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a b s t r a c t

Modern data centers need to satisfy stringent low-latency for real-time interactive applica-

tions (e.g. search, web retail). However, short delay-sensitive flows generated from these ap-

plications often have to wait a long time for memory and link resource occupied by a few

of long bandwidth-greedy flows because they share the same switch output queue (OQ). To

address the above flow interference problem, this paper advocates more fine-grained flow

separation in the switches than traditional OQ. We propose CQRD, a simple queue manage-

ment scheme for data center switches, without change to the transport layer and requiring

no coordination among switches. Through simulations, we show that CQRD can reduce the

flow completion time (FCT) of short flows by more than 25% in a single switch and up to 50%

in a multi-stage data center network, only at the cost of a minor goodput decrease of large

flows. Additionally, just a 50% deployment of CQRD in top-of-rack (ToR) switches can lead to

a ∼10–24% FCT reduction of short flows. Moreover, CQRD can improve short flows’ FCT by

∼30–40% from OQ switches, using DCTCP (Alizadeh et al., 2010) [2] transport in DCN. Further-

more, we validate the feasibility of CQRD approach by implementing an 8 × 8 logical CQRD

switch through simply changing the configurations of existing commodity switches. Also, we

use a small testbed experiment to verify the implementation and the effectiveness of CQRD to

alleviate flow interference in real environment.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

As people and business increasingly rely on the Inter-

net in their daily life and work, the performance require-
✩ This paper was previously presented in part [1] at LCN’14, Edmonton

Canada, September 2014. Extensions to the conference version include de-

tailed description to the CQRD approach and analysis to its impact on TCP

performance. Also, we discuss how CQRD co-works with transport methods

with adaptive rate control schemes. Moreover, a small-scale implementation

and testbed experiments are added. Additionally, new experiments about in-

cremental deployment, the impact of different buffer sizes, and transport

methods with adaptive rate control schemes to CQRD’s performance, are

added in this paper.
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ment on the data center networks (DCN), where most of

the Internet applications are hosted, has become more strin-

gent. However, recent studies have shown that short delay-

sensitive flows from the real-time interactive applications

(e.g. search, web retail), although contributing to majority of

flows in DCNs [3], often have to wait a long time at switches

for buffer and bandwidth resources occupied by a few of

long bandwidth-greedy flows (e.g. backup, replication etc.).

This causes a dramatic increase to the flow completion time

(FCT) of most short flows, which can be more than 10 times

higher [2].

As analyzed in many recent studies [2,4–6], the funda-

mental reason for the above mentioned performance degra-

dation is that the commodity DCN switches’ traditional and

coarse (output queue, or OQ) queue management schemes

are not suited well for the DCN traffic characteristics, causing
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unnecessary flow interference. We define that two flows are

interfered by each other, when they pass through a switch

while overlapping in time, and contend for some shared re-

sources at switches, such as queue memory, or link capac-

ity, etc. Many transport layer solutions [2,4,7,8] have been

proposed to get around the coarse queue management prob-

lem by optimizing flows’ rate assignment to keep the switch

queues near empty. However, precise rate control is a great

challenge due to the bursty traffic in DCN. Thus, only us-

ing these transport methods, flow interference can still hap-

pen in the coarse OQ due to flow burstiness. Therefore, a

more fine-grained queue management scheme could be a

good complement to these transport methods (more anal-

ysis in Section 4.3.3 and shown by experiments in Section

6.6). Moreover, all these transport approaches need to mod-

ify end host’s protocol stack, which makes them facing some

deployment difficulties. Another direction to solve the above

performance degradation problem is flow scheduling [5,6].

These methods try to implement optimal flow scheduling to

minimize the FCT of short flows. However, these solutions re-

quire significant changes on existing software or hardware of

end hosts or switches, which are challenging to deploy. Fur-

thermore, using these flow scheduling methods, small flows

may still be interfered by long flows in original OQ switches,

because of non-optimal scheduling [5] and long scheduling

latency [6]. A fine-grained queue management scheme could

also be complementary to these methods. More detailed dis-

cussion about related works is in Section 2.

Different from these previous approaches, we address the

DCN flow interference problem by directly tackling its root

cause: coarse switch queue management schemes. Hence,

we argue that the DCN flow interference, especially for the

interference between large number of small delay-sensitive

flows and a small number of giant flows, calls for a more fine-

grained queue management than the current output queue

(OQ) in the commodity DCN switches in order to alleviate

the flow interference problem in DCNs. Toward this direc-

tion, in this paper we propose a simple1 queue manage-

ment scheme, crosspoint-queue with random-drop (CQRD).

In CQRD, a separate queue is assigned to each pair of input

and output port, and packets are randomly dropped upon the

full of crosspoint-queue (or randomly marked with ECN [9]

tag upon the queue length above the threshold). This paper

presents the design, analysis, implementation and evaluation

of CQRD, to alleviate flow interference in DCN. Our contribu-

tions can be summarized as follows:

• We revisit the mature crosspoint-queue and random-

drop techniques, and combine them together into a

simple fine-grained queue management scheme named

CQRD, to solve flow interference problem in DCN. These

two underlying techniques are widely used in current

switching hardwares [10,11], which makes it simple to

implement CQRD. Moreover, the proposed approach re-

quires neither any coordination among switches, nor

modification to end hosts, which makes it easy to deploy.
1 By “simplicity”, in this paper, we mean that the CQRD design is easy

to understand without much complexity, and the implementation is easy

based on existing and mature underlying techniques.
• For DCN environment which uses adaptive transport rate

control based on ECN [9] (e.g. DCTCP [2] ), we accordingly

design CQRD with a random-mark scheme (see Section

4.3.3) besides random-drop for traditional TCP environ-

ment. A hybrid of CQRD and transport layer methods

achieves even better performance.

• We implement an 8 × 8 logical CQRD switch through sim-

ply modifying the configurations of existing commodity

switches, which validates the simplicity and feasibility of

CQRD’s approach.

• Through simulations, we show that CQRD significantly re-

duces the flow completion time of short flows by more

than 25% in a single switch and up to ∼50% in a multi-

stage data center network, only potentially at the cost of

a minor goodput decrease for large flows. Furthermore,

CQRD can be incrementally deployed. Just a 50% deploy-

ment of CQRD in ToR switches leads to a ∼10–24% FCT

reduction of short flows. Moreover, we show that CQRD

can further improve short flows’ FCT by ∼30–40% from

OQ switches, using DCTCP transport in DCN. Also, we con-

duct a small testbed experiment to verify the CQRD im-

plementation and the effectiveness of CQRD to alleviate

flow interference in real environment.

The rest of the paper is organized as follows. We review

the related works in Section 2. In Section 3, we use analy-

sis and simulation to study flow interference and its perfor-

mance impact in traditional OQ, HCF (state-of-the-art switch

queue management for DCN) [12], and classic CQ [10]. In

Section 4, we present the CQRD approach and theoretically

analyze how it can alleviate flow interference in DCN. In

Section 5, we introduce our implementation of a small scale

CQRD switch and discuss the implementation of a large scale

CQRD switch through application-specific integrated circuit

chips (ASIC). In Section 6, we use simulation experiments

to show that CQRD greatly improves the overall DCN per-

formance, both at fully and partially deployment. Also, we

study the impact of different buffer sizes to CQRD’s perfor-

mance. Additionally, we show that a hybrid of CQRD and

transport layer methods could achieve even better perfor-

mance. In Section 7, we evaluate CQRD in a small testbed.

Finally we conclude in Section 8.

2. Related works

Long delay of short delay-sensitive flows due to flow in-

terference is a well known problem in data center network.

We describe several solutions below and illustrate the differ-

ence between CQRD and them.

2.1. Transport layer rate control

A major direction of prior work uses transport layer rate

control to reduce flow completion time of short flows. DCTCP

[2] and HULL [7] apply adaptive rate control schemes based

on ECN [9] and packet pacing, to control the rate of giant

flows. By keeping the queue size of switches near empty,

they improve the overall FCT of short flows. D2TCP [8] uses

the deadline information for rate control, which allocates the

rate of each flow according to their deadline information.

However, as also pointed out by their own authors [6],

precise rate control is challenging due to the bursty traffic
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in DCN. It is very hard to control the sending rate to exactly

fully utilize the bandwidth, while keeping network buffer

near empty. This is also shown in our later analysis (Section

4.3.3) and experiments (Section 6.6). Therefore, in traditional

OQ switches, packets of short flows still may queue behind a

considerable number of long flows’ packets due to a burst of

these long flows, which increases short flows’ queuing de-

lay. What is worse, because short flows and long flows com-

pete the same output buffer resource, short flows’ sending

rate may also be throttled when the long flows are occupying

the output queue. A more fine-grained queue management

scheme, such as CQRD, is a good complement to these trans-

port layer methods, which could offer further performance

improvement.

Moreover, all these methods require a modification to end

hosts’ TCP stack to implement their rate control schemes,

which leads to some challenges in deployment. To be more

specific, on one hand, network operators often do not control

the end-host stack (e.g. in a public cloud or with hosts using

closed-source operating systems). On the other hand, even

if they do, some high performance applications (such as low

latency storage systems [13,14]) implement their own trans-

port, and bypass the kernel. Furthermore, they are not well

compatible with legacy TCP. In addition to TCP stack change,

some of them even require a significant change of end hosts’

NIC [7] and/or switch hardware [4,7], which further increases

the difficulty of their deployment.

2.2. Flow scheduling

Another direction to solve this problem is the flow

scheduling. Recent work such as PDQ [5] and pFabric [6] try

to implement optimal flow scheduling to minimize the FCT

of short flows. They preemptively schedule each flow based

on certain priorities (e.g. sizes or deadlines), thus to reduce

short flows’ FCT.

However, there are several challenges for such flow

scheduling approaches. (1) It is an NP-hard problem to com-

pute global optimal flow scheduling [5] in multi-tier DCNs.

(2) The latency of scheduling is too long for short flows

[6]. Thus, only using these methods, small flows may still

be interfered by long flows in original OQ switches, be-

cause of non-optimal scheduling or long scheduling latency.

A fine-grained queue management scheme such as CQRD is

also complementary to these methods. Moreover, these flow

scheduling approaches are almost clean-slate ones that re-

quire new end host protocol stack and switch hardware de-

sign, which can be far from getting deployed in reality.

2.3. Switch based solutions

There are also many queue management schemes in the

literature for switches/routers to provide fine-grained sepa-

ration for TCP flows, such as DRR [15] and SFQ [16]. However,

they have been designed for traditional Internet routers, and

not applicable for (quite different) traffic characteristics in

DCN. Furthermore, recent work in [12] has shown that HCF

outperforms them in DCN environment.

The most closely related work to CQRD and the state-of-

the-art approach in this space is HCF [12] (Hashed Credits
Fair). Similar to CQRD, HCF tries to address the flow inter-

ference problem by providing switch queue management

scheme that is more fine-grained than OQ. HCF sets two

separate queues, one high-priority (HP) and one low-priority

(LP), at each output. It hashes all the incoming flows into

several bins and assigns each bin a credit. Packets belonging

to bins which have credit left will be stored in the HP queue,

otherwise in the LP queue. Switches serve the HP queue if it

is not empty. When the HP queue becomes empty, HCF resets

all the credits to the initial and HP queue is swapped with

LP queue. However, it is challenging to hash flows uniformly

using static hash function. Therefore, HCF needs to change

its hash function periodically, which increases the cost on

hardware. Furthermore, as will be shown in Section 3.3, HCF

is not fine-grained enough to solve the DCN flow interference

problem very well.

Besides queue management, there are also various archi-

tectures of switch fabrics in traditional Internet routers. In-

ternet routers are very high-end (i.e. with many ports), which

consist of multiple line cards connected by the switch fab-

ric on the backplane. Each line card hosts an input/output

port of the router and processes incoming/outgoing packets.

Because incoming Internet traffic has burstiness and there

may often be traffic from multiple input ports destined to the

same output, the router has to buffer the packets when con-

tention happens. Limited by the semiconductor technology

decades ago, they have to put main buffers on the line cards.

It is challenging for a routers switch fabric to switch packets

stored in many distributed line cards with line rate (e.g. 40G).

Thus, in order to reach a high switch capacity (e.g. 512 40G)

using a low hardware speed-up, various switch fabric archi-

tectures are proposed, such as virtual output queue (VOQ)

[17] and combined-input-and-crosspoint-queue (CICQ) [18].

Although CQ idea was proposed decades ago, not until re-

cently, [10] revisits the pure CQ switch, and first advocates

that routers can implement pure CQ fabric enabled by mod-

ern semiconductor technology, which puts all the buffer on

switch fabric instead of line cards. Note that previous xCQ (i.e.

CICQ) is not pure CQ switch fabric, but a variant of VOQ. It also

puts main buffers in line cards, and each crosspoint-queue in

CICQ only can buffer one packet (or cell). All these architec-

tures focus on how to increase the hardware switch capacity,

but not on how to decrease TCP flows FCT affected by flow

interference. On the contrary, DCN switches are commod-

ity low-end switches (e.g. 24 10G). For these DCN switches

such as [19], there are no line cards, but only a single switch

chip covering all the switches functionality. All packets are

buffered on the switch fabric. They are logic OQ switches,

where all packets are buffered at each output port of the

switch fabric before being switched out.

Although pure CQ switch fabric (first revisited by [10])

originally aims to be a better switch fabric architecture for

Internet routers, we find that the queue management scheme

behind CQ (separate queue for each input–output pair) is

promising to solve some TCP problems in DCN. To the best

of our knowledge, we are the first one to introduce CQ in

DCN switches queue management scheme. To further im-

prove performance, we propose a CQ based switch queue

management scheme to solve the flow interference problem.

Before our paper, HCF is the start-of-art switch based solu-

tion to solve TCP flows FCT problem in DCN.
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2.4. Ethernet related techniques

Some 802.1/ethernet related techniques also may help al-

leviate flow interference in DCNs. Current IEEE 802.1p [20]

standard uses 3 bit priorities to differentiate and provide

bandwidth guarantee for different traffic types when they

share the same link. To solve flow interaction, one possi-

ble way is to utilize these priority tags to identify flows

with different sizes and assign higher priorities to shorter

flows. However, it faces substantial deployment difficulties,

because it would require a significant change on current end

hosts or switches to tag flows with different priorities ac-

cording to their sizes.

3. Flow interference: causes and impact

In this section, we discuss the causes and performance

impact of flow interference. We study different switch

queue management schemes, including traditional output-

queue (OQ) with tail-drop, the state-of-the-art DCN fair-

ness queue management scheme (HCF [12]), and classic

crosspoint-queue (CQ) with tail-drop [10]. Through analysis

and a toy example, we will show that CQ is more promising to

solve the flow interference problem. To the best of our knowl-

edge, we are the first one to introduce CQ in DCN switches.

3.1. Performance metrics and definitions

Following the convention in [6], we consider two main

performance metrics—flow completion time and goodput.

Flow completion time (FCT) is an important metric for short

delay-sensitive flows, and reflects how fast the flow has been

successfully transmitted. Goodput equals the flow size di-

vided by its FCT, which is crucial to large bandwidth greedy

flows.

We define flows smaller than 100 KB as small/short

flows, flows larger than 100 KB as large/long flows, and flows

larger than 1MB as giant flows (special case of large flows).
Fig. 1. Flow interference in OQ
At a given switch, when two flows have the same output

port and they overlap in time, we say these two flows out-

put port contending or simply output contending. Then,

we define a switch path as the pair of input port and output

port on the same switch. When two flows on the same switch

path overlap in time, we say these two flows are switch path

contending or simply path contending, which is a special

case of output contending. For flows that go through multiple

switches, we define two flows as path contending when they

are path contending at any of these switches. Contention be-

tween flows in a switch leads to potential flow interference,

and causes potential performance degradation.

In this section, we only focus on the interference caused

by output contending (but excluding the path contending).

3.2. OQ switches

Typically, commodity switches in data centers apply OQ

with tail-drop scheme [2,21]. Packets from output contend-

ing flows are stored in the same queue at the specific output

port. This exploits statistical multiplexing and saves memory

resources to achieve a certain packet loss rate. However, it

may also cause a strong interference of flows which contend

for the same output.

Fig. 1(a) shows an toy example with an eight port OQ

switch connecting to server 1–8 with each port respectively.

Note that each port consists of an input link and an output

link shown in the figure. Assume that there are seven flows

coming from inputs I1 to I7 respectively. All the flows are

destined to the same output O8. Flows from I6 and I7 are gi-

ant flows and the other five flows are short delay-sensitive

flows. While contending for the same output, the large flows

quickly occupy the majority of shared memory resource and

the capacity of output link. Packets of the small flows have

to wait unnecessarily, queuing behind the packets from the

long flow. This leads to a significant increase of packet delay

for small flows and impairs the upper-layer applications. As

the output contention lasts for a while, the output buffer will
switch and CQ switch.
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be filled up and begin to drop packets of all short flows. This

further results in an overall performance degradation.

We use NS2 [22] for simulation and measure the good-

put and FCT of each flow in this toy example. Each port has

a bidirectional link rate of 10 Gbps and a one-way link delay

of 4 μs. Each port has a small output queue with a typical

small size of 36 KB [2] (i.e., 288 KB in total). Assume servers

6 and 7 are generating long file-backup traffic to server 8. At

time 0, both servers 6 and 7 start to send a 100MB file using

TCP (flows 6–7) to server 8. Five milliseconds later, servers 1–

5 start five delay-sensitive tasks and each sends a 10 KB TCP

flow (flow 1–5) to server 8 at time 0.005 s. TCP SACK [23] are

used for all the flows.

The goodput and FCT of each flow are shown in Fig. 2. Dur-

ing this situation, the output queue of port 8 is quickly filled

up with packets of flow 6 and 7. Thus, packets of flow 1–5

are continuously dropped when they reach the switch. As a

result, their flow completion time soar up to hundreds of mil-

liseconds, while the theoretical ideal FCT should be as low as

tens of microseconds. Also, their goodput fall down to lower

than 1 Mbps. Apparently, this will cause a dramatic perfor-

mance degradation of upper-layer applications.

3.3. HCF switches

Recently, a hash-based based queue management algo-

rithm for DCN switches called HCF (Hashed Credits Fair) [12]

has been proposed. Through hash and assigning credit, flows

from different bins can share the HP queue fairly. And when

HCF schedules packets out of HP queue, flows from different

bins could fairly share the link capacity. That provides a rel-

ative good bandwidth fairness. However, it does not provide

enough buffer fairness between small flows and giant flows.

Many flows coming from different inputs still have to con-

tend for the same buffer resource. While large flows quickly

consume the credits of their bins, they fill up the LP queue

quickly. If small flows are unluckily hashed to the same bins,

they would be dropped. In addition, even if they are not in

the same bins, as the number of small flows grows larger,

they will also consume their credits and be dropped at the
Fig. 2. A toy example of fl
tail of LP queue. That causes packet loss of many small flows

with inputs different from the few giant flow.

We simulate HCF switch in the same toy example, with

the same 288 KB total memory. All the parameters of HCF

are set as the recommended in their paper (two queues with

same length, one credit for each of the 20 bins, and periodical

XOR hash function). As we can see in Fig. 2, HCF greatly re-

duces the FCT of short flows and serves two large flows fairly.

However, the packets of small flows also have been dropped.

That increases their FCT to around 1ms, which should be less

than 100 μs without loss.

3.4. CQ switches

Recently, the decade-old CQ switching scheme, once con-

sidered infeasible for commodity switches when first pro-

posed [24], has been shown to become very feasible using

modern semiconductor technologies [10]. CQ offers full flow

separation for the flows that are output contending but not

path contending. As shown in Fig. 1(b), CQ switch reserves

separate memory resources for each pair of inputs and out-

puts. Packets arrived at each input are first buffered into the

crosspoint-buffer (XB). Then each output port, without co-

ordinating with any other ports, picks one of the XBs in its

column and schedules the head packet out of the switch.

Thus, flows from different input ports have separated buffers.

Also, by using simple round-robin (RR) scheduling manner

for each output, each flow from different inputs destined to

the same output shares approximately the same output link

capacity. Therefore, CQ switch can provide a performance

separation for flows coming from different inputs.

We simulate CQ switch in the same toy example. With

288 KB memory in total, the same as in OQ switch, each XB

of CQ switch has a capacity of 4.5 KB. As shown in Fig. 2,

with CQ switch, the FCT of delay-sensitive flows can be three

orders of magnitude lower than the OQ switch and one order

of magnitude lower than the HCF switch. Also, the goodput

of those flows are three orders of magnitude and one order

of magnitude higher than the OQ and HCF switch. Although

there is only 4.5 KB buffer resource for flows 6 and 7 in CQ

switch, the FCT and goodput of these two long flows are
ow interference.
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Fig. 3. Traffic workload derived from real data center.
almost the same as in OQ and HCF switches. Meanwhile, CQ

switch achieves a very good fairness among flows.

3.5. Summary

Overall, the performance of flows that are output con-

tending with the giant flows is severely degraded by inter-

ference by the giant flows in OQ. Although to a less extent

than in OQ, HCF still suffers from the same problem. Through

separating queues for flows that are output contending but

not path contending, a classic CQ switch can achieve much

better performance than OQ and HCF in our toy example. We

will present how to design a CQ-based scheme for more com-

plex real-world DCNs in the next section.

4. Crosspoint-queue with random-drop scheme

In the previous section, we have shown that CQ performs

much better than OQ and HCF in the toy example where there

are only very small number of flows and the primary inter-

ference is output contending only (excluding path contend-

ing). In the real world DCNs, there may be thousands of flows

come and go. A large number of flows can overlap in time,

and a flow may go through multiple switches. As such, flow

interference becomes more complex, and both output con-

tending and path contending can happen. In this section, we

will first make an observation about DCN flow characteris-

tics, which motivates our CQRD approach. Then we present

CQRD approach and how it addresses the challenges faced in

real world DCNs.

4.1. DCN flow characteristics

In Fig. 3, we show an example of the traffic distribu-

tion which is derived from the characteristics of real oper-

ation data centers [25]. In this workload, about 90% flows are

small/short flows, and very few (about 3%) of flows are giant

flows. Based on the measurement results of real operational

large data centers in [2,3], we make the following observa-

tion.

Observation 1. Long bandwidth-greedy flows traverse a few

of switch paths in a DCN switch, while most of the switch paths

are transmitting short delay-sensitive flows. There are always

a large number (more than one thousand [3]) of active flows

in DCN. However, very few of concurrent flows [2] are larger

than 1MB. In a data center running data mining jobs, over

80% flows are less than 10 KB [6]. As a result, while some

long bandwidth-greedy flows passing a few of switch paths

(defined in Section 3), the majority of switch paths are trans-

mitting short flows.
The above observation explains the significant flow inter-

ference in current DCNs. For example, a 24 × 24 aggregation

switch has 24 × 23 switch paths in total (assuming no flow is

destined to its coming input port). Assume that there are two

giant flows passing two switch paths. Meanwhile, there may

be hundreds of short delay-sensitive flows passing the other

550 switch paths. In a commodity OQ switch, 2 × 23 out of

these 550 switch paths have the same output queues as the

two giant flows, which interfere (and contend for paths) with

the hundreds short flows going through the same 46 switch

paths.

4.2. CQRD working scheme

We argue that the above observation calls for a queue

management approach that is more fine-grained than OQ to

reduce the probability of DCN flow interference. However,

it is desirable to maintain a good balance between queue

management granularity and the overhead/cost. In the ideal

and most fine-grained approach, if we could reserve dedi-

cated buffer and link capacity large enough for every single

flow, the flow interference is entirely eliminated. However,

the memory and link capacity needed for this ideal approach

to deal with the large number of overlapping flows are pro-

hibitive in practice. Moreover, it is hard to dynamically allo-

cate physical resource according to the flow’s various needs

(e.g. buffer size or bandwidth), because these information is

not available to the switch, without big modification to its

packet parsing procedure or current network protocol stack.

We thus present crosspoint-queue with random-drop

(CQRD), a simple queue management approach that is fine-

grained enough to achieve desirable flow separation. The ba-

sic idea of CQRD is two-fold:

• Complete separation between flows on different switch

paths, because a separate buffer is allocated to each

switch path, and packets destined to the same output

port but on different crosspoint buffers are scheduled in

round-robin fashion.

• When a crosspoint queue is full, random-drop is used to

alleviate the flow interference within the same switch

path.

Fig. 4 shows the architecture of CQRD scheme. First, like

original CQ switches shown in Fig. 1(b), CQRD allocates sep-

arate crosspoint buffers (XB) with the same capacity for each

pair of inputs and outputs. Arriving packets are first stored

in the crosspoint buffer and wait to be scheduled out by the

output scheduler. CQRD uses round-robin (RR) scheduling

for each output to schedule the packets. It ensures that each

XB is fairly served. With separated buffers, flows in different
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Fig. 4. CQRD overview.
switch paths will not contend for the queue with each other,

although they might be destined to the same output. Also,

with RR scheduling, flows going to the same output port is al-

located with almost the same link bandwidth. This addresses

the output contending but not path contending interference,

and achieves switch path separation.

Second, when the corresponding crosspoint buffer is full,

CQRD takes random-drop scheme upon packet arrival. In-

stead of simply dropping the tail (as in classic CQ), if the XB

does not have enough space for the coming packet, CQRD will

randomly choose a packet in this XB and drop it. A flow’s

packets will be more likely to be dropped if this flow occu-

pies most of the XB, and vice versa. As such, if several small

flows are contending for the same XB with a large flow, pack-

ets of those small flows still have a reasonable chance to get

into the buffer even if the buffer are currently filled up by

the large flows. That helps to alleviate interference within the

same paths.

Next, we present a detailed description to CQRD working

scheme. In practice, switches are always time slotted and

the basic data unit processed in one time slot is called a cell,

which is no larger than the minimum packet size. Consider

an N × N CQRD switch with each crosspoint buffers (XB) of

size L cells, and Ii and Oj denote the ith input and jth output

respectively. Let XBij denotes the XB for Ii and Oj, and lij
denotes the current length of XBij (i.e. the number of cells

currently in XBij). CQRD buffers and schedules packets (e.g.

ethernet frame for ethernet network) with variable sizes,

which contains several cells. The start-of-packet (SoP) cell

of this packet indicates the length of this packet (i.e. the

number of cells) and the destination output port. All cells

belonging to a packet are grouped and buffered/scheduled

together. For each processing cycle in a time slot, CQRD

scheme contains the following two phases:

• Arrival phase. For each input Ii, if there is a newly arriving

packet (i.e. an SoP cell) destined for output Oj, CQRD first

checks if the length of this packet is less than or equal to

L − li j . If so, the SoP and rest following cells of this packet

are stored in the tail of XBij, waiting to be scheduled.

Otherwise, CQRD randomly picks one of the packets in

XBij (including the newly coming one), then drop all

cells of this packet. Packets are picked and dropped with

probability proportional to their lengths (number of

cells). If the newly coming packet is dropped, the arrival

phase is finished. If not, CQRD checks L − li j again, and

repeats the previous random-drop procedure, until L − li j

is no less than the length of the coming packet or the

coming packet is dropped. Note that although there can
be several rounds of random-drop process in case of one

packet arrival, it can be well pipelined in implementation,

and incurs no extra processing latency. For example, if

a packet with size of C cells come, it always consumes

C time slots to insert the whole packet in the crosspoint

buffer. Thus, there are C time slots (i.e. C rounds) for

picking and dropping packets to make room in the buffer

for the new packet, while the rest cells of this packet

keep coming. Apparently, dropping C packets is enough

to empty a buffer space of C cells, since the minimum

packet size is larger than a cell.

• Departure phase. After arrival phase within the same

time slot, for each output Oj, if all cells of the last packet

have been scheduled out of the switch, the output round-

robinly picks the next non-empty crosspoint buffer in its

column. Then it schedules the SoP cell of the head packet

in the selected buffer out of the switch, and continue

to schedule the rest cells of this packet during the next

time slots.

4.3. Influence to TCP performance

Based on above discussions, compared to original OQ

switches, we can see that CQRD attempts to decrease the

short flows’ (the most majority in DCN) FCT, by alleviating

the their contention for switch resources (e.g. buffer and link

capacity) with long bandwidth-greedy flows. To understand

why CQRD switches can greatly improve the performance of

short flows, we present a simplified analysis below. Also, we

briefly discuss why CQRD can reach that goal without sac-

rificing too much throughput of long flows. Our purpose is

not to develop a fully complete model, but just to show some

theoretic insights in our design. In the following analysis,

we consider standard TCP flows without using other adap-

tive transport rate control schemes. At last, we briefly discuss

how CQRD improves OQ’s performance when combined with

adaptive transport rate control schemes (e.g. DCTCP [2]).

4.3.1. Short flows

Many data center applications such as web search [26] or

storage [27], generate delay-sensitive short flows, which con-

tain very small amount of data (e.g. less than 100 KB [3]). Typ-

ically, these flows only consist of small number of TCP pack-

ets. The FCT of such a short TCP flow depends on two factors

[28] (1) how many packets of this flow being lost (lossrate), and

(2) the round-trip-time (RTT). Without loosing generality, we

analyze a particular flow, and compare the average lossrate

and RTT incurred by OQ and CQRD to it. We denote them as

Losso, RTTo (for OQ) and Lossc, RTTc (for CQRD) respectively.

We further assume the lossrate and RTT incurred by the rest

part during TCP transmission to be definite and the same

both in OQ and CQRD analysis. To show how CQRD improves

short flows’ performance more clearly, we separately analyze

the short flows path contending with long flows, and those

output contending but not path contending with long flows.

Since packets are independently buffered and scheduled

out by each output port both in OQ and CQRD switches, we

perform our analysis on a particular output O without loos-

ing generality. For simplicity, we assume all packets are with

same fixed size below. However, our analysis can be easily ex-

tended to variable-size packets, by treating each packet to be
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5

a number of fixed-size cells. We consider an OQ and a CQRD

switch both with N input ports and N output ports, and every

port has the same capacity. We assume that the OQ switch

has an output buffer with size of N × L packets at each out-

put. Accordingly, we assume that the CQRD switch has the

same buffer resource in total, which means each crosspoint

buffers (XB) with size of L packets. We assume during a cer-

tain period of time, there are s short flows (Fs1 ∼ Fss) which

come from inputs s1 ∼ ss (Is1 ∼ Iss) and are destined to the

output O, where s < N and si = 1, . . . , N(i = 1, . . . , s). Also,

there are l (l > 1)2 long flows (Fl1 ∼ Fll) coming from input

l1 ∼ ll (Il1 ∼ Ill) destined to the same output O, where l < N

and li = 1, . . . , N(i = 1, . . . , l).

1) First, we analyze those short flows output contending but

not path contending with long flows. We consider the per-

formance of a particular short flow (Fs1) which comes

from input s1 (Is1) and is destined to the output O. Fs1

does not contend path with any long flow, which means

s1 �= li(i = 1, . . . , l). We analyze the steady status after

long flows in congestion avoidance status have filled up

the output buffer or crosspoint buffers.3To begin with, we

compare Fs1’s RTT incurred by OQ and CQRD. We assume

the basic time unit to schedule a packet out of buffer be-

ing t, which is the same both in OQ and CQRD. For OQ

switch, assume a new packet of Fs1 arrives and there are

Lo packets in the queue at this moment. According to the

sawtooth characteristic of TCP congestion control [29], if

a buffer is just rightly sized and neither underbuffered

nor overbuffered, and if the number of long flows is not

large, in the steady status, the average queue size of the

buffer is half of the queue capacity. Thus we assume L̄o =
N×L

2 , where L̄o is the average size of the output buffer in

the steady status. Because packets are scheduled in first-

in-first-out (FIFO) manner, then in average, it will take

L̄o × t = N×L
2 × t for OQ switch to schedule this packet out

of this output. On the contrary, for CQRD switch, assume

there are Lc packets in the short flow’s crosspoint buffer

(XBs1O) when a new packet of Fs1 arrives. Because there

is no long flow path contending with Fs1 and XBs1O has

not been built up by long flows, then we assume L̄c < L
2 ,

where L̄c is the average size of XBs1O. With round-robin

scheduling, it will take N̄′ × L̄c × t for CQRD to schedule

this packet out of the output, where N̄′ denotes the aver-

age number of XBs (corresponding to the output O) which

have at least one packet in the buffer in each round4 dur-

ing the packet of Fs1 is scheduled out. Obviously, N̄′ ≤ N,

thus

RTTc = N̄′ × L̄c × t < N × L

2
× t = L̄o × t = RTTo. (1)

Next, we compare Fs1’s loss rate incurred by OQ and CQRD.

For OQ switch, all packets destined to O are buffered in
2 We omit the analysis for the condition where l ≤ 1 here. Both OQ and

CQRD behave well because the buffer can hardly build up if there are less

than two long flow destined to O.
3 Due to the buffer-greediness [2] of long TCP flows (without adaptive rate

control schemes), the output buffer or crosspoint buffers will be definitely

filled up if l > 1.
4 For a certain XB, a round refers to the moment that right after this XB

was just selected by its output and a packet of the XB is scheduled out.
the same output buffer. This exactly matches the G/D/1/K5

model in queuing theory [30], where the queue length

K = N × L. For this G/D/1/K queue, packet loss rate grows

extremely fast (e.g. exponential [31]) as the arriving rate

(i.e. utilization) grows. Therefore, since there are l long

flows saturating this output of OQ switch, in the G/D/1/K

queue, the arriving rate λ is very high (e.g. approximat-

ing 1). As a consequence, it leads to a dramatic increase

of short flow’s loss rate (Losso). On the other hand, in

CQRD switch, the l long flows will only fill up the l cor-

responding crosspoint buffers (XBl1O − XBllO), but not fill

the short flow’s crosspoint buffer XBs1O. Thus for XBs1O,

the arriving rate λ keeps low as only short flows arrive

to this buffer. As a result, the short flow’s loss rate (Lossc)

will not be increased and keeps very low.6 Then, we have

Lossc < Losso. (2)

From Eqs. (2) and (3) we can see, CQRD incurs both a

lower loss rate and a lower RTT than OQ for short flows

output contending but not path contending with long flows.

Thus, the FCT of such short flows is reduced in CQRD com-

pared to OQ.

2) Second, we analyze those short flows path contending

with long flows. Similarly, we consider the performance

of a particular short flow (Fs2) which comes from input

s2 (Is2) and is destined to the output O. We assume Fs2

contends the same switch path with l′ long flows. For OQ

switch, the RTT and loss rate of Fs2 is the same as the

former short flow Fs1 (output contending but not path

contending), which we have already analyzed before. For

CQRD switch, it is different in this case. The crosspoint

buffer XBs2 is also going to be filled by long flows. Then

we perform another analysis on CQRD for Fs2. First, we

discuss Fs2’s RTT. For CQRD switch, assume a new packet

(denoted as Ps2) of Fs2 arrives during the steady status

(XBs1O has been filled up) and is inserted in the tail. As-

sume there are Lc packets in XBs1O at this moment, then

according to [29], we assume L̄c = L
2 , where L̄c is aver-

age size of the crosspoint buffer in the steady status. Then

with round-robin scheduling, it will take N̄′ × (L̄c − D̄) × t

for CQRD to schedule this packet out of the output, where

N̄′ denotes the average number of XBs (corresponding

to the output O) which have at least one packet in each

round during Ps2 is scheduled out of the output. Obvi-

ously, N̄′ ≤ N. D̄ denotes the average number of packets

which are queued ahead of Ps2 and are dropped due to

random-drop scheme, during CQRD scheduling Ps2 out of

the output. Apparently, D̄ ≥ 0, thus

RTTc = N̄′ × (L̄c − D̄) × t ≤ N × L

2
× t = RTTo. (3)
G stands for a general distribution of the arrival process. D stands for a

definite distribution of the serving process, where the serving rate is definite

to be packet/t. 1 means that there is only one server (the output port in this

case) for each output queue. K stands for the queue length.
6 Because there is no long flow traversing from Is1 to O, we assume that

the arriving rate of only short flows to XBs1O is very low. Note that this as-

sumption is not hold for some extreme cases such as incast scenario [27],

where too many concurrent small flows contend the same output. However,

such cases (i.e. link saturated only by short flows) happen rarely in DCN [3].

Moreover, the incast problem, which many prior works [32,33] focus on, is

beyond the scope of which CQRD aims to address in this paper.
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Then, we analyze the Fs2’s loss rate. In the path contend-

ing case, the arriving rate λ of CQRD also grows higher

due to the existence of long flows, which leads to a rela-

tive high loss rate as well. In this case, it is difficult to get

a precise comparison between Losso and Lossc from the-

oretical formula using queuing model, because it is hard

to abstract an accurate math model of real TCP arriving

statistic process. However, we can draw a rough analysis

between two approaches’ loss rate. Assuming PLosso to be

the overall packet loss rate (including all flows destined to

O) of the output buffer in OQ switch, then Losso = PLosso

because all packets of different flows share the same loss

rate in the output buffer. Similarly, we assume PLossc to be

the overall packet loss rate of the crosspoint buffer XBs2 in

CQRD, and assume Ls2 to be the number of Fs2’s packets in

XBs2. Then we have

Lossc = PLossc × Ls2

L
, (4)

where
Ls2
L is the probability of dropping Fs2’s packets

while XBs2 is full. Therefore, we can draw the following

result using above equation

Lossc = PLossc × Ls2

L
< Losso = PLosso, (5)

if

PLossc

PLosso
<

L

Ls2

. (6)

Intuitively, L
Ls2

is very large because Fs2 will occupy only

small portion of the buffer while contending with other

long flows. However, PLossc can be close to PLosso under

certain arriving and serving rate on XBs2 in CQRD and the

output buffer in OQ. From the above two equations, we

can see that Lossc is very likely to be smaller than Losso.

To summarize, CQRD incurs a lower RTT and a very likely

lower loss rate than OQ for short flows path contending

with long flows. Thus, the FCT of such short flows is re-

duced in CQRD compared to OQ.

4.3.2. Long flows

From above analysis, we can see that CQRD improves

short flows’ FCT by alleviating interference through separate

buffers and rand-drop schemes. CQRD reaches that by trad-

ing off the ability of buffer statistical multiplexing. Therefore,

it raises the concern of sacrificing too much throughput of

large flows, because of less capability to accept bursts with-

out statistic multiplexing. In this section, we analyze that

how CQRD can maintain high throughput of long flows with

moderate buffer size. Similarly as before, we consider an

CQRD switch both with N input ports and N output ports,

and every port has the same capacity. We assume there are

l long flows destined to the same output O.7 Then we discuss

under which condition that the output O’s capacity can

be saturated, which means that l long flows have reached

optimal aggregate throughput.8
7 We do not explicitly consider short flows in this section, because they

are always very short (less than 100 KB [3]) and infect little on long flows’

throughput.
8 Fairness among different flows is beyond the scope of the problem that

CQRD addresses.
We consider the most extreme case first. Assuming the l

long flows sharing the same switch path (i.e. coming from the

same input), and l is very small (e.g. 2). Then all these long

flows must contend for the same XB and other N − 1 XBs re-

main to be idle. According to the widely used rule-of-thumb

[34], this requires a buffer size of bandwidth-delay prod-

uct (BDP) to ensure output capacity being saturated. Even

in this most extreme case, CQRD is able to provide full ag-

gregate throughput for long flows, by using certain amount

of buffer resource through modern application-specific inte-

grated circuit chips (ASIC) technologies [35] . Specifically, a

typical BDP in the current production data center is about 25

KB (1 Gbps × 200 μs) [36]. For a 48 × 48 switch, CQRD only

needs about 58MB memory in total even in the worst case,

and current commodity switches already have large enough

memory to meet this demand [37].

The former extreme case happens rarely in practice, and

usually long flows are coming from several input ports (say

ln ports). Thus, CQRD only needs the sum size of ln XBs to be

approximately BDP, instead of each XB has the size of BDP in

the extreme case before. And this could guarantee an 100%

utilization of output O (i.e. long flows have reached full ag-

gregate throughput). Moreover, according to the tiny buffer

model in recent studies [38], an XB needs only to be several

KBs to ensure an 80–90% output utilization even in the ex-

treme case. That further indicates less memory in total could

be used in a CQRD switch with fixed port number, or a much

larger CQRD switch can be implemented using the latest ASIC

technology.

4.3.3. Transport with adaptive rate control

Unlike standard TCP perceiving congestion by packet

loss, transport with adaptive rate control (e.g. DCTCP [2])

uses explicit feedback (e.g. ECN [9]) from switches to detect

congestion. After the number of packets in the switch buffer

exceeds a threshold, the switch will tag congestion informa-

tion on traversing packets, which lowers down the sending

rate before the switch buffer is full and prevent packet loss.

Therefore, these methods can perceive congestion earlier and

keep switch buffer very low, which enhances performance.

Assuming these transport schemes with adaptive rate con-

trol have already been deployed in DCN (although they face

some deployment hurdle, see Section 2.1), compared to

original OQ, CQRD still can offer performance improvement

combining with these methods.

To be more specific, in OQ switch, before adaptive rate

control starts to work, the buffer can be quickly built up by

long flows and exceeds the ECN threshold. This triggers ECN

feedback to throttle long flows’ sending rate, but also causes

short flows’ congestion window to be cut down, because they

share the same buffer and the packets of short flows are also

going to be marked with congestion signal. This greatly in-

creases their FCT. Moreover, the RTT of short flows is also go-

ing to be increased due to interference of other long flows.

It is because that, although these transport methods try to

keep the switch buffer near empty, it is hard to accurately

control the rate of long flows [6] due to the bursty traffic in

DCN. Packets of short flows still may queue behind a consid-

erable number of long flows’ packets due to a burst of these

long flows, which increases their queuing delay in OQ switch.
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Fig. 5. Implementing CQRD through configuring commodity switch.
On the contrary in CQRD, for short flows output contend-

ing but not path contending with long flows, similarly to

the former analysis (Section 4.3.1), they will have much less

chance to be throttled due to long flows, because separate

buffers are used.9 Also, their queuing delay in CQRD is lower.

As for short flows path contending with long flows, our for-

mer random-drop scheme may provide little help because

of adaptive rate control, and packets are seldom dropped

due to buffer overflow. However, in this condition, we ac-

cordingly offers an random-mark scheme for CQRD besides

random-drop. Random-mark shares the same philosophy of

random-drop, and works similarly as random-drop described

in Section 4.2. Specifically, random-mark works as follows:

whenever a new packet comes and the queue length exceeds

the marking threshold, instead of simply marking the newly

coming packet with congestion signal, CQRD randomly picks

up one of the packet in the buffer (including the newly com-

ing one) with the probability according to the packet’s size,

and marks it with congestion signal. This gives a much less

chance for small flows to be throttled because they occupy

little portion of the buffer. Thus, CQRD improves these small

flows’ FCT. Note that random-mark increases the chance of

decreasing small flows’ FCT statistically, but it cannot guar-

antee that all small flow can harvest the gain. While on av-

erage small flows FCT can be decreased, some unlucky small

flows may still be marked (even many times), which leads to

a potential bad tail FCT.

5. Implementation

It typically takes a rather long time to implement a new

switch prototype chip due to the long cycle (e.g. years)

of application-specific integrated circuit chip (ASIC) design

[39]. In addition, the cost of ASIC design and implementa-

tion will be very high without mass production. For above

reasons, we have not been able to implement a CQRD switch

with ASIC prototype by now. However, we find that many cur-

rent commodity switches could be configured to be a small

scale CQRD switch, without any modification to the hardware

or software. In this section, we first introduce our implemen-

tation of a small scale CQRD switch through configuring a

commodity switch, and then we discuss the implementation

of a large scale CQRD switch through ASICs.

5.1. CQRD by configuring commodity switch

As Fig. 5 shows, we implement an 8 × 8 CQRD switch

through configuring a Broadcom BCM56842 switch [19].

BCM56842 is a 32 × 32 10 Gbps switch, with 9MB phys-

ical shared buffer. The shared buffer is logically separated

into 32 output buffers, which forms a logical OQ switch. For

each output, the output buffer can be configured into up to

eight priority queues (PrQ), which can be logically separated.

And we utilize this priority queues to implement an 8 × 8

CQRD switch, where we only use eight of the 32 ports in

BCM56842.

Specifically, first, we enable eight priority queues for

each output port, and configure them with the same size
9 ECN independently works for each XB in CQRD.
(i.e. 9 MB/82 ≈ 140 KB). Also, we configure the scheduling

manner between the eight priority queues to be weighted

round-robin (WRR), with each queue having the same

weight. Second, we configure the switch to classify incoming

packets according to their input ports, through ingress

content aware processor (ICAP) configuration. Third, packets

with different input ports are mapped into different priority

queues. After that, for each output, packets from different

inputs will only be buffered into its own queue. So far, we

have implemented a round-robin CQ switch, with each

priority queue to be a crosspoint buffer. At last, we emulate

the CQRD’s random-drop scheme through enable random

early detection (RED) [40] configuration. Note that there may

be a little difference between RED and our random-drop

design. RED starts to randomly drop subsequent packets

after the queue size exceeds a certain threshold. However,

statistically, RED is also able to proportionally drop packets

of different flows according to how many they come into the

buffer, which emulates the CQRD’s random-drop scheme.

5.2. ASIC implementation

Crosspoint queue with round-robin scheduling and

random-drop are relatively simple to implement in ASIC us-

ing widely used hardware primitives. And from the above

section we see that, current switching ASICs already have

the capability of supporting the CQRD’s underlying tech-

niques, showing the feasibility of CQRD’s simple implemen-

tation. The engineering details of hardware ASIC design (e.g.

including register-transfer level design and system, timing

and logic verification etc.) are not our contribution and be-

yond the scope of the paper. There is a rich body of literature

[11,41–43] in this domain.

Considering the need of high speed processing, switches

commonly use ASIC on-chip memory as packet buffers. As

we discussed in Section 4.3.2, CQRD needs certain size of

crosspoint buffer (larger than a BDP in the worst case) to

ensure long flows’ throughput saturating port capacity. That

raises a possible concern: can current ASICs offer memory

large enough to implement a CQRD switch with practical

size? Similar to [10], we conduct a back-of-envelope of

calculation below. We assume a high-performance switching
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Fig. 6. The number of flows that are output contending but not path contending (OC-PC), path contending (PC), and not interfered (non-interfered) with giant

flows in the experiments.
ASIC design using 18 mm × 18 mm die size in total. Consid-

ering it consists of 70% packet memory and 30% switching

and memory-decoder logic die area [44], and an SRAM

cell size of 0.06 μm2 [35], then the ASIC can contain about

470MB on-chip memory in total. According to our former

analysis (Section 4.3.2), considering the worst case, we can

easily build a 128 × 128 CQRD switch with each XB’s size

larger than a typical BDP (25 KB) in current production data

centers. Moreover, even considering future production data

centers with a larger BDP (100 Gbps × 20 μs = 250KB [6]),

a 48 × 48 CQRD switch can be built using modern ASIC

technology, with the size of each XB larger than a BDP.

6. Performance evaluation

To evaluate CQRD’s performance, we implement and

simulate CQRD in NS2 [22], and compare its performance

with two other switch-based approaches, OQ and HCF. Also,

we compare CQRD with original classic CQ switch. More-

over, we simulate four hybrid approaches: the most well-

known transport layer method DCTCP [2] combined with

CQRD, CQ, OQ, HCF, respectively. The evaluation is based

on the following five experiments. In experiment 1, we sim-

ulate a single DCN aggregation/core switch. In experiment

2, a classic multi-stage DCN switching topology with 480

servers has been simulated. In experiment 3, we discuss the

scenario of incremental deployment. In experiment 4, we

study the impact of different buffer sizes on CQRD’s perfor-

mance. And in experiment 5, we show that a combination

of CQRD and transport layer methods can further improve

performance.

We first describe the traffic workloads, simulation pa-

rameters, and performance metrics, followed by the detailed

results of the five experiments. Since giant flows are the trig-

gers of DCN’s performance degradation [2], we are mainly

interested in the flows interfered by the giant flows. We will

show that OQ, HCF, CQ and CQRD perform differently because

they differ in queue management granularity and how they

deal with the output contending and path contending flows.
6.1. Experiment setup

Traffic workloads. We derive our workloads from the

characteristics of real operation data center traffic [3,25] as

shown earlier in Fig. 3. During the simulations, source and

destination of the flows are randomly chosen among all the

switch ports (in experiment 1) or among all hosts (in experi-

ments 2–5). The inter-arrival time of the flows obeys the log-

normal distribution [3]. We scale the flow inter-arrival time

to simulate the moderate (0.1), heavy (0.4), and extreme (0.7)

loads in the network.

Fig. 6 shows the ratio of flows that are output contending

but not path contending (OC-PC), path contending (PC), and

not interfered (non-interfered) with giant flows (as defined

in Section 4) in all the simulations. This figure shows that

the giant flows interfere with more than 80% of all flows al-

though they contribute to less than 3% of all flows. As shown

in Fig. 6(b), giant flows interfere with more flows in multi-

stage DCN than in a single switch. This is because flows pass

longer paths in this topology and more flows tend to intersect

in ToR and aggregation switches.

Simulation parameters. All the parameters of HCF are set

as the recommended in HCF paper [12] (same as Section 3.3).

During all the simulations, we use the SACK [23] version of

TCP, which has already been widely implemented in most

of the operating systems. The initial window size and min

retransmission-time-out (RTO) are set to be 4 and 200 μs re-

spectively, which is typical in high-speed DCN [6].

Performance metrics. Following the convention in [6],

we consider two main performance metrics—flow comple-

tion time for short flows and goodput for large flows. These

two metrics reflect the key performance of these two kinds

of flows.

6.2. Experiment 1: single aggregation/core switch

Setup. Our first experiment is to simulate the aggrega-

tion and core switches with huge amount of flows passing

by, and compare different approaches in this situation. We

simulate a 24 × 24 switch (a typical DCN switch) shown in
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Fig. 7. Experiment 1: a 24 × 24 switch used in simulations.
Fig. 7. Each port has a 10 Gbps link rate and 4 μs link delay.

This generates a ∼16 μs end-to-end round-trip time (RTT)

without queueing, which is realistic in the real DCN environ-

ment according to [6]. In all three schemes, we assume the

on-chip memory for packet buffers are 5MB, which can be

easily implemented by commodity FPGAs. As a result, each

output buffer has ∼210 KB in OQ, which conforms to the con-

vention [6]; HP and LP queue each has ∼105 KB in HCF; each

crosspoint queue buffer has ∼9 KB in CQRD.

During the simulation, 6000 flows are generated to 24

ports. The workload is as described before.

Results. Fig. 8 shows the overall FCT of all short flows

and goodput of all long flows at various loads of 10%, 40%

and 70%, which represent moderate, heavy and extreme

loads. We observe that, with any load, CQRD has a much
Fig. 8. Experiment 2: overall FCT of all short flows an
better overall FCT of short flows, which contribute to about

90% of all flows according to Fig. 3. The average of CQRD’s

FCT is more than 25% lower than HCF and OQ schemes

at all the loads. Also, the 99th percentile of CQRD’s FCT is

still more than 10% better than HCF and OQ schemes. As

we can see, a simple CQ without random-drop scheme can

reach a much better performance than HCF and OQ. And

CQRD can further improve CQ’s performance by ∼5–7% and

∼6–10% in average and 99th percentile of all short flows

respectively. As the load grows higher (e.g. ≥ 40%), more

and more concurrent flows come into the switch and flow

interference becomes severe. In this situation, it gets harder

to provide good flow separation and the performance of

these three schemes tends to get similar at the tail. However,

CQRD still performs the best as we can see in Fig. 8(a). This is

because that there are several giant flows with sizes of more

than 1MB among all the flows. In OQ switch, they occupy

most of the buffer resource and lead to packets of many

other short flows dropped, which greatly increase the overall

FCT. Although HCF sets two separate queues at each output

and tries to fairly serve all the flows using hash and credit

schemes, it does not provide enough buffer separation for

different flows. Many flows are output contending but not

path contending, and in HCF they still have to contend for

the same buffer resource. This results in the packet losses
d goodput of all long flows at various loads.
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Fig. 9. Experiment 1: average and various percentile FCT of all short flows and goodput of all large flows interfered by the giant flows at moderate load.
for short flows that are output contending but not path

contending with giant flows, which is avoided in CQRD.

As for flows larger than 100 KB, CQRD has almost the same

overall performance (i.e., goodput) as HCF and OQ (Fig. 8(b)).

These results show that the small size of separated buffer in

CQRD will not significantly impair the large flows’ goodput.

So far, we have shown that the overall performance of all

short flows in CQRD greatly outperforms the other two ap-

proaches, at the cost of only a minor goodput decrease of

very few large flows. This is because CQRD alleviates the per-

formance degradation of the flows interfered by a few gi-

ant flows. As Fig. 6(a) shows, although less than 3% of all

flows are giant flows, they interfere with more than 80% of all

flows. And most of the interfered flows are in different switch

paths with the giant flows. CQRD uses separated buffers and

random-drop schemes respectively, to guarantee the perfor-

mance of those interfered flows having the same outputs or

paths with giant flows. We now investigate all the flows (in-

cluding giant flows) interfered by giant flows and show how

CQRD improves their performance. Those flows which are

not interfered by giant flows perform well and similarly in all
the three schemes, so we omit the results here due to page

limit.

In Fig. 9 we show the average and 20th to 99th percentile

FCT of short flows and goodput of large flows which are in-

terfered by giant flows, at a typical moderate load. We have

also done these simulations at other loads from 10% to 80%

and the comparison results are similar. We only present the

results at typical moderate load (10%) here due to page limit.

As Fig. 9(a) shows, for all interfered short flows, FCT in

CQRD is much lower than CQ, HCF and OQ switches. On the

other hand, the goodput of all interfered large flows is only a

little lower than the other two approaches. For example, the

average goodput in CQRD is only about 5% lower than HCF’s.

These results show that CQRD is able to deal with flow inter-

ference much better than the other two approaches.

Recall that, as discussed in Section 4, CQ provides (1) com-

plete separation for output contending (excluding those path

contending) flows, by using separated buffers and RR schedul-

ing, and (2) interference alleviation for path contending flows

by using random-drop when queue is full. We now show how

well CQRD performs for these two types of flows.
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Fig. 10. Experiment 2: a multi-stage DCN topology used in simulations.
Fig. 9(b) shows the results for flows output contending

(but not path contending) with giant flows. CQRD greatly ex-

ceeds others’ performance for these flows just as we expect.

These flows contribute to the majority of all interfered flows

as shown in Fig. 6(a), therefore, their performance dominates

the performance of all interfered flows. Although these small

flows are also separated from giant flows in CQ as the same

as in CQRD, they still interfere with other small and large

(but not giant) flows with the same switch paths. Thus, with

random-drop schemes, CQRD increases the chance of small

flows to be stored in the buffer at the trade of dropping a lit-

tle more packets in large flows. That makes CQRD perform

better than CQ in these small flows output contending (but

not path contending) with giant flows.

As for flows path contending with giant flows, CQRD suc-

cessfully reduces the FCT of short flows significantly (left part

of Fig. 9(c)), by random-drop scheme. This is evidenced by

the difference between CQRD and CQ. CQRD has a lower FCT

than CQ, which shows CQRD successfully alleviates the in-

terference among flows path contending with giant flows.

However, without random-drop scheme, small flows are in-

terfered by giant flows with same switch paths in pure CQ.

And that leads to a bad performance (especially in 99th per-

centile) of CQ, as shown in Fig. 9(c).

6.3. Experiment 2: multi-stage DCN switching fabric

Setup. In the second experiment, we simulate a two

layer multi-root topology with full bisection bandwidth (see

Fig. 10). This topology is one of the most commonly used

topologies in large-scale DCN [25,45]. The network consists

of 480 end hosts allocated in 24 racks, which are intercon-

nected by two aggregation switches and 24 ToR switches.

Aggregation switches have 5MB memory for packet buffer

as before, and twenty-four 10 Gbps ports connected to each

ToR switch. Each ToR switch has less memory with size of

4MB, and two 10 Gbps ports connected with two aggregation

switches, and twenty 1 Gbps ports connected to 20 hosts re-

spectively. These are typical parameters of ToR switches [46].

The delay of each link is 2 μs, which means a ∼16 μs end-

to-end RTT across racks and a ∼8 μs RTT within a rack. We

use Equal Cost Multi-path (ECMP) [47], which is the de facto

network load-balancing scheme [48] in modern data centers.

CQRD (CQ, HCF, OQ) are used in all switches in the topology

when simulating CQRD (CQ, HCF, OQ)’s performance. During

the experiment, 20000 flows are generated according to the

work load described in Section 6.1.
Results. First, we show the overall FCT of all short flows

and goodput of all long flows at various loads. As shown in

Fig. 11(a), CQRD has the best FCT performance at various

loads. The average FCT of all short flows in CQRD are about

30–50% lower than HCF and OQ, and 6–8% lower than CQ

at moderate (10%) and heavy (40%) loads. And the 99th per-

centile of CQRD’s FCT is also much lower than others at these

loads. CQRD performs more better than other schemes in this

two-layer DCN environment than the single switch before.

It is because much more flows generated (20,000 here and

6000 before) and more flow interference occur among all the

ToR and Agg switches.

While load grows to extreme (70%), the performance gap

of all the methods becomes narrower. As we stated before,

flow interference becomes severe as the load grows higher.

In this situation, it becomes difficult to provide good flow

separation and the performance of these three schemes are

similar. However, CQRD still performs the best at the average

FCT as we can see in Fig. 11(a). In addition, Fig. 11(b) shows

that, in CQRD, the average and 99th percentile goodput of

all large flows perform almost the same as in HCF and OQ.

These results show that a DCN built with CQRD switches has

a much better overall performance, only at the cost of a mi-

nor goodput decrease of very small portion large flows. Using

separated buffer and random-drop scheme, CQRD not only

provides flow separation for a single switch environment as

shown in the former subsection, but also performs well in a

multi-stage switch data center network.

Next, we also dive into the performance of the flows in-

terfered by giant flows. Those flows which are not interfered

by giant flows are omitted here similar to experiment 1, be-

cause they almost have the same low delay and high good-

put. Results at various loads are similar, so we only present

the results at moderate load here.

Fig. 12(a) shows the overall performance of all the in-

terfered flows at moderate load. The average and 99th per-

centile FCT in CQRD are 30% and 48% lower than HCF and

OQ. CQRD also has a much lower FCT for all interfered short

flows at other percentiles. On the other hand, the goodput

of large flows in CQRD is almost the same as other methods.

This shows that in data center, for a multi-stage switch net-

work built by CQRD, the flow interference caused by giant

flows can be significantly alleviated.

We repeat the same simulation as experiment 1, to re-

veal the performance of the flows that are output contend-

ing but not path contending with giant flows, in multi-

stage switch DCN environment. As we can see in Fig. 12(b),

CQRD greatly improves the performance of these kind of

flows by switch path separation. CQRD performs similar to

CQ with these flows, which uses the same crosspoint buffer

scheme.

As for flows path contending with giant flows shown in

Fig. 12(c), CQRD has the best FCT for average and all per-

centile. And CQRD significantly outperforms CQ with these

kind of flows, thanks to the random-drop scheme instead of

tail-drop.

6.4. Experiment 3: incremental deployment

We have shown in the former experiment that, by fully

deploying CQRD in all DCN switches, flow interference could
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Fig. 11. Experiment 2: overall FCT of all short flows and goodput of all long flows at various loads.
be alleviated and the overall DCN performance can be greatly

improved. However, it usually takes cost and time to re-

place all the switches in an operational data center. As such,

DCN operators often prefer to incrementally deploy a new

solution. For instance, they may incrementally deploy new

switches by partition/clusters or tier-level. In this experi-

ment, we will show that CQRD can also offer substantial per-

formance improvement for DCN while being incrementally

deployed.

Setup. We simulate the same DCN environment (Fig. 10)

as Section 6.3, except incrementally deploying CQRD/CQ/HCF

switches instead of full deployment. We consider two scenar-

ios of incremental deployment: (1) By partition/clusters. We

assume four neighbor ToR switches constituting a small par-

tition/cluster and deploy CQRD/CQ/HCF switches by different

number of partition/clusters. (2) By tier-level. We assume all

switches in one certain tier (ToR or Agg) are replaced and the

rest are remained to be OQ switches. The traffic load and all

other parameters are set as the same as experiment 2.

Results. Fig. 13 shows the results at the same moderate,

heavy and extreme loads used in the former experiment. For

the first scenario (by partition/clusters), as we can see in

Fig. 13, even with only part of partition/clusters deployed,

CQRD and CQ still substantially outperforms HCF and OQ in
average FCT of all short flows. Meanwhile, the goodput of all

large flows remains almost the same as HCF and OQ. For in-

stance, with only 50% of partition/clusters (12 ToRs) switches

deployed, the average FCT of all short flows in CQRD can be

∼10–24% lower than HCF and OQ methods respectively, at

different loads. CQRD and CQ behaves similar while small

part of partition/clusters are deployed. As more partition/

clusters are deployed, CQRD substantially outperforms CQ.

For the second incremental deployment scenario (by tier-

level), CQRD also provides reasonable performance improve-

ments compare to other methods. As the right most points

show in Fig. 13, while all ToR switches are deployed, CQRD

performs much better than other methods, with 30–50%

lower FCT of short flows than HCF and OQ, and 4–8% lower

than CQ at various loads. The goodput of large flows remains

to be similar as well. While only deploying in all Agg switches

(the left most points in Fig. 13), the four methods behave sim-

ilar, and CQRD offers less performance benefit. It is because

that only replacing Agg switches, flows still may be interfered

with each other in ToR switches. And most flow interference

occur in ToR switches. This also leads CQRD to behave sim-

ilar to CQ. However, CQRD and CQ still perform better than

HCF and OQ switches, which benefits from output contend-

ing flows’ separation through crosspoint buffer.
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Fig. 12. Experiment 2: average and various percentile FCT of all short flows and goodput of all large flows interfered by the giant flows at moderate load.
6.5. Experiment 4: impact of different buffer sizes to CQRD

As analyzed before, CQRD use separated crosspoint

queues to offer separation for flows with different switch

paths. In addition, with random-drop scheme, CQRD could

greatly alleviate interference between different flows and

improve the performance. However, this improvement is

reached through sacrificing OQ switch’s ability of statisti-

cally multiplexing buffer resource for flows coming from dif-

ferent input ports. That may raise the concern that CQRD

will consume too much buffer resource. In this experiment,

we study the performance of CQRD using different buffer

sizes. We will show that CQRD’s performance improve-

ment can be achieved with a very reasonable amount of

buffer resource consumed, which verifies our former analysis

(Section 4.3.2).

Setup. We also use the same DCN environment (Fig. 10)

as Section 6.3, except using different buffer sizes instead of

a fixed one for all the switches. For simplicity, we assume all

aggregation and ToR switches having the same buffer size,

and each crosspoint buffer has equal size. We study CQRD’s

performance as the buffer size changes. Input traffic are gen-
erated according to the traffic model derived from real DCN,

as the same as experiment 2.

Results. Fig. 14 shows the average and 99th percentile

FCT of all short flows and goodput of all large flows, while

using different buffer size for CQRD switch, at various loads.

The buffer size in the figure refers to the total size of those

crosspoint buffers corresponding to the same output port

in CQRD, which is the counterpart of the output queue size

in OQ switch. It varies from 30 KB to 400 KB. As we can see,

both CQRD’s FCT and goodput performance remains stable

while the buffer size varies from 400 KB to about 120KB,

at moderate, heavy and extreme load. When the buffer size

becomes smaller than 90 KB, CQRD’s performance starts to

slightly degrade at heavy and extreme load, but at moderate

load it still performs reasonably well. Performance of CQRD

sharply degrades while the buffer size is reduced to be 30 KB.

At this size, each crosspoint queue in a 24-port CQRD switch

can store only approximately one maximum-size packet,

which is too small for CQRD to reach a good performance.

From this experiment we can see that CQRD could reach a

stable good performance at a minimum buffer size of about

120 KB for each output port, and increasing buffer size does
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Fig. 13. Experiment 3: average FCT of all short flows and goodput of all large flows, while incrementally deploying ToR or Agg switches by CQRD/CQ/HCF, at

various loads.
not obviously benefit the performance. Such a small buffer

size (e.g. 120 KB) for each switch output port is totally within

the capacity of commodity switches [21,46], which shows

the feasibility of the CQRD solution.

6.6. Experiment 5: CQRD with DCTCP

Through former analysis and experiments, we have

shown that CQRD can improve the performance of DCN with
TCP flows. Moreover, as discussed in Section 4.3.3, CQRD

could also offer performance improvement to DCN using

transport with adaptive rate control (e.g. DCTCP). In this sec-

tion, we carry experiments to show how CQRD behaves un-

der this environment.

Setup. We use the same DCN environment (Fig. 10) and

same input workload as Section 6.3. Instead of the TCP SACK

used before, in this experiment, we use the well-known

DCTCP as the transport layer protocol. The weight of new
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Fig. 14. Experiment 4: average and 99th percentile FCT of all short flows and goodput of all large flows, while using different buffer sizes for CQRD switch, at

various loads. The buffer size in the figure refers to the total size of those crosspoint buffers corresponding to the same output port in CQRD. Each crosspoint

buffer has the same size. .
sample in DCTCP is set to be 6.25E−3, according to the sug-

gestion in DCTCP paper [2]. Accordingly, we set the ECN

marking threshold of the four compared methods (CQRD, CQ,

HCF and OQ) to be the same, which is 40% of the queue’s

capacity. CQRD and CQ switches start to mark packets with
congestion experiencing (CE) flag if the corresponding cross-

point queue size has exceeded the threshold. CQRD uses the

random-mark scheme (see Section 4.3.3) designed for DCTCP

environment, while CQ simply marks the subsequent pack-

ets. HCF [12] has no special design for DCTCP environment,
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Fig. 15. Experiment 5: overall FCT of all short flows and goodput of all long flows at various loads, with DCTCP. Legend CQRD/CQ/HCF/OQ in the figure denotes

the hybrid of DCTCP and CQRD/CQ/HCF/OQ, and legend TCP+OQ denotes the hybrid of TCP SACK and OQ.
so we simply make it mark subsequent packets with CE flag,

when the queue (HQ or LQ) that the packets are going to be

buffered into exceeds the threshold. We compare the four

methods using DCTCP, and the OQ method using original TCP

SACK.

Results. Fig. 15 shows the overall FCT of all short flows

and goodput of all long flows at various loads. Thanks to the

adaptive rate control schemes, unlike original TCP which al-

ways fills up buffers, DCTCP detects congestion before buffer

overflow and control its sending rate, thus keeps the switch

buffer length in a much lower state. Therefore, simple OQ

with DCTCP can greatly outperform the original TCP SACK for

short flows, as shown in Fig. 15(a), by reducing the queueing

delay and also the loss rate of short flows. CQRD is able to fur-

ther improve the performance, by separating most long flows

from the short flows using crosspoint buffer and random-

mark. As we can see in Fig. 15(a), CQRD has reduced the aver-

age short flows’ FCT by ∼30–40% from HCF and OQ, and ∼5–

10% from CQ. Also, the 99th percentile of short flows in CQRD

is much lower than HCF and OQ. However, in this condition,

the 99th percentile of short flows is similar in CQRD and CQ,

and even a little higher in CQRD. It is because that some un-

lucky short flows have been throttled more than once by the
random-mark scheme in CQRD, which leads to a higher 99th

percentile.

Similar to the original TCP SACK, the goodput of long

DCTCP flows remains to be similar as well. Fig. 15(b) shows

that OQ with original TCP has a slight higher goodput for long

flows than methods using DCTCP. It is because that, DCTCP is

hard to accurately control the rate of long flows [6] to exactly

fully utilize the capacity without overflowing the buffer. In

our case, DCTCP sacrifices some link utilization to ensure low

buffer state, which verifies our former analysis.

7. Testbed experiment

In this section, we evaluate CQRD’s performance using a

simple experiment in a small-scale testbed, to verify our im-

plementation as well as the effectiveness of CQRD to alleviate

flow interference in real environment.

Testbed setup. We build a small testbed with a single

switch of eight ports, and eight servers, each of which is

connected to one of the eight ports. The original switch is

a Broadcom BCM56842 switch [19], which is a logical OQ

switch. And during the experiment, we configure the switch

to be a CQRD/CQ switch according to the method introduced
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Fig. 16. Testbed experiment: average FCT of all short flows and goodput of

each long flow.
in Section 5. The capacity of original switch port is 10 Gbps,

but each port works in the rate of 1 Gbps in our testbed,

limited by the servers’ network interface card (NIC) speed.

Each output buffer in the switch has a size of ∼1.13MB, which

means each crosspoint buffer in CQRD/CQ has a size of ∼140

KB. Standard TCP SACK without ECN is used throughout the

experiment. We compare the performance of CQRD, CQ and

OQ in this testbed experiment. Because HCF cannot be imple-

mented by configuring existing commodity switches, we do

not compare with it in this experiment.

Input traffic. In CQRD/CQ/OQ switch, flows are poten-

tially interfered with each other only when they are destined

to the same output, and each output port buffers packets sep-

arately and schedules them independently. So we can evalu-

ate the switch’s performance by picking out a certain output

port and evaluate the performance of the flows destined to

it. In this experiment, we pick the zeroth port without loos-

ing generality. Specifically, assuming Hi denotes the server

connected to the ith switch port, during the experiment, we

generate two long bandwidth-greedy flows from H1, H2 to

H0, using Iperf [49] to send long TCP flows to H0 at the max-

imum rate allowed. Also, on H1–H7, we write a simple TCP

socket program in each server to randomly generate short

flows with size of 10 KB to H0. The inter-arrival time of short

flows from each server is randomly distributed within 500

ms. We conduct the experiment for 20 s, and about 600 short

flows have been generated in total.

Results. Fig. 16 shows the average FCT of all short flows

and the goodput of the two long flows (denoted as long flow

0 and 1). Similar to the former simulation results, in the

testbed experiment, CQRD outperforms than CQ, and per-

forms much better than OQ. The average FCT of short flows

in CQRD is about 5% lower than CQ, and 28% lower than OQ.

As for long flows, similar to the simulation results in Section

3, they have almost the same goodput in CQRD, CQ and OQ.

The aggregate goodput of these two long flows have satu-

rated the bandwidth (1 Gbps) in all the three methods, which

confirms our analysis in Section 4.3. Moreover, as analyzed in

Section 3, CQRD/CQ provides a better fairness among these

two long flows than OQ. Although it is only a small testbed,
the results in this experiment have verified our implementa-

tion in Section 5 and further validated the former simulation

results.

8. Conclusion

In this paper, we advocate that modern DCN flow charac-

teristics call for fine-grained queue management in switches.

Along this direction, we propose a switched based solution

called CQRD to address DCN flow interference problem, with-

out any modification to end hosts or any coordination among

different switches. CQRD is simple to implement, and is more

fine-grained than traditional OQ scheme and current state-

of-arts HCF scheme. It only requires some minor changes to

the buffering and scheduling scheme in DCN switches. We

have implemented an 8 × 8 logical CQRD switch based on

configuring existing commodity switch, which validates the

simplicity and feasibility of CQRD’s implementation. And we

show through NS2 simulations, that when flow interference

happens, CQRD can improve the flow completion time of

short and delay-sensitive flows by up to ∼50%, at the cost of

only a minor goodput decrease of large flows. Moreover, we

show that a partial deployment of CQRD is still able to greatly

improve the DCN performance. Furthermore, we show that a

hybrid of CQRD and transport layer methods can offer bet-

ter performance over transport layer only methods. Finally,

through small-scale testbed experiments, we have verified

our CQRD implementation and the former simulation results.
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