5] Deem the data as signals and decompose them into
low, mid, and high frequency parts based on wavelet
analysis.The variances of the high and the mid frequency,
H and M , are used to measure the changes.

Use a weighted sum of H and M
to get the normalized score C.

C > 1.7

significant change is identified and an alarm is triggered.
Here, the severity thresholds and the duration thresholds are
collectively called detection thresholds.

In the above process, the detection thresholds play a very important
role in identifying or defining the significant changes, thus affecting
the detection accuracy greatly. However, how to adjust those thresh-
olds conveniently and effectively has not been explored very much.
A very common solution is to simply assume some default detection
thresholds as shown in Table I. But these empirical thresholds often
cannot meet the detection requirement [2], [13], and thus requiring a
lot of manual tuning. To the best of our knowledge, [14] provides an
automatic way to tune the thresholds according to labeled data. Yet
their method only focuses on single point detection. We will show
later in Section III that when combined with the duration thresholds
together, the problem of threshold tuning becomes more complicated.
Moreover, we are not aware of any prior work that intends to reduce
the labeling overhead when there are a number of thresholds (e.g.,
for different ISPs) to learn.
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Fig. 3. The overview of change detection approaches and the position of
PTL.

In addition to the detection thresholds, the internal parameters
can also affect the detection. Some previous works [15], [16], [17]
have proposed several automatic ways to choose the proper internal
parameters, e.g., multi-pass grid search [16]. In this paper, we focus
on the detection thresholds rather than the internal parameters. Our
focus has not been studied deeply in real systems. Those internal
parameters search methods are complementary to our work.

D. Design Goals

To resolve the above problems, we propose a framework, called
PTL. The goals of PTL are:

• Learning the detection thresholds from operators’ labels on the
detection results, rather than letting operators manually tune the
thresholds directly. This is based on the fact that it is more
straightforward for operators to visually inspect the PVs and
label the significant changes they confirm [2], [6], [8], [5], [18],
[19], [20].

• Being robust to incomplete and inaccurate labels, which always
exist in practice.

• Reducing the labeling overhead, i.e., the number of labels
needed, when learning many thresholds of different ISPs.

The overview of PTL is shown in Fig. 3. It takes as input the
operators’ labels about the detection results, and then learns the
severity thresholds and the duration thresholds accordingly.

E. Key Observations and Solution Intuitions

We have three key observations of significant PV change detection,
and we take advantage of these observations to guide the design of
PTL.

OBSERVATION 1: The change significance monotonically in-
creases with the change severity and the duration. Give two
intervals of PVs m and n, if the change of m is more severe than n

(e.g., m decreases by 50% and n decreases by 10%), and the change
duration of m is longer than that of n, then m is considered more
significant by operators. In other words, if n should be detected, then
m should be detected too.

OBSERVATION 2: The labeling error exists, but can be relative
small. Considering the 46-minute significant PV change in Fig. 1
(b), when let operators label that window, they can seldom label the
boundaries exactly, but often provide a rough and wider window.
However, this extending error can be relatively small. For example,
it is quite easy for the operators to label that 46-minute window via
a 60-minute window (about 30% extension). By taking advantage
of this, we can learn operators’ detection standards from each false
negative label conservatively (Section III-D2).

OBSERVATION 3: Same detection standards for the ISPs of
similar PV scales. Through months of field work with the operators,
we found that despite the operators’ bias on the ISP scales when they
determine significant changes, they always have the same detection
standard for the ISPs of similar PV scales. The only problem is that
they cannot describe this intuition (i.e., which scales are similar)
precisely. This observation motivates our design of sharing learning
outcomes in Section III-E, which can reduce the labeling overhead
and improve the effectiveness of learning.



III. PTL DESIGN

In this section, we first formalize several key concepts in the PV
change detection, and give the assumptions and requirements of the
operators’ labels. Then we describe how PTL learns the detection
thresholds from labels and shares the learning outcomes among
similar ISPs.

A. PVs and Significant PV Changes

PVs can be represented by time series data {p1, p2, ..., pt}, where t

is the slot index and p

t

is the sum of PVs in the t-th time slot1. Since
the change severity and the duration are considered when determining
significant PV changes, which means the changes should continue for
a period of time before triggering alarms, we first give the definition
of a window, then define significant changes based on it.

DEFINITION 1: Window and window length. Let t0 and t1 be
two time slot indexes, where t0  t1, then a window w refers to
the time slots between t0 and t1 (including t0 and t1), denoted as
w = t0 ⇠ t1. The length (or duration) of w is denoted as l

w

and
l

w

= t1 − t0 +1. We say a time slot index i 2 w if i ≥ t0 ^ i  t1.
DEFINITION 2: Change severity of a window. Given a window

w, let p
i

be the PVs of the i-th slot, where i 2 w. A change detection
approach would measure the change severity of p

i

, which is denoted
as s

i

and s

i

≥ 0. The larger s
i

is, the more severe p

i

changes. Then
the change severity of the window w is denoted as s

w

, and s

w

=
min{s

i

| i 2 w}. Such definition of s
w

is to satisfy the requirement
of continuous change detection. In particularly, let sThld be the
severity threshold, then s

w

> sThld , 8s
i

, i 2 w : s
i

> sThld,
which indicates that all the slots in w change significantly.

DEFINITION 3: Detection threshold and significant change. We
define a detection threshold in either of a closed form or a open
form. This is because the labels of false positives and false negatives
have different implications of the threshold boundary (details will
be discussed later in Section III-D). Let lThld be the duration
threshold, then the closed form detection threshold is denoted as ⌧ =
[lThld, sThld]. It means that a window w is called a significant
change if l

w

≥ lThld ^ s

w

≥ sThld; the open form detection
threshold is denoted as ⌧ = (lThld, sThld). Similarly, it indicates
that a window w is called a significant change if l

w

> lThld^s

w

>

sThld. For convenience of later discussions, we use F(w, ⌧) = 1
to represent that w is identified as a significant change under the
detection threshold ⌧ ; on the other hand, F(w, ⌧) = 0 means that w
is a normal change.

DEFINITION 4: Detection threshold set. Since operators may
have different duration thresholds for different change severities, for
each ISP, we use a detection threshold set T = {⌧}, which contains
multiple individual detection thresholds ⌧ , to capture the operators’
detection demands. Then we define F(w, T ) = 1 () 9⌧ 2
T ,F(w, ⌧) = 1; otherwise, F(w, T ) = 0. That is, w is a significant
change under the detection threshold set T if w violates any detection
threshold ⌧ in T .

B. Monotonic Increase Property

According to the OBSERVATION 1, for a certain ISP, F(w, T )
monotonically increases with l

w

and s

w

. An illustrative example is
shown in Fig. 4. Suppose two windows m and n, the duration and
the change severity of n are both no less than those of m. Naturally
we deem that F(n, T ) ≥ F(m, T ). In particular, as shown in Fig. 4
(a), if m is identified as a significant change, so is n. Generally, the

1We use 1-minute slot in this paper, which is a tradeoff between the
temporal granularity and the computation overhead.

top-right shaded area of m is the significant change area according
to m, and any window falls into this area should be identified as a
significant change. On the other hand, as shown in Fig. 4 (b), if n

is a normal change, then m should be a normal change as well. The
bottom-left shaded area of n is the normal change area according to
n, and any window fall into this area should be identified as a normal
change. Formally, we have: l

n

≥ l

m

^ s

n

≥ s

m

) F(n, T ) ≥
F(m, T ) and l

n

 l

m

^ s

n

 s

m

) F(n, T )  F(m, T ).

(a)

Change 
severity

Window
length

m is identified as a significant change

m

(b)

Change 
severity

Window
length

nsn

sm

sn

sm m

n

lm ln lm ln

significant change area 
according to m

normal change area 
according to n

n is identified as a normal change

Fig. 4. F(w, T ) monotonically increases with the change severity and the
duration.

C. Definitions, Assumptions and Implications of Labels

By setting an initial threshold set T without any manual tuning,
PTL begins to detect significant PV changes. PTL requires operators
to label what they think about the alarms, so that PTL can learn the
threshold set from the labels.

In actual use, operators have two opportunities to check the
detection results of PTL, one is when they receive alarms raised by
PTL, and they would verify whether the alarms are false positives;
the other is when they conduct some visual inspections upon PV
or are warned by a third party (e.g., user complainants or other
existing monitors), they would check whether PTL has missed those
alarms, called false negatives. Therefore, we consider only two types
of labels: false positive labels and false negative labels. We do not
require, assume or use any true positive or true negative labels.
Furthermore, we do not assume that all the false positives and false
negatives would be labeled by operators. We now introduce a few
definitions and realistic assumptions about operators’ labels.

DEFINITION 5: Label and label period. A label is denoted as
L(P ) = {FP,FN}, where P is the period where operators disagree
with the detection result of PTL, FP means false positive, i.e., the
alarms raised by PTL is false, and FN means false negative, i.e., there
are significant changes missed by PTL. The length of P is denoted
as l

P

.
For L(P ) = FN, the period P is specified by operators manually,

which can contain multiple continuous significant changes. For
example, if operators label a 20-minute period as FN, every 5-minute
window in the period can still be considered significant if it appears
individually. For L(P ) = FP, the period P is the alarm period given
by PTL. The continuous significant changes detected by PTL will be
merged as one alarm period. Such merging is apparently a design
trade off. On one hand, merging can greatly reduce the overhead of
labeling and increase the operators’ willingness to label. On the other
hand, labeling the merged windows instead of multiple individual
ones gives us coarse information to learn from, which will become
clear later. We choose to be conservative with the hope that we can
continuously get useful labels from operators, although in a slower
way.

DEFINITION 6: Label requirements and implications. Suppose
that TE is the underlying threshold set that most satisfies the detection



requirements of operators, i.e., the significant changes detected by
TE are as desired. Then A false positive label L(P ) = FP indicates
that 8w ⇢ P : F(w, TE) = 0, and we call {w} the false positive

windows. So operators should label an alarm as false positive only
if they think there is no significant changes (true positives) in the
alarm period P . A false negative label L(P ) = FN indicates that
9w ⇢ P : F(w, TE) = 1, and we call w the false negative window.
When operators label a period as false negative, they should make
sure there exists at least one window of significant change (false
negative) in P . Also, a labeled false negative period should not have
intersections with any alarm period already detected by PTL.

ASSUMPTION 1: False negative labels. According to the OBSER-
VATION 2, we assume that when operators provide a false negative
label L(P ) = FN, the false negative slots are more than the true
negative slots within P , or the proportion of false negative slots
is more than 50%. It is quite easy for operators to label in such
precision. We do not assume 100% precision because it would
unrealistically require operators to exactly label the beginning and
ending slots each time, and this sensitivity would hurt operators’
willingness to label.

ASSUMPTION 2: Maximum delay of alarms. Obviously, given a
detection threshold ⌧ = [lThld, sThld] or ⌧ = (lThld, sThld),
an alarm must wait for at least lThld or lThld + 1 slots before
raised. In order to detect with less delay, we assume that lThld

max

(the maximum of lThld) should be no more than 30 minutes (slots).

D. Learning from Labels: Toy Examples

Now, we show how PTL learns the threshold set T via two toy
examples. The basic idea is that, for each label L(P ), PTL adjusts T
so that T could detect P as suggested by L(P ), e.g., if L(P ) = FP,
the updated T should also identify P as a normal change instead of a
significant change. As more labels are learned in this way, T would
converge to TE and detect as expected.

1) Learning from a false positive label: First, Fig. 5(a) shows the
change severities of five slots. With the initial threshold set T =
{[1, 2]}, those slots are detected as significant changes and form a
continuous alarm period 1 ⇠ 5. The initial threshold set T = {[1, 2]}
is represented by the double circle in Fig. 5(b), and it results in
the significant change area represented by those closed boundaries.
Notice that, since the window length is measured by discrete values,
i.e., the number of slots, the significant change area is also discrete
along the dimension of the window length.

Then the alarm in Fig. 5(a) is labeled as a false positive L(P ) =
FP, where P = 1 ⇠ 5. According to the implication of the
false positive label, 8w ⇢ P : F(w, TE) = 0. Thus we need to
adjust T so that F(w, T ) = 0. The adjustment of T is called the
learning outcome, which will be shared among similar ISPs later in
Section III-E.

We obtain false positive windows {w} like this: first, for l
w

= 1,
we can get five windows by sliding 1-slot window across P . The
severities of these five windows have three distinct values i.e., 2, 3,
4. These three kinds of windows are illustrated by the three squares
at window length = 1 in Fig. 5(c). Similarly, for l

w

= 2, 3, 4, 5, we
can obtain another five distinct combinations of change severities and
window lengths, illustrated by other five squares in Fig. 5(c).

The false positive label implies that all those false positive
windows should be identified as normal changes. Then based on
the monotonic increase property (Section III-B), all the bottom-
left areas of those false positive windows are the normal change
areas, and should be eliminated from the original significant change
area. As a result, we can get a new significant change area as

shown in Fig. 5(d), which can be described by a new threshold set
T 0 = {(1, 4), (2, 3), (3, 2), [6, 2]}. T 0 can thus detect as the false
positive label indicates. Note that T 0 does not have to contain all the
boundary points of the significant change area, e.g., ⌧ = (4, 2) and
⌧ = (5, 2), since ⌧ = (3, 2) can detect what can they detect.

Additionally, in order to satisfy the ASSUMPTION 2, i.e.,
lThld

max

 30 minutes, if l

P

> 30 minutes, we will only obtain
the positive windows w whose l

w

 30 minutes. This also avoids
learning from an excessive number of positive windows in the case
of very a long l

P

.
2) Learning from a false negative label: The five slots in Fig. 5(e)

are labeled as false negatives, denoted as L(P ) = FN, where P =
1 ⇠ 5. The initial threshold set T = {[2, 4]} and its corresponding
significant change area is shown in Fig. 5(f). The false negative label
indicates that 9w ⇢ P : F(w, TE) = 1. A naive method to obtain
the false negative window w is to deem the entire labeled period
as w. However, as aforementioned, operators can also involve true
negatives in the period. Therefore, learning from the labeled period
directly can lead to an incorrect detection threshold set. For example,
when operators label 1 ⇠ 5, they could consider only the period of
2 ⇠ 4 as false negatives, implying that TE = {[3, 3]}. However, if
we obtain the false negative window w from 1 ⇠ 5, i.e., l

w

= 5 and
s

w

= 2, the learned threshold set would be T = {[5, 2]}, which is
wrong as as it can detect significant changes that TE = {[3, 3]} does
not agree with.

To resolve the above problem, we conservatively learn from each
false negative label based on the ASSUMPTION 1. Given a label
L(P ) = FN, we first calculate the median of the change severities
of all the slots in P , denoted as s

median

. Then we estimate the
false negative window w as l

w

= l

P

and s

w

= s

median

. The
reason of using the median is that we assume that at least 50%
slots in P are false negatives. Since the change severities of false
negative slots are larger than those of true negative ones, s

median

could always be the change severity of a false negative slot. In the
example of Fig. 5(e), we can obtain a false negative window w of
l

w

= 5 and s

w

= s

median

= 3, which is represented by the cross in
Fig. 5(g). The false negative label indicates that w should be identified
as a significant change. Again, according to the monotonic increase
property, the top-right area of w is the significant change area, and
should be added to the original one. The updated significant change
area is shown in Fig. 5(h), and can be captured by the new threshold
set T 0 = {[2, 4], [5, 3]}. Considering the ASSUMPTION 2, if a false
negative label is longer than 30 minutes, we estimate the length of
the false negative window using 30 minutes to avoid producing a
threshold with lThld

max

> 30 minutes.

E. Sharing Learning Outcomes

So far, we have introduced how PTL learns the detection threshold
set for one ISP from its labels. Nevertheless, labeling many ISPs can
cost a lot of time for operators. We resolve this problem through
sharing the learning outcome of each label among the ISPs of similar
PV scales. This solution is based on the OBSERVATION 3. Here, the
learning outcome refers to the adjustment of the threshold set of the
labeled ISP, and sharing means applying the adjustment also to the
threshold sets used for other ISPs that are not labeled directly by
operators, but have similar PV scales with the ISP labeled. However,
except that the ISP scales matters, we do not know exactly which
ISPs are treated as similar. We design PTL to learn the similarities
of ISPs from the operators’ labels as well.

The intuition is that every label on an ISP can reveal the operators’
detection preferences about the ISP. For instance, if an ISP receives
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several false positive labels, learning from which, the threshold set of
the ISP becomes larger (i.e., the normal change area gets larger), then
the ISP is supposed to be concerned less crucial by the operators as
they would like to receive only very serious PV changes of the ISP.
Based on this intuition, our key idea is to find similar ISPs according
to the sizes of their normal change area.

Fig. 6 shows the overview of the method. The first step is to group
similar ISPs. As shown in Fig. 6(a), the labels of an ISP are used
to learn its local threshold set as described in Section III-D. Since
the local threshold set is learned completely from the direct labels of
the ISP, it can reflect the operators’ detection preference regarding
the ISP. We define the size of the normal change area derived from
the local threshold set as nSize. In the calculation of nSize, there
could be some window lengths corresponding to unlimited change
severity. For example, the window length of 1 in Fig. 5(f). It means no

matter how severe PVs change in one slot, it should not be reported.
To calculate nSize in such case, we use a relatively large change
severity, i.e., 10, instead of the unlimited one, since in our data, there
are very few slots whose change severities can exceed 10.

Algorithm 1 GROUP (ispList, ✓)

1: µ is the mean and σ is the standard deviation.
2: for isp

i

in ispList do
3: CALCULATE nSize and sRank of isp

i

4: while ispList is not empty do
5: SORT ispList by nSize in ascending order
6: for isp

i

in ispList (i starts from 1) do
7: CALCULATE the similarity between isp

i

and isp0:
8: sim

i

= |(isp
i

.nSize − isp0.nSize) ⇥ (isp
i

.sRank −
isp0.sRank)|

9: CALCULATE µ and σ of {sim1, sim2, ..., simi

}
10: if |sim

i

− µ| > ✓ · σ then
11: // Splitting a group
12: RANK = max{isp

k

.sRank|k < i}
13: OUTPUT {isp|isp.sRank  RANK} as a group
14: delete the group from ispList

15: break

We group similar ISPs as described in Algorithm 1. sRank denotes
the PV scale ranking of an ISP. First, sRank and nSize of each
ISP are calculated. We sort ISPs by their nSize in ascending order.
The ISP with minimum nSize (i.e., isp0 in ispList) is under the
most strict (smallest) detection threshold set, and is categorized into
the first ISP group. The ISPs belonging to the same group should
have similar nSize and sRank, so we calculate the differences of
nSize and sRank between isp0 and isp

i

. As nSize and sRank

are not measured by the same unit, we use the absolute product of
their differences to measure how similar isp0 and isp

i

are. When
the similarity of isp

i

deviates a lot, a group is split. The similarity
deviation is quantified by the mean and the standard deviation, and
if the similarity of isp

i

deviates the mean by ✓⇥ the standard
deviation, we deem isp

i

does not belong to the group. We assume



the normal distribution and use ✓ = 2 to achieve 95% confidence
in statistics [21]. After grouping by nSize, the ISP, whose sRank

is higher than that of at least one ISP already in the group, is also
categorized into the group. This is because though some ISPs are of
similar scales with isp0, they might not be labeled by operators, and
their nSize is not updated. As a result, they could be excluded from
the group by mistake if only considering nSize. We group the ISPs
once a week (a typical season of the PVs).

Fig. 6(b) shows that, in the same group, the learning outcomes are
applied to every ISPs, generating the detection threshold set for the
actual change detection. In this way, one label on a single ISP can
have effect on many ISPs, thus improving the learning effectiveness
and reducing the labels needed.

IV. EVALUATION

In this section, we evaluate PTL through the simulation with 4-
month PV data collected from a top search engine. The PVs are
originated from 103 ISPs.

A. Methodology

1) Change Detection approach: We use a popular change detec-
tion approach to work with PTL, i.e., time series decomposition [2],
which could deal with both the long-term trend and the seasonality of
PVs. The high level idea is described in Table I. It first breaks down
the PVs of each slot into three components: the long-term trend, the
seasonality and the noise. Since the noise does not contain the normal
changes caused by the trend and the seasonality, it is used for the
change detection. Besides, to avoid significant changes contaminating
the mean and the standard deviation, those data are excluded when
calculating the mean and the standard deviation. More details can be
found in [2].

2) Results Validation: Evaluating the accuracy of PTL requires
the ground truth, a complete set of significant changes that should be
detected. The ground truth set is also used to simulate the operators’
labels when the detection results are wrong. One way to obtain
the ground truth is using the real world tickets that record the PV
significant changes verified by operators manually. The advantage of
using the tickets is that they are the real world events and interested
by the operators. However, the tickets are often rare in reality. For
example, the search engine we studied has only maintained the tickets
for the overall PVs rather than the ISP PVs in their database. Also,
the tickets can also introduce errors and disagreement [6], [8]. Thus,
we could not draw strong conclusions about the performance of PTL
based on the tickets.

A second way, commonly used in prior works [22], [6], [2] to
bypass the above issue, is pair-wise validation. The core idea is
to compare the detection results with another approach or different
detection configurations. The advantage of this way is that we can
obtain the ground truth automatically for all the ISPs. Obviously, the
drawback is that the significant changes in such ground truth set have
not been verified by the operators, which will take a huge amount of
efforts to investigate.

In this paper, we adopt both of the above two ways, so that we
can obtain the benefit of each method. There are 24 history tickets
of the overall PV for the 4-month data we used. As for the pair-wise
validation, because different detection approaches can differ in the
change patterns they are designed to detect (e.g., identifying the edge
or the duration of changes), their results cannot be compared fairly.
To avoid those influences and clearly show the threshold learning
performance, we use the detection results of the same detection
approach, i.e., the time series decomposition, but under different

threshold settings as the ground truth. Another advantage of this
choice is that we can compare the thresholds directly since the two
detection approaches are the same and their thresholds are of the
same meaning. Finally, the thresholds used to obtain the ground
truth are set as follows: we divide the 103 ISPs into three groups
by their scales, which are 18 large ISPs, 59 medium ISPs, and
26 small ISPs. The threshold sets for each group are T

large

=
{[2, 7.84], [5, 5.88], [10, 3.92]}, T

medium

= {[5, 7.84], [10, 5.88]},
and T

small

= {[10, 7.84]}. Here, the principle is that, in the same
group, the larger the severity thresholds are, the shorter the duration
thresholds should be. The severity thresholds are 4⇥, 3⇥, 2⇥ of 1.96
used in [2].

The above validation methods are probably not entirely true in
reality, but give a good approximation and handles to evaluate our
system. In the simulation, we let PTL start with an arbitrary threshold
set for all the ISPs, which can be quite different from the ones used
to generate the ground truth, and see how PTL can learn them from
the “operators’ labels”.

3) Performance metrics: To quantify the performance of PTL,
we adopt four metrics: (a) the false positive rate (FPR), referring
to the percentage of false alarms in all alarms raised by PTL; (b)
the false negative rate (FNR), that is the percentage of significant
changes missed by PTL; (c) the number of the checks of the detection
results and the number of labels; (d) the threshold convergence,
which compares the threshold sets learned by PTL with those used to
generate the ground truth. Since each threshold set contains multiple
combinations of the severity threshold and the duration threshold,
they cannot be quantitatively compared directly. We measure the
difference of two threshold sets of one ISP using the difference
between the nSize derived from them, and averaging the differences
of the 103 ISPs.

4) Labeling Conditions: To be more practical, we will evaluate
PTL under different labeling conditions. There are four aspects of
the simulation of labeling:

• Checking possibility (C%) represents that (a) when PTL raises
an alarm, operators have the chance of C% to check it; (b) when
there are PV significant changes in the ground truth, operators
have the chance of C% to verify whether PTL has raised alarms.
In both of the cases, if the detection result are not as expected,
operators will provide a label.

• Maximum of checks per day (C
max

) indicates that operators
would check PTL for C

max

times at most per day.
• Mislabeling possibility (M%) means that when operators check

PTL, they have the chance of M% to label by mistake, e.g.,
the alarm is correct but they label it as a false positive by
misoperation. Since operators would not check PTL without
any purposes, we do not consider that operators will label false
negatives when they do not believe them.

• Labeling extension (E%) means that when operators label a false
negative, i.e., a certain significant change period missed by PTL,
they could label the truly period by at most E% extension.

We provide two types of representative labeling conditions as
shown in Table II, namely lazy operators and careful operators.

TABLE II
THE SIMULATION OF TWO TYPES OF LABELING CONDITIONS.

Name C% C
max

M% E%
Lazy operators 20% 20 5% 100%

Careful operators 80% 40 1% 10%
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Fig. 7. Detection performance of the 103 ISPs in pair-wise validation. The X axis is the index of weeks in the 4 months. The Y axis represents different
performance metrics, i.e., FPR, FNR, the average nSize difference (Section IV-A3), and the number of labels per week. (a)(b)(c)(d) shows the results when
the initial threshold set is T = {[10, 9.8]} and (e)(f)(g)(h) shows that of T = {[2, 1.96]}. Because the significant changes are infrequent in some weeks,
which makes FPR and FNR jitters a lot, all the four metrics are obtained using 3-week moving average. That is also why the X axis ends at W13 rather than
W16 (4 months).

B. Results

1) Real History Tickets: We run time series decomposition upon
the overall PV in three threshold learning ways: no learning (fixed
Thld), PTL with lazy operators (lazy OP), and PTL with careful
operators (careful OP) in Table II. Also we start PTL with different
initial threshold sets T , from very small ones to very large ones. In
the detection process, operators are supposed to check PTL according
to the tickets only. Table III shows the results. Since the tickets can
be incomplete, we can only determine how many tickets have been
detected, but cannot provide the accurate FPR or FNR.

TABLE III
DETECTION RESULTS OF THE OVERALL PV (VALIDATED BY TICKETS).

Initial T Threshold #Alarms Identified #Labels #ChecksLearning Tickets(%)
{[2, 1.96]} Fixed Thld 3744 100% - -

Lazy OP 84 79% 16 28
Careful OP 54 87% 25 68

{[3, 3.92]} Fixed Thld 108 83% - -
Lazy OP 39 83% 4 10

Careful OP 51 83% 25 56
{[5, 5.88]} Fixed Thld 18 67% - -

Lazy OP 18 79% 4 8
Careful OP 30 79% 20 27

{[7, 7.84]} Fixed Thld 13 50% - -
Lazy OP 25 58% 4 9

Careful OP 24 75% 9 41
{[10, 9.8]} Fixed Thld 4 17% - -

Lazy OP 13 46% 2 7
Careful OP 34 67% 19 49

First, focusing on T = {[2, 1.96]}, we see that though the fixed
Thld identified all the tickets, it triggers 3744 alarms. They are much
more than necessary in contrast with other cases, and thus most of
them are supposed to be false alarms. This is because the initial T
is set too aggressively. On the other hand, using the same initial
T , PTL can reduce the number of alarms greatly, and still many
of the tickets can be identified (e.g., 87% tickets for the careful
OP). Second, the results also demonstrate an important fact that it
is difficult to set the most suitable thresholds once and for all. See
T = {[3, 3.92]} and T = {[5, 5.88]}, the fixed Thld seemingly
yields a relatively good results, but PTL can still improve them
by lowering the number of alarms while still identifying the same

number of tickets, or more tickets. Note that, in these two cases, the
careful OP raises more alarms than the lazy OP. This is probably
because the 24 tickets in the database missed some real significant
PV changes, and through learning, they are identified by the careful
OP. Third, as for T = {[10, 9.8]}, PTL can also achieve better results
but the improvement is less, compared with other cases. The reason
is that the initial T is too large and PTL needs false negative labels to
adjust T . Nevertheless, we lack tickets (only 24 tickets) to produce
such labels. Last, we observe that both the labels and the checks
required by PTL are relative few no matter which initial T is used.
This indicates the labeling overhead is low for operators when using
PTL.

2) Pair-wise Validation: In Fig. 7, we detect the 103 ISP PVs with
pair-wise validation as described in Section IV-A2. Two experiments
are conducted with different initial T , a large one T = {[10, 9.8]}
and a small one T = {[2, 1.96]}. In both experiments, we compare
the performance of five threshold learning methods. In addition to
the three methods introduced in Section IV-B1, we also compare
PTL with sharing learning outcomes, namely “lazy OP with sharing”
and “careful OP with sharing” in Fig. 7.

First, for T = {[10, 9.8]} (Fig. 7(a), (b), (c), (d)), the main
deficiency of the accuracy at beginning is the FNR. This is because
the initial threshold set T is too large and few significant changes can
be identified. In Fig. 7(b) we see that, the FNR of the fixed Thld is
always above 75%, and reaches 96% for the worst case. Although its
FPR is 0 (Fig. 7(a)), such detection results are useless for operators.
As for the results of PTL, the FNR is reduced strikingly as learning.
In particular, the FNR of week 1 has already been decreased to 41%
for the careful OP with sharing, from 90% of the fixed Thld. During
PTL learns the thresholds, the FPR increases but then goes down
as shown Fig. 7(a). This is because the significant changes actually
detected are different from the ones in the ground truth, and this
further affects normalizing the measures of the change severity since
different data are eliminated from the calculation of the mean and the
standard deviation (Section IV-A1). As a result, the change severity
of the labeled period could be smaller from the perspective of PTL,
leading to that the thresholds are over adjusted. This influence would
be mitigated as learning. We see the FPR and the FNR at week 13
are 8% and 9% respectively for the careful OP with sharing. We
also observe that sharing learning outcomes can further improve the



detection accuracy (Fig. 7(a), (b)), compared with no sharing, and
converge the thresholds more quickly (Fig. 7(c)), which is measured
by the average nSize difference as described in Section IV-A3.

In addition to the accuracy, another important performance metric
is the number of labels required. As shown in Fig. 7(d), PTL requires
only a few labels per week. Specifically, the careful operators (without
sharing) need to provide 47 labels every week on average for the 4
months, while the careful OP with sharing only needs to provide 29
labels every week on average. We see that sharing learning outcomes
can reduce the labeling overhead by 38% here. As for the lazy
operators, as they provide less labels in nature (about 20 labels per
week on average), sharing learning outcomes does not benefit them
a lot, reducing 3 (15%) labels per week on average.

The conclusions of T = {[2, 1.96]} are much similar except two
things. One is that the FPR (Fig. 7(e)) and the FNR (Fig. 7(f)) are
exchanged when compared with T = {[10, 9.8]}. This is because
T = {[2, 1.96]} is very aggressive and triggers too many false
alarms, so the FPR is the major problem instead of the FNR. Another
is that the number of labels (Fig. 7(h)) is about twice as that in
T = {[10, 9.8]} (Fig. 7(d)). This is also caused by the excessive
false alarms, and operators would have more chances to label false
positives. But the number of labels decreases quickly as learning, and
is finally under 25 per week for careful OP with sharing.

V. RELATED WORK

Many change detection approaches have been proposed in recent
years. [2] employs change detection in a search engine as we do,
but they focus on the overall search response time, not like the
PVs that can be aggregated in many ways. There are some work
attempting to apply change detection approaches in ISP networks,
such as [4], [3], [7], [8], [22], [6], [13], [9]. Although several
sophisticated change detection approaches are designed, we argue
that it is still inconvenient for operators to use them in the real world,
especially when there are a large number of metrics for detecting (i.e.,
PVs from many ISPs). One of main problems is tuning thresholds,
which is neither intuitive nor scalable for operators. To solve this,
[14] provides an automatic way to adjust the severity thresholds
based on the labeled data, but they ignore the duration thresholds
which make the problem more complicated. Besides, we are not
aware of any prior work trying to reducing the labeling overhead
of learning many thresholds for detecting different metrics. Some
work also devotes to automatically tune the internal parameters of
change detection approaches, such as [15], [16], while our focus is
on learning the detection thresholds from operators’ labels. Those
works are complementary to ours.

VI. CONCLUSION

PVs are crucial for search engines as they are closely related
to the ad revenue. To monitor PVs in a fine granularity, PVs are
always counted in many ways. For example, the PVs of different
ISPs. When applying change detection approaches on those PVs,
it requires a lot of thresholds, including both the change severity
thresholds and the duration thresholds, to characterize the detection
requirements of operators. However, these thresholds are typically
tuned manually, and such attempt has been hampered by the cost
of manual efforts. To adjust the thresholds more conveniently and
effectively, we propose a framework, called PTL, intending to learn
the thresholds from the operators’ simple labels of the detection
results. Through the simulation on 4-month real PV data from a
global top search engine, we demonstrate the effectiveness of PTL.

For example, in our experiment, PTL can decrease the FNR from
96% to 9% with only 29 labels per week on average.

We believe that PTL is a very useful framework to help tune the
thresholds in significant PV change detection. We also believe that
PTL can be extended to other detection scenarios as well.
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