

Guo Chen, Dan Pei, Youjian Zhao, and Yongqian Sun

Tsinghua University

Outline CQ Switch — Buffer Capacity V.S. Performance — Evaluation

Typical Switch Fabric Architectures

Input Queued (IQ)

Combined Input and Crosspoint Queued (CICQ)

Ultra-high link speed

Only 5.12ns to make switching decision for a 64B packet in 100G routers

Today's Router

Linecards and switch module in different racks

~100ns for round-trip communication in

10m link (~ 2×10^8 m/s propagation speed)

Solution:

Self-sufficient switch fabric with no need of instantaneous communication between linecards and switch module

Crosspoint-Queued (CQ) Switch

- No buffer at linecards
- Buffering only inside the switch Module
- Independent output schedulers
- Drops with full buffers

But how to design the crosspoint buffers' size to meet performance requirement?

Our contribution

 Study the different buffer capacity's influence to the CQ switch fabric's performance (throughput & delay)

Outline CQ Switch — Buffer Capacity V.S. Performance — Evaluation

Methodology for analysis

Discrete-time Quasi-birth-death process a_{ii}^k : Probability of cells arrived at in a given time slot. k=0,1. $a_{ii}^{0} + s_{ii} a_{ii}^{1}$ $(1-s_{ij})a_{ij}^0 + s_{ij}a_{ij}^1$ $(1 - s_{ij})a_{ij}^0 + s_{ij}a_{ij}^1$ $l - S_{ii}$ $(1 - s_{ii})a_{ii}^1$ $(1-s_{ij})a_{ij}^{1}$ $(1 - s_{ij})a_{ij}^1$ 0 L-1 1 $S_{ij} a_{ij}^0$ $S_{ii} a_{ii}^0$ S_{ij} Fig. The Quasi-birth-death state transition diagram for XB_{ii} 's queue length S_{ii}: Probability of crosspoint buffer XB_{ii} being selected by output O_i . Assumption

- Independent Bernoulli traffic (Bernoulli parameters & destination distribution known)
- Static non-work-conserving random scheduling algorithm (known)
- NxN switch

Throughput Analysis

Closed-form throughput calculation formula

$$TP = 1 - LR = 1 - \frac{\sum_{i=1}^{N} \rho_i \left(\sum_{j=1}^{N} d_{ij} \eta_{ij}^L\right)}{\sum_{i=1}^{n} \rho_i \left(\sum_{j=1}^{N} d_{ij} \eta_{ij}^L\right)}$$

$$\frac{\rho_i: \text{Bernoulli parameter of the cell arr } \eta_{ij}^L: \text{Steady-state probability of } XB_{ij} \text{'s length equals } l.$$

$$\eta_{ij}^0 = \frac{1}{1 + \sum_{l=1}^{L-1} \left(\frac{(1-s_{ij})a_{ij}^1}{s_{ij}a_{ij}^0}\right)^l + a_{ij}^0 \left(\frac{(1-s_{ij})a_{ij}^1}{s_{ij}a_{ij}^0}\right)^L}{\eta_{ij}^l = \eta_{ij}^0 \left(\frac{(1-s_{ij})a_{ij}^1}{s_{ij}a_{ij}^0}\right)^l, \quad l = 1, \dots, L-1$$

$$\eta_{ij}^L = \eta_{ij}^0 a_{ij}^0 \left(\frac{(1-s_{ij})a_{ij}^1}{s_{ij}a_{ij}^0}\right)^L$$

 Non-closed-form but convergent average delay calculation formula

$$DL = \frac{\sum_{i=1}^{N} \rho_i E\{W_i\}}{\left(\sum_{i=1}^{N} \rho_i\right)}$$

 $\neg N$

 W_i : Time slots a cell spent in input I_i .

$$E\{W_i\} = \sum_{j=1}^{N} d_{ij} E\{W_{ij}\} \qquad E\{W_{ij}\} = \sum_{n=0}^{\infty} nP\{W_{ij} = n\}$$
$$P\{W_{ij} = n\} = \begin{cases} \eta_{ij}^0 s_{ij} \left(\frac{1-s_{ij}}{a_{ij}^0}\right)^n, \ 0 \le n \le L-1\\ \eta_{ij}^0 s_{ij} (1-s_{ij})^n \sum_{l=0}^{L-1} \left[C_n^{n-l} \left(\frac{a_{ij}^1}{a_{ij}^0}\right)^l\right], \ n > L-1 \end{cases}$$

Lower Bound for Work-conserving Scheduling Algorithms

 Theorem. Under same independent Bernoulli traffic, a CQ switch using work-conserving random (WCRand) scheduling algorithm has a higher throughput and lower average delay than using non-work-conserving (nWCRand) fair random scheduling algorithm.

Outline CQ Switch — Buffer Capacity V.S. Performance — Evaluation

uniform Bernoulli traffic

Loss rate and average delay of a 16×16 CQ switch under uniform Bernoulli traffic with ρ =0.95

Non-uniform Bernoulli traffic

Loss rate and average delay of a 16×16 CQ switch under non-uniform Bernoulli traffic with ρ =0.95 and ω =0.5

- Data sets
 - From CAIDA
 - 1-minute traces from 10Gbps links in San Jose

A simple Round-robin or Random scheduling is able to reach a very good performance with feasible buffer size Reveals the impact of buffer size on CQ switches performance

 Provides a theoretical guidance on designing the buffer size

 CQ shows good performance under real traces

Thanks!