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ABSTRACT
The detection of performance changes in software change
roll-outs in Internet-based services is crucial for an opera-
tions team, because it allows timely roll-back of a software
change when performance degrades unexpectedly. However,
it is infeasible to manually investigate millions of perfor-
mance measurements of many roll-outs.

In this paper, we present an automated tool, FUNNEL, for
rapid and robust impact assessment of software changes in
large Internet-based services. FUNNEL automatically col-
lects the related performance measurements for each soft-
ware change. To detect significant performance behavior
changes, FUNNEL adopts singular spectrum transform (SST)
algorithm as the core algorithm, uses various techniques to
improve its robustness and reduce its computational cost,
and applies a difference-in-difference (DiD) method to dif-
ferentiate the true causality from the random correlations
between the performance change and the software change.
Evaluation through historical data in real-word services shows
that FUNNEL achieves an accuracy of more than 99.8%.
Compared with previous methods, FUNNEL’s detection de-
lay is 38.02% to 64.99% shorter, and its computation speed
is 4.59 - 7098 times faster. In real deployment, FUNNEL
achieves a 98.21% precision, high robustness, fast detection
speed, and shows its capability in detecting unexpected per-
formance changes.
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1. INTRODUCTION
In large Internet-based services such as search engines,

online shopping, and social networking, the operations team
needs to frequently conduct software changes, i.e., software
upgrades and configuration changes, in order to deploy new
features, fix bugs, and improve service performance. Al-
though each software change is extensively tested on testbeds
before deployment, errors and bugs may still occur in the op-
erational environment because of diverse hardware/software
systems, complex interactions, and the large scale of de-
vices [1, 4]. Therefore, the operations team typically de-
ploys software changes using a “Dark Launching” [2] ap-
proach. Instead of rolling out a software change to all servers
at one time, the operations team deploys the software change
on a subset of servers at the beginning and continuously
monitors a predefined list of Key Performance Indicators
(KPIs) to determine the impact of the software change. The
KPIs cover a wide range of performances, including user-
perceived issues (e.g., Web page response delay), service
performance (e.g., advertisement click count), hardware health
(e.g., server memory utilization), and so on.

If the KPIs on the server subset perform as expected, the
software change will be rolled out to all servers. Otherwise,
the software change should be rolled back as soon as possi-
ble. Generally, service performance degradation may induce
poor user experience [1, 4] or revenue drop [8].

Thus it is important to detect significant KPI changes rapidly,
whether positive or negative, to allow a timely roll-back.
However, the operations team generally assesses the impact
of software changes manually in Internet-based services, which
has been demonstrated to be error-prone, cumbersome, and
almost impossible to scale to a larger size. As a result, some



critical issues caused by software changes may fly under
the operations team’s radar, hurting the applications perfor-
mance and user experience [1, 4].

In this study, we focus on software changes and their im-
pact on KPIs. Our objective is to build an automated tool
that detects behavior changes rapidly and accurately in a
broad range of KPIs after a software change, and accurately
determines whether the behavior changes are caused by the
software change. Usually, KPI changes caused by software
changes include level shifts, e.g., a sudden increase in mem-
ory utilization, or ramp-ups/ramp-downs, e.g., a deteriorat-
ing condition. Similar to [20], we focus on level shifts and
ramp up/downs induced by software changes in this paper.
How to reduce the detection delay, i.e., the delay between
the occurrence of a KPI change and its detection is a real
challenge for Internet-based services for both scalability and
robustness reasons. First, the impact of a software change
can be observed in any of the huge number of KPIs of the
services and servers that share the same spatial scope with
the software change. In our studied scenarios, there are hun-
dreds, even thousands, of KPIs that should be monitored
after each single software change that has occurred, while
there are tens of thousands of software changes occurring
every day in our scenario. This forces the operations team
to monitor several million KPIs every day. The large scale
of the problem calls for an algorithm with low computation
overhead. Second, with the requirement of short detection
delay, we do not have the luxury of using data smoothing
and aggregation to achieve robustness any more, and the be-
havior change detection method should be quite robust [18].

To the best of our knowledge, in the literature there ex-
ists no rapid and robust method for impact assessment of
software changes in large Internet-based services. There
exists several studies of impact assessment in the area of
network infrastructure [18, 20]. However, the CUmulative
SUM (CUSUM) used in [20] suffers from long detection
delay [18], because the cumulative sum may take a long
time before it exceeds the threshold. Multiscale Robust Lo-
cal Subspace (MRLS) method applied in [18] achieves low
detection delay, but the iteration of Singular Value Decom-
position (SVD) used in subspace computation with l1-norm
exhibits high computational complexity [17]. While it works
in [18] for thousands of time-series metrics in backbone net-
works, MRLS would spend too much computational resources
for millions of KPIs in Internet-based services, and is hence
not feasible in our scenario. The iteration of SVD is essential
to MRLS for improving robustness, and it is hardly possible
to reduce the computation overhead of MRLS.

Singular Spectrum Transform (SST) [13] has emerged as
a popular performance change detection method recently.
SST has been demonstrated to be accurate with short de-
tection delay [12, 22]. However, based on SVD, SST still
suffers from high computational cost [14], and its accuracy
degrades fast in the face of noises [21]. KPIs in Internet-
based services are quite diverse intrinsically, exhibiting var-

ious characteristics including strong seasonality (e.g., Web
page view count), high variability (e.g., server CPU context
switch count), and stationarity (e.g., server memory utiliza-
tion). In addition, the baseline used to compare the perfor-
mance after software changes may be contaminated by the
impact of previous software changes and/or other factors, as
is the case in large infrastructure networks [18].

In this paper, we designed and implemented FUNNEL, an
automated tool for assessing the impact of software changes
rapidly and robustly in large Internet-based services. For a
given software change, FUNNEL automatically determines
the correct spatial scope of the impact, collects a broad range
of KPIs, detects KPI changes, and determines the KPI changes
caused by software changes. FUNNEL adopts matrix com-
pression and implicit inner product calculation to reduce SST’s
computation overhead. The short detection delay and the
low computational cost of the improved SST make timely
mitigation possible when FUNNEL is deployed online. Fur-
thermore, FUNNEL improves the robustness for SST, mak-
ing it work quite well across diverse types of KPIs, espe-
cially variable KPIs.

In addition to software changes, other factors including
seasonality, network hardware breakdowns, malicious attacks,
etc., can also give rise to KPI changes. The impact of other
factors can over-shadow the assessment of software changes
[19]. To achieve the accurate inference of the impact of
software changes, it is non-trivial for the operations team
to exclude KPI changes caused by other factors. However,
neither CUSUM and MRLS, nor the improved SST can ex-
clude the KPI changes induced by other factors. FUNNEL
uses a classic method, difference in difference (DiD) [6, 26,
27], to solve the problem by comparing the relative perfor-
mance between the treated group and the control group. DiD
compares the KPIs of service processes and servers in which
the software changes have been conducted (hereafter, collec-
tively referred to as tservers/tinstances, where “t” stands for
“treated”) with the KPIs of service processes and servers of
the same service (a server is usually dedicated to a specific
service in our context) without the software change (here-
after, collectively referred to as cservers/cinstances, where
“c” stands for “control”). If the operations team conducts the
software change without using the Dark Launching method,
and there is no server/process in cservers/cinstances, FUN-
NEL compares the impacted KPIs related to the software
change with historical measurements of KPIs to exclude sea-
sonality. FUNNEL adopts a relatively long baseline to ad-
dress baseline contamination (in our prototype implemen-
tation, KPIs of 30 days before the day of software change
are used to construct the baseline) [18]. Moreover, the large
number of KPIs of cservers/cinstances also alleviates the im-
pact of baseline contamination.

Our main contributions can be summarized as follows:
(1) We identify the problem of rapid, robust, and auto-

mated impact assessment of software changes in large Internet-
based services, and its research challenges in terms of scal-



ability, robustness, detection delay, and computation cost.
(2) We propose FUNNEL, the first approach in the lit-

erature that addresses the above challenges. The core idea
of FUNNEL is to use SST, a rapid change point detection
algorithm, as our algorithm basis. To reduce SST’s compu-
tation overhead, FUNNEL adopts matrix compression and
implicit inner product calculation. To improve the robust-
ness for SST against noises, FUNNEL uses a DiD method
to compare with various control groups.

(3) Evaluation through historical data shows that FUN-
NEL performs significantly better than CUSUM [20] and
MRLS [18], and the operational experiences of real deploy-
ment show FUNNEL’s good performance and value. We
conducted extensive evaluations using manually labeled KPIs
collected from 144 different software changes in real-world
Internet-based services. Specifically, FUNNEL achieved an
accuracy of more than 99.8%, a detection delay that is 58.82%
of that of MRLS and 33.76% of that of CUSUM. In addi-
tion, FUNNEL is more than 7000 times faster than MRLS in
computational speed, and over 4 times faster than CUSUM.
Furthermore, we have deployed the prototype of FUNNEL
to dozens of real-world Internet-based services. FUNNEL
achieved a 98.21% precision based on one week’s obser-
vation. A few representative cases were presented to show
FUNNEL’s robustness, detection speed, and capability to de-
tect unexpected KPI changes. In one specific case, FUNNEL
reduced the detection delay of one important incident to less
than 10 minutes, far less than the1.5 hour used in manual
assessment.

The rest of the paper is organized as follows. We pro-
vide an introduction to software change and KPI in §2, and
describe the design of FUNNEL in §3. The evaluation of
FUNNEL is presented in §4, followed by a description of
the deployment of FUNNEL and case studies in §5. Finally,
we review related works in §6 and conclude our paper in §7.

2. SOFTWARE CHANGES AND KPIS
In this section, we provide a brief introduction of software

changes and KPIs.

2.1 Scope of Studied Software Changes
In this paper, we focus on two types of software changes

on servers in large Internet-based services, software upgrades
and configuration changes, for the following three reasons.
(1) The operations team typically cares about the unexpected
consequences that are potentially due to these planned changes;
(2) These changes are controllable by the operations team
via command line interfaces and observable in logs; (3) We
have observed that these two types constitute the vast major-
ity of the tens of thousands of software changes in our data.

Software Upgrades. With the current rapid evolution of
the Internet, new features are continuously being deployed
with software upgrades. The operations team also conducts
software upgrades to fix bugs or improve service performance.
In a large service, it is often the case that one software up-
grade implements multiple features or bug fixes, and FUN-

NEL considers such a software upgrade as a whole. FUN-
NEL decides whether the whole software upgrade introduces
any KPI change but does not attempt to distinguish which in-
dividual feature or bug fix introduces KPI changes.

Configuration Changes. Using command line interfaces,
the operations team can change the configurations by using
specific commands. The configuration change can be in the
operating system (OS) or infrastructure software (e.g., a con-
figuration change in Apache), service configuration (e.g., an
increase in the number of threads in a service process), de-
ployment scale (e.g., an increase in the number of servers
where a service is deployed), or data source (e.g., an update
to the strategy that calculates the valid page view counts).

With the above focuses, the following perspectives are out
of scope for this paper. (1) We do not consider the software
changes on the network devices such as routers and switches,
which have been already studied in depth in [18, 19, 20];
(2) We do not consider software changes that were exter-
nal to the company, e.g., a change in a peer company, since
these changes might be invisible to the studied company’s
operations team. (3)We do not explicitly consider the inter-
actions across multiple concurrent or consecutive software
changes on a same server, which can be considered as one
combined change as a straw man approach. More detailed
studies along the last three directions are left as future work.
2.2 KPI
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Figure 1: The relationship among service, server, in-
stance and KPI

In the studied Internet-based services, there are hundreds
of thousands of servers providing various types of services.
Each service (e.g., search, web mail, social networking) runs
on one or more servers with a specific process on each server.
An instance denotes a process of a specific service on a
specific server. A KPI is a performance metric of a given
server/service/process. There are three types of KPIs that
need to be monitored for software changes assessment: server
KPIs, instance KPIs and service KPIs. The operations team
deploys an agent on each server to monitor the status of each
instance and collect the KPIs of all instances continuously.
For example, immediately after the process serves a cus-
tomer with some Web page view, the page view count is in-
cremented and a new page view response delay is recorded.
In addition, by analyzing server log files that record the sys-



tem status, the agent is able to periodically collect server
KPIs, such as CPU utilization, memory utilization, and NIC
throughput. A service KPI is an aggregation of all instance
KPIs in the service. Fig. 1 shows an example of the relation-
ship among service, server, instance and KPI.

After collecting the measurements of KPIs of servers and
instances, the agent on each server delivers the measure-
ments to a centralized Hadoop-based database, which also
stores the service KPIs aggregated based on the KPIs of the
instances. The database also provides a subscription tool
for other systems, such as FUNNEL, to periodically receive
the subscribed measurements based on the server, instance,
and service. The data collection interval at the servers is
typically 1 minute. Within one second, the measurements
subscribed by FUNNEL are pushed to FUNNEL.

In large services, there might exist some KPIs of dubious
quality. To the best of our knowledge, there is no previ-
ous work on eliminating low-quality KPIs in Internet-based
services. In this paper, we do not focus on eliminating low-
quality KPIs either. FUNNEL detects all KPI changes in the
impact set regardless of the quality of the KPI, and deliv-
ers the results to the operations team. The operations team
will then determine whether the performance changes in the
low-quality KPIs are induced by the software change or not.
2.3 KPI changes

A KPI change is defined as a non-transient change (e.g.,
lasting more than 7 minutes) in a KPI that is introduced
by a software change. In this paper, we focus on behavior
changes evidenced by individual KPI time series. As Fig. 2
shows, the changes can be either level-shifts immediately af-
ter software changes, or ramp ups or downs that ensue grad-
ually over time after the software changes.

Behavior changes in KPIs can validate the expected im-
pacts, e.g., a decrease in CPU utilization after a configura-
tion change aimed to increase efficiency, or show the unex-
pected impact occurrences, e.g., a sudden increase in page
view response delay after a software upgrade.

The assessment of any single software change should be
in a low-computational way, for the following two reasons.
(1) Hundreds to thousands of KPIs should be detected after
a single software change; (2) The operations team should
assess tens of thousands of software changes every day.
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Figure 2: Examples of level shift and ramp up/down

3. FUNNEL DESIGN
Recall that our aim is to provide an automatic tool for

rapid and robust impact assessment of software changes. To
achieve this goal, we designed FUNNEL, which is com-
posed of two main components, as shown in Fig. 3.

Impact set identification. In the studied search engine
company, the operations team names the services based on
the service hierarchy. We believe this practice is not uncom-
mon in other companies. FUNNEL derives the relationship
among services using the naming rules. Inspired by [18],
FUNNEL automatically identifies the impact set, that is, the
set of servers, instances, and services that may be impacted
(§3.1) based on the change deployment logs and the relation-
ships among services,.

Performance change detection and determination. FUN-
NEL uses an SST based performance change detection method.
It improves the robustness of SST (§3.2.2) and introduces
matrix compression and implicit inner product calculation
to solve the high computational cost of SST (§3.2.3). The
improved SST can detect KPI changes rapidly and robustly
(step 2 in Fig. 3). FUNNEL then determines whether the
changes are caused by software changes. If the KPI is not the
KPI of affected services (services that are related to the ser-
vice where the software change is deployed) (step 4 in Fig. 3)
and if the operations team rolls out the software change us-
ing Dark Launching (step 7 in Fig. 3), FUNNEL excludes
the impact of other factors (step 9 in Fig. 3) by applying a
DiD method (§3.2.4) using KPIs of cservers and cinstances
(step 8 in Fig. 3). Otherwise, based on the DiD method,
FUNNEL uses historical measurements of KPIs (step 5 in
Fig. 3) to exclude the impact of seasonality (§3.2.5), i.e., the
time of day and the day of week effects(step 6 in Fig. 3).
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Figure 3: FUNNEL design

3.1 Impact Set Identification
The effect scopes of different types of software changes

are different: some are local, e.g., a configuration change
aimed at balancing traffic only influences the performance
of the servers where the change is conducted, while others
are global, e.g., an upgrade in an advertising system can have



an impact on almost all types of Internet-based services. A
false impact scope of a software change may give rise to
delayed detection after a performance degradation or a large
number of false alarms.

It is straightforward to identify the impact scope of a soft-
ware change on servers because only the performance of the
servers where the software change is conducted can be di-
rectly affected. Therefore, the impact set of servers consists
of tservers, i.e., the servers on which the software change is
deployed. The set of tservers is directly obtained from the
software change logs.

Service A

...

Service B

Service C

Service D

 A1  A2  Am Am+1  An

...

tinstances cinstances

Changed 
service

Affected services

Figure 4: Example of service relationship
As Fig. 4 shows, for a software change deployed on Ser-

vice A, suppose that Service A has multiple instances (A1,
A2, ..., An), Service A is related to Service B and Service D
(i.e., Service A send requests and responses to Service B and
Service D, and the relationships among services are available
to the operations team), and Service B is related to Service
C. We refer to service A as the changed service, and ser-
vice B, service C and service D as the affected services. For
a specific software change deployed on (A1, A2, ..., Am),
(A1, A2, ..., Am) are the tinstances, and Am+1, ..., An are
the cinstances, which are the service A’s instances running
on the servers on which the change is not deployed yet. The
impact set consists of the tinstances, the changed service,
and the affected services. We do not include any instances of
the affected services in the impact set because it is unlikely
that any instance KPI of the affected services is individually
affected for load balancing reason. Instead, they are more
likely to be affected by the same impact. Thus, including
their aggregation, i.e., the affected service KPI in the impact
set, is sufficient for studying the impact of software changes
on the affected services.

Except for the affected services, the elements in the im-
pact set all belong to one service. The operations team usu-
ally does not deploy two software changes in one service at
the same time based on common practice (to avoid compli-
cations). Therefore, except for the affected services all the
elements in the impact set of a specific software change are
not likely to be impacted by other software changes. For the
affected services in the impact set, if they are the affected
services or the changed services of other software changes,
the operations team can manually determine the cause of the
behavior changes in the affected services when the results
are delivered by FUNNEL to them.

In addition, it is possible that two services share the same
network infrastructure, such as TOR, aggregation switch, ac-
cess router. However, based on intuition and the operations

team’ experience, even if some two services share the same
network infrastructure, the KPIs of one service is little im-
pacted by the other service. Therefore, we do not consider
the interference of services that share the same network in-
frastructure.

FUNNEL investigates all the KPIs in the impact set au-
tomatically. A time-series is constructed for each KPI by
dividing the original event series into equal time-bins. One
min is used as the time-bin in FUNNEL since our goal is to
achieve a rapid impact assessment of software changes.

3.2 Change Detection and Determination
For a given time series of KPIs, our mission is to deter-

mine whether behavior changes (level shifts, ramp up/downs)
exist and whether they are caused by software changes. Our
objective is to provide a rapid and robust KPI change de-
tection and determination tool, which goes beyond tradi-
tional change detection methods that compare means, me-
dians, distributions, etc., before and after software changes.
For example, the CUSUM approach used in [20] suffers from
low accuracy in the face of KPIs with strong seasonality. In
addition, its long detection delay also makes the CUSUM
method unsuitable for our scenario.

SST, which is based on SVD, has been shown to be ac-
curate and rapid in performance change detection in other
research fields [12, 22]. SST projects training data into a
normal subspace and finds the difference between the nor-
mal subspace and the data that needs to be tested. However,
SST suffers from low accuracy in the case of normal sub-
space contamination. Since the training data may contain
outliers as a result of previous software changes, network
device breakdowns, network attacks, etc., baseline contami-
nation often occurs in practice. In addition, due to the com-
plexity of SVD, SST suffers from high computational cost.

Our core idea is to improve the robustness and reduce the
computational cost of SST, and then combine the improved
SST with DiD to determine the impact of software changes.
We first provide a brief description of SST’s detection of
performance changes.

3.2.1 SST: Singular Spectrum Transform
SST [22] is based on SVD of the Hankel matrix [5], and

its main idea is to find the difference before and after a point
x(i) at time t. Specifically, the algorithm compares a repre-
sentation of the dynamics of a few points before x(i) and a
few points after x(i). The difference is normalized by xs(i).

The dynamics of the points before x(i) can be denoted by
a Hankel matrix:

B(t) = [q(t− δ), ..., q(t− 1)] (1)

where q(t) = [x(t− w + 1), ..., x(t)]
T , ω and δ are the size

and the number of the overlapping windows respectively .
To find the singular values and vectors of the Hankel Ma-

trix, SVD is used:

B(t) = U(t)S(t)V (t)T (2)



where S(t) is the singular value matrix and S(i − 1, i −
1) ≤ S(i, i) ≤ S(i + 1, i + 1), and U(t) and V (t)T are
unitary matrixes. The columns of U(t) are the eigenvectors
of B(t)B(t)T . The first η eigenvectors of U(t) (Uη(t)) are
used to denote the past change pattern.

Then, for the future points of x(i), a similar procedure is
used to find the largest change in the dynamics by concate-
nating γ overlapping windows of size ω, starting at ρ points
after x(i):

A(t) = [r(t+ ρ), ..., r(t+ ρ+ γ − 1)] (3)

where r(t+ ρ) = x(t+ ρ), ..., x(t+ ρ+ ω − 1)
T .

The eigenvector β(t), which represents the direction of
the maximum change in the future of the time-series, is:

A(t)A(t)Tuρ = µug (4)

β(t) = uργ (5)

where γ = argmin
i
(µi).

Then, the projection of β(t) onto Uη is used to quantify
the discordance between β(t) and Uη:

α(t) =
Uη(t)

Tβ(t)

‖Uη(t)Tβ(t)‖
(6)

The change score is calculated as the cosine of the angle
between α(t) and β(t) as:

xs(t) = 1− α(t)Tβ(t) (7)

The intuition behind the algorithm is that β(t) is in or very
near to the direction of the maximum change in the past de-
noted by Uη when there is no change in the time-series.

SST suffers from three problems as follows. (1) Five dif-
ferent parameters (ρ, γ, η, δ, ω) must be specified in SST.
Domain knowledge can help find proper values for δ and
ω, but fails in choosing the other parameters; (2) SST de-
grades fast in terms of accuracy when the input time-series
includes significant noises [21]; (3) SST is based on SVD
which suffers from high computational cost, and thus SST is
not computationally efficient and not suitable for KPI change
detection when the number of KPIs is large [14].

3.2.2 Improving the Robustness of SST
In this section, we describe our approach to addressing

the first two aforementioned problems. Our approach is mo-
tivated by the study reported in [21].

As suggested in [14, 21], we set ρ = 0, γ = δ, and since a
value of 3 or 4 is suitable for η even when ω is on the order
of 100 empirically, we set η = 3.

To estimate the change score around every point and alle-
viate the impact of noises in the time series, we attempt to
use more information from the future matrix A(t) than SST
does by utilizing the η eigenvectors of A(t)A(t)T with the
smallest corresponding eigenvalues (λ1:η), rather than using
only the first one.

Based on Eq. 4, the eigenvector βi(t) is calculated as:

βi(t) = ugi (8)

where i ≤ η, and λj−1 ≤ λj ≤ λj+1 for 1 ≤ j ≤ w.
The change score of the point x(i) at time t is calculated:

x̂(t) =

η∑
i=1

λi × ϕi(t)
η∑
i=1

λi

(9)

where

ϕi(t) = 1−
η∑
j=1

(βi(t)u
T
j )

2 (10)

where uj is the column of Uη . As described in [14], Eq.10
is consistent with Eq.7.

To alleviate the effect of noise on the final change score,
we then filter the sections where the median and the median
absolute deviation (MAD) of x̂(t) remain nearly constant.
The intuition behind the filtering step is that the accuracy of
SST is reduced mainly when the noise takes over the orig-
inal signal in the time-series. Since the mean and standard
deviation for Gaussian distribution are not very robust in the
presence of large changes or outliers, we use the median and
MAD rather than the mean and standard deviation [21]. The
combination of median and MAD has been proved to be a
more robust approach even when outliers occur [18]. The
change score x̃(t) is then updated:

x̃(t) = x̂(t)× | mediana(t)−medianb(t) |

× |
√
MADa(t)−

√
MADb(t) |

(11)

where mediana(t) and medianb(t) are the medians of x(t)
in the time-series of length (2ω − 1) before and after the
point x(i) at time t, respectively, and

MADa(t) = median(xia(t)−mediana(t)) (12)

where xia(t) is the time-series of length (2ω − 1) before
x(i) at time t. It is similar to MADb(t).

3.2.3 Reducing the Computational Cost of SST
In addition to the robustness problem, SST also suffers

from high computation cost because of the SVD procedure
and thus its direct deployment in our scenario is not feasible.
This section summarizes the work in [14]. First, we applied
the Implicit Krylov Approximation (IKA) algorithm to re-
duce the computation cost for SST. The essence of the IKA
algorithm is matrix compression and implicit inner product
calculation, and the efficiency of the algorithm was demon-
strated in [14].

First, let C = B(t)B(t)T , and η < k < ω, k ∈ N .
Since it is empirically true that the change score is not very
sensitive to δ [14], we set δ = w as the IKA algorithm re-
quires, and then, we get γ = δ = ω. In addition, suppose
that Tk is a k-dimensional tridiagonal matrix; a1, ..., ak and



b1, ..., bk−1 are the diagonal and subdiagonal elements of Tk.
At each time t, we first compute βi(t), and then run Lanczos
(C, βi(t), k) [11] to obtain Tk. Using the QL iteration [23],
the eigenvectors of the tridiagnal matrix Tk can be calculated
extremely fast. Based on the η top eigenvectors x1, ..., xl of
Tk, we can obtain ϕi(t) as:

ϕi(t) ' 1−
η∑
j=1

xj
2 (13)

Then the change score can be calculated by Eqs.9 and 11.
Based on [14], the dimension of the Krylov subspace k

can be set as:

k =

{
2η, η ∈ even

2η − 1, η ∈ odd (14)

For a service that needs quick mitigation on false software
changes, ω can be set to a small value such as 5. For a service
that needs more precise assessment of software changes, ω
can be set to a lager value such as 15.

3.2.4 Excluding Other Reasons for Non-affected-
service KPIs in Dark Launching

In addition to software changes, the KPI changes can also
be induced by other factors including seasonality, network
attacks, etc. The impact of these factors can over-shadow
the impact assessment of software changes.

To solve this problem, motivated by [15, 19], we apply a
split testing method to compare the relative performance of
the treated group (KPIs of servers/services/instances in the
impact set) and the control group (KPIs of cservers/cinstances).
The intuition behind the comparison is that other factors ex-
cept software changes influence both the treated group and
the control group.

Treated group and control group. In Dark Launching,
the operations team first deploys the software change on a
subset of servers and instances, and then, rolls it out to all
servers and instances that belong to the same service. It is
straightforward to identify the control group and the treated
group of servers based on the software change logs. The
KPIs of tservers constitute the treated group of servers, while
the KPIs of cservers, i.e., servers that belong to the same
service as tservers but without software changes, constitute
the control group of servers. Since the KPI of the changed
service is an aggregation of the KPIs of the tinstances, de-
termining the relative performance of the tinstances is suffi-
cient: if no performance changes in tinstances are caused
by software changes, it is not necessary to study the im-
pact on the changed service. Therefore, the treated group
of service consists of the KPIs of tinstances, while the con-
trol group of services is constituted of KPIs of cinstances,
i.e., instances that belong to the same service as tinstances
but without software changes. This is based on the four fol-
lowing observations about Internet-based services. (1) In-
stances and servers that belong to the same service exhibit
high-level spatial correlation or statistic dependency because

of the similarity in traffic load, memory usage, etc., thanks
to load balancing; (2) It is very likely that any non-software
change factors will introduce similar performance impact on
all servers and instances of the same service; (3) A perfor-
mance change induced by the software change introduces a
relative difference in performance between the treated group
and the control group; (4) As studied in [7], only a small
fraction (less than 3%) of edge links are hotspots in data-
center networks. In other words, a small fraction of servers
are hotspots. Even though there are KPIs of hotspot servers
in the control group, most of the KPIs in the control group
are not of hotspot servers. We use the average of all of the
KPIs in the control group to eliminate performance changes
caused by other factors, and the large number of KPIs in the
control group can alleviate the impact of hotspots.

The operations team’s common practice is not to deploy
two software changes in a specific service at the same time.
Furthermore, the KPIs of a specific control group all belong
to a specific service. Therefore, KPIs in the control group
are unlikely to be impacted by some other software changes.

For each affected service, if it is influenced by software
changes, all of its instances will be affected. Therefore, there
are no cinstances for affected services. We exclude the “Full
Launching” and other reasons for affected services in §3.2.5.

DiD method. DiD is one of the most popular tools in
econometrics [26] and health care [27] for evaluating the ef-
fects of interventions that are instituted at a particular point
in time. In this study, DiD is used to compare changes over
time in the treated group with those over time in the control
group, and to attribute the difference-in-differences to the ef-
fects of software changes. DiD is based on the assumption
that, in the absence of software changes, the difference be-
tween the average KPIs for the treated group and those for
the control group remains stable over time. Although [19]
argued that DiD suffered from low accuracy in impact as-
sessment of changes in cellular networks, it turns out to per-
form quite well in our scenario because the treated group and
the control group exactly follow the above assumption.

The basic DiD framework can be described as follows.
Let Y (i, t) be the KPI i at time t. The performance is ob-
served in a pre-software-change period t = 0, with length ω
as described in §3.2.1, and in a post-software-change period
t = 1 with length ω. Some fraction of KPIs are exposed to
the software change between these two periods. If KPI i has
been exposed to the software change prior to period t, then
D(i, t) = 1, and D(i, t) = 0 otherwise. In other words,
those KPIs with D(i, 1) = 1 are in the treated group, and
those KPIs with D(i, 1) = 0 are in the control group. Obvi-
ously, D(i, 0) = 0 for all i, because the KPIs are exposed to
the software change only after the first period.

To obtain the standard errors and significance levels for
the DiD estimator, a linear parametric model is used [6]:

Y (i, t) = θ(t) + α ·D(i, t) + ξ(i) + υ(i, t) (15)

where θ(t) is a time-specific parameter, α denotes the im-



pact of software changes, and ξ(i) is an KPI-specific param-
eter. υ(i, t) is a transient shock at each period, i.e., t = 0, 1,
with mean zero. A sufficient condition for determination us-
ing DiD is P (D(i, 1) = 1|υ(i, t)) = P (D(i, 1) = 1).

Then, the impact estimator of software change, α, is:

α = {E[Y (i, 1)|D(i, 1) = 1]− E[Y (i, 1)|D(i, 1) = 0]}
−{E[Y (i, 0)|D(i, 1) = 1]− E[Y (i, 0)|D(i, 1) = 0]}

(16)

where E(·) denotes the expectation.
If the KPI changes are caused by factors excluding soft-

ware changes, then there is no change in the relative perfor-
mance between the treated group and the control group, thus
the DiD impact estimator, α, should be near zero. There-
fore, if α ≈ 0, we consider that the performance changes
are not induced by software changes. If α � 0 or α � 0,
then we consider that there is a relative increase or decrease
in the treated group as compared to the control group, and
the likelihood that the performance changes are caused by a
software change is high.

Empirically, for a service which is sensitive to KPI change,
such as advertisement, online shopping, the threshold of α
can be set to a small value like 0.5. Otherwise, the threshold
can be set larger.

3.2.5 Excluding Other Reasons for Related Ser-
vices and Full Launching Manner

For affected services, there are no cservers or cinstances.
Moreover, if the operations team deploys software changes
on all servers at one time (i.e., Full Launching), the con-
trol group is also empty. In addition to software changes,
seasonality may also give rise to KPI changes [10, 18, 19].
Thus, we need to exclude KPI changes induced by season-
ality. For a specific KPI of servers/services/instances in the
impact set, FUNNEL compares the measurements of KPI
around the software change and the KPI measurements in the
same period of day but on historical days, since seasonality
impacts the KPI measurements around the software change
and the historical KPI measurements similarly.

Treated group and control group. For a given KPI of
a server/service/instance in the impact set, the treated group
consists of the measurements of KPIs around the software
change, while the control group consists of the historical
measurements of KPIs. Specifically, to exclude the perfor-
mance changes due to the time-of-day or day-of-week pat-
tern and exclude the influence of baseline contamination, we
use the measurements of KPIs of 30 days before the day of
the software change to construct the control group. This is
based on the observation that there is almost no relative per-
formance change between the control group and the treated
group if the performance change is induced by seasonality.

FUNNEL also applies DiD method to compare the rela-
tive performance between the control group and the treated
group. Specifically, t = 0 for a pre-software-change period
of length ω as described in §3.2.1 in the treated group, and
for the same period of day but on historical days in the con-
trol group. Similarly, t = 1 denotes a post-software-change

period, of length ω, in the treated group, and the same period
of day but on historical days in the control group.

4. FUNNEL EVALUATION
In this section, we evaluate FUNNEL’s performance. We

compare FUNNEL with other software change assessment
methods including CUSUM [20] and MRLS [18] that have
previously been deployed for upgrade assessment in the net-
work infrastructure. We implemented FUNNEL, CUSUM,
and MRLS with C++. We use the software change and KPI
data from a few real-world Internet-based services offered
by a top global search engine. The evaluation using real-
world data is challenging because of the lack of a ground
truth [19]. We used manual assessment results by the opera-
tions team as our ground truth for evaluation.

The focus of FUNNEL is to detect KPI behavior changes
in a rapid and robust way, which is achieved by the improved
SST. The introduction of DiD method helps to determine
whether the KPI changes are caused by software changes,
by comparing the performance between the control/treated
group. We decided not to compare FUNNEL with Litmus
because the robust regression approach in Litmus [19] is
mainly used for inferring the relative performance change
between the treated and the control group, and the compari-
son adds no additional value.

Our results in this section show FUNNEL performs sig-
nificantly better than CUSUM and MRLS in accuracy, de-
tection delay, and computational cost.

4.1 Data Sets
In cooperation with the operations team, we randomly

picked 19 moderate-sized services (the manual assessment
efforts for large services would be prohibitive) over a 2-day
period, then we got 6277 software changes in total. We ran
the algorithm in §3.1 to identify the impact set, and collected
the KPI measurements of tservers/tinstances/changed ser-
vices/affected services and the KPI measurements of cservers/
cinstances. Note that running this algorithm is equally ben-
eficial to FUNNEL, CUSUM and MRLS, and is not biased
towards FUNNEL. The details of manual inspection are as
follows. For a given software change, first we aggregated
the KPIs of tinstances/tservers by calculating the average
measurements of tinstances/tservers. The operations team
then manually inspected whether behavior changes occurred
in the KPIs of the changed service, the affected services,
and the aggregation KPIs of the tinstances and the tservers
around the time of the software change. The operations
team found that in total 83 software changes had behavior
changes in the KPIs of changed service/affected service or
aggregation KPIs of tservers/tinstances shortly after each of
these software changes. For each behavior change, the op-
erations team then manually inspected the control group and
determined whether it is actually caused by software change.
Eventually, the operations team selected 72 out of 6277 soft-
ware changes that induced KPI changes. We admit that be-
havior changes could occur in one or more individual KPIs



of the tservers/tinstances in the 6194 (6277 - 83) software
changes. However, manually inspecting all the KPIs of the
6194 software changes, i.e., about 600 thousands KPIs, is a
huge amount of work. Alternatively, we randomly selected
72 out of the remaining 6194 software changes. For all se-
lected 72 software changes, the operations team manually
carried out the investigation, and found that there were no
KPI changes induced by the software changes. We use the
72 software changes that induced changes in KPIs and the 72
selected software changes that did not for the evaluation, and
the manual assessment results of the 144 (72+72) software
changes served as the ground truth.

The data used in our evaluation exhibited different char-
acteristics including seasonality, variability, stationarity, and
different levels of baseline contaminations, which provided
a relatively exhaustive validation.

Generally, the CPU context switch count of servers varies
frequently, while the memory utilization remains stationary.
In addition, both the CPU context switch count and the mem-
ory utilization indicate the health status of servers. Specif-
ically, the CPU context switch count indicates the compu-
tational efficiency and the number of threads after software
changes, while the memory utilization indicates whether a
software change introduces memory leaking. Thus we used
the CPU context switch count and the memory utilization as
the KPIs of all the servers in the evaluation. The KPIs of
a given service/instance are defined by the operations team
and they differ from one service/instance to another service/
instance.

We collectively refer to the combination (Si, ci, ki) as an
item, where Si denotes a software change, ci is a server, ser-
vice, or instance in the impact set, and ki is a KPI of ci.

A total of 9982 items were included in the evaluation, to
which 144 software changes (described earlier in this sec-
tion), and 931 servers were related. More specifically, the
ki of 931, 931, 8120 items were CPU context switch count,
memory utilization, KPIs of services/instances, respectively.
In addition, based on the operations team’s assessment, there
were 968 items that had been labelled as having performance
changes introduced by software changes in the 72 software
changes that induced behavior changes.

Based on empirical experience, if a software change in an
Internet-based service has a negative impact, the KPIs usu-
ally change shortly after the software change. The opera-
tors think that 1 hour is enough for software change assess-
ment. Among the 144 software changes, 108 were deployed
with Dark Launching, while the remaining 26 were not. If
a software change was conducted with Dark Launching, and
the KPIs were not of affected services, we will construct the
treated group using the KPIs of tservers/tinstances 1 h be-
fore and after the software change, and construct the control
group using the KPIs of cservers/cinstances in the same pe-
riod. Otherwise, the treated group will consist of the mea-
surements of KPIs 1 h before and after the software change,
and the control group will consist of the measurements of

KPIs in the same period but on historical days (30 days).
We constructed a time-series, x(1), x(2), ..., x(n), for each

item by dividing the original measurements of KPIs into equal
time-bins of 1 min. Each method took a time window of
x(i), x(i+1), ..., x(i+W ) as its input to construct a matrix
(FUNNEL, MRLS) or calculate a cumulative sum (CUSUM).
For a fair comparison of the accuracy among FUNNEL, CUSUM
and MRLS, the length of the sliding input time window W
for each method was set as the one that achieved the best ac-
curacy (WFUNNEL = 34 (i.e., ω in §3.2.3 is set 9),WMRLS =
32,WCUSUM = 60 in our scenario). The time window
moves forward every minute. For example, FUNNEL first
detects and determines performance changes for x(1), x(2),
..., x(34), and then for x(2), x(3), ..., x(35), etc. Note that
the values of other parameters of CUSUM, MRLS and FUN-
NEL (α) are also set to the best for the corresponding algo-
rithm’s accuracy. We believe the above method draws the
same conclusion as the method that changing the value of
the parameters, calculating the accuracies and plotting the
receiver operating characteristic (ROC) curves.

Empirically we set a threshold of 7 minutes in FUNNEL
to declare a change in a time series as a level-shift or ramp-
up/down rather than a one-off event.
4.2 Comparison of Accuracy

We now compare the accuracy of FUNNEL, the improved
SST without DiD, CUSUM, and MRLS. For each item, based
on the ground truth provided by the operations team, we
knew the outcome - either having the KPI changes induced
by software changes or not. For each method, we labelled its
outcome as true positive (TP), true negative (TN), false pos-
itive (FP), and false negative (FN). True positives were items
with KPI changes caused by software changes that were ac-
curately determined as such by the method, and true nega-
tives were items that were accurately determined as having
no KPI changes induced by software changes. If the method
determined a KPI change caused by a software change while
there was no KPI change or the KPI change was not induced
by a software change, we then labelled the item as a false
positive. False negatives were KPI changes induced by a
software change that were incorrectly missed by the method.
We calculated Precision, Recall, true negative rate (TNR),
and Accuracy as: Precision = TP

TP+FP , Recall = TP
TP+FN , TNR

= TN
TN+FP , Accuracy = TP+TN

TP+TN+FP+FN [19].

4.2.1 Comparison Results
Based on the characteristics of KPIs, the 9982 items were

divided into three types: seasonal, stationary, and variable [18].
It is clear that the items with CPU context switch count were
variable, and the items with memory utilization were station-
ary. If the KPI of a given item has strong seasonality, then
the item is seasonal. Similarly, the item with KPI of strong
variability is variable, and the rest are stationary. For items
of service, 705 items were seasonal, 2702 items were station-
ary, and 4713 items were variable.

To examine the performance of FUNNEL in handling sea-



Table 1: The Precision, Recall, TNR and Accuracy of seasonal, stationary and variable data for FUNNEL, Improved
SST, CUSUM and MRLS

Algorithm Type Total Precision Recall TNR Accuracy

FUNNEL
Seasonal 28500 98.28% 100.00% 100.00% 100.00%

Stationary 129943 100.00% 100.00% 100.00% 100.00%
Variable 215339 68.47% 99.48% 99.88% 99.88%

Improved SST
Seasonal 28500 1.10% 100.00% 81.93% 81.96%

Stationary 129943 14.28% 100.00% 98.44% 98.44%
Variable 215339 15.04% 99.48% 98.50% 98.50%

CUSUM
Seasonal 28500 0.76% 84.21% 77.97% 77.98%

Stationary 129943 10.34% 98.52% 97.78% 97.78%
Variable 215339 17.92% 96.34% 98.82% 98.81%

MRLS
Seasonal 28500 100.00% 87.72% 100.00% 99.98%

Stationary 129943 9.23% 97.33% 97.51% 97.51%
Variable 215339 0.61% 97.04% 57.85% 57.95%

sonal and variable KPIs, we reorganized the above KPI items
based on the KPI types, and then compared different meth-
ods. For each method, we multiplied the TPs, TNs, FPs,
and FNs of the 72 software changes that did not introduce
behavior changes with 86 (6194/72), and added the result
to the TPs, TNs, FPs, and FNs of the 72 software changes
which induced KPI changes. We believe that this provides
a reasonable approximation of real TPs, TNs, FPs, and FNs.
Eventually, we calculated the accuracy, recall, precision and
TNR based on the synthetic true positives, true negatives,
false positives, and false negatives. Table 1 shows the aggre-
gated results for each method and each KPI type. FUNNEL
performed the best across all three kinds of KPIs. The im-
proved SST, CUSUM and MRLS performed well in the face
of stationary KPIs. However, because CUSUM and the im-
proved SST failed to exclude the impact of seasonality, they
detected performance changes induced by software changes
with low accuracy when the KPIs had strong seasonality.
MRLS was sensitive to spikes, and it was hardly feasible to
modify MRLS to detect level shifts or ramp up/downs only.
Thus a large portion of the items with variable KPIs were
incorrectly determined as having KPI changes.

4.3 Comparison of Computational Cost
Since millions of KPIs should be monitored to determine

whether they are impacted by software changes, it is impor-
tant that the computational cost of the impact assessment be
relatively low for the sake of scalability and deployability.
In this section, we compare the computational cost of FUN-
NEL, CUSUM, and MRLS.

Motivated by the evaluation method presented in [28], all
three methods were deployed on the same server (CPU in-
formation: 12 Intel(R) Xeon(R) CPU E5645 @ 2.40GHz)
with a single thread. The CPU utilization remained 100%
while the process of each method was running so that we
could use the total time to evaluate complexity [28].

Table 2 shows the average computational time taken by
FUNNEL, CUSUM and MRLS to detect the KPI changes in
a single time window. With the introduction of matrix com-
pression and implicit inner product calculation, FUNNEL
was highly computational efficient. Specifically, compared

Table 2: Comparison of computational time
Method FUNNEL CUSUM MRLS

Run time per
time window 401.8 µs 1.846 ms 2.852 s

# Cores for
one million KPIs 7 31 47526

with MRLS, FUNNEL was more than 7000 times faster in
computational speed. Moreover, FUNNEL reduced 77.42%
of computational cost as compared to CUSUM. Suppose that
one million KPIs need to be monitored and determined for
the impact assessment of software changes, the KPIs are col-
lected and detected every minute, and the implementation
runs on the same types of CPU. As the last row in Table 2
shows, if we apply MRLS as the software change assessment
method, we need at least 47526 cores, i.e., 3960 servers if
each server has 12 cores. CUSUM needs 31 cores and 3
servers. However, with FUNNEL, one server is fully capa-
ble of detecting and determining all one million KPIs. FUN-
NEL is thus quite competent to assess the impact of software
changes online in large Internet-based services.

4.4 Comparison of Detection Delay
When detecting level shifts, and ramp up/downs, all de-

tection methods need some data points (thus time) to finish.
However, rapid detection of performance changes and deter-
mination of software change impacts is quite necessary for
timely damage mitigation for Internet-based services. In this
section, we compare the detection delay of different methods
and show that FUNNEL has a much lower detection delay,
thanks to the use of SST.
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For each item, the operations team labelled the start of
KPI changes (if any, as shown in Fig. 2), which served as
the ground truth information for comparing different meth-
ods. We defined the detection delay as the time between the
start of a KPI change and its detection by a method. Sup-
pose that a method correctly detects and determines a KPI
change firstly when the input time window is x(i+1), x(i+
2), ..., x(c), ..., x(i + w), and the KPI change starts at time
c, then the detection delay is (w − c) minutes. Note that the
detection delay defined above does not include the delay due
to the computational cost (previously evaluated separately
in §4.3). During evaluation, each method is given sufficient
CPU power to finish processing one-window’s worth of data
within one time window.

Fig. 5 shows the Complementary Cumulative Distribu-
tion Functions (CCDFs) for the detection delay of FUNNEL,
CUSUM, and MRLS. The median delays were MMRLS =
21.3min,MFUNNEL = 13.2min, andMCUSUM = 37.7min.
FUNNEL reduced 38.02% of detection delay compared with
MRLS, and 64.99% for CUSUM.

As aforementioned, in FUNNEL we set a threshold of 7
minutes to declare a change in a time series as a level-shift
or ramp-up/down rather than a one-off event. Occasionally,
MRLS can detect a level shift within 7 minutes, at the cost
of much more false positives. In these cases, FUNNEL is
slower than MRLS as shown in the top left corner of Fig. 5

The distribution of the detection delay for FUNNEL was
more concentrated and the longest detection delay of FUN-
NEL was much shorter than that of CUSUM and MRLS.
This gives FUNNEL a very significant advantage, because
a software change may introduce a great loss due to impair-
ment if an unexpected impact of a software change causes
poor user experience or degraded advertising income and is
detected only after a long delay. Thus, in terms of detection
delay, overall FUNNEL is more suitable than CUSUM and
MRLS for online impact assessment of software changes in
large Internet-based services.

5. OPERATIONAL EXPERIENCE
We deploy the multi-threaded FUNNEL prototype on one

server with a 12-core Intel(R) Xeon(R) CPU E5645 @ 2.40
GHz. FUNNEL accesses the software changes of a few
dozens of services offered by the search engine company.
Table 3 shows some daily statistics for a specific one-week
period which we studied in details in this section.

Ideally, we would like to measure the Accuracy, Preci-
sion, Recall and TNR as in §4.2 for this one-week period.
However, it is prohibitive for the operations team to label
more than 2 million KPIs of all services daily. Therefore,
we made a compromise, and only asked the operations team
to verify the KPI changes detected by FUNNEL (10 thou-
sands per day, 4th column in Table 3). This allows us to
calculate Precision = TP

TP+FP (in the last column in Table 3).
Based on the operational experience of FUNNEL deploy-

ment, we show two representative cases which highlight FUN-
NEL’s detection robustness and speed.

Table 3: Statistics about the implementation of FUNNEL
#software
changes

# software
changes that
have impact

#KPIs #KPI
changes Precision

24119 268 2256390 10249 98.21%

In both two cases, FUNNEL successfully detected per-
formance changes and determined the impact of software
changes in a rapid and robust fashion. We applied the proto-
type of FUNNEL to validate expected performance changes
that were direct outcomes of a configuration change in the
first case, and to detect unexpected performance changes in-
duced by a software upgrade in the second.

5.1 Robustness to Variable KPIs
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Figure 6: KPI changes induced by a configuration
change in the Redis query service

Redis is an advanced data structure store which is used
as database, cache and message broker [3]. After a config-
uration change in the Redis query service, FUNNEL deter-
mined that 16 out of 118 KPIs in the impact set had behavior
changes which were caused by this configuration change.
More specifically, FUNNEL found that immediately after
the configuration change, some Redis servers (class A Re-
dis servers) witnessed a negative level shift in NIC through-
put as Fig. 6 (a) shows, while in the NIC throughput of other
Redis servers (class B Redis servers) a positive level shift oc-
curred, as shown in Fig. 6 (b). Please notice that the X-axis
in Fig. 6 is 1 minute, as well as Fig. 7.

The operations team verified that the configuration change
was aimed at load balancing and achieved the expected re-
sult. Specifically, the Redis query tasks were assigned to
class A Redis servers firstly. Unless the class A Redis servers
reached the limit of NIC bandwidth capacity, the query tasks
would not be allocated to class B Redis servers. This led to
a situation where the NICs of class A Redis servers were
always busy, while the utilization of the NICs of class B
servers was low, which degraded the performance of the Re-
dis query service and shortened the life of NICs in class A
Redis servers. The operations team launched a configura-
tion change to balance the traffic between class A and class
B Redis servers. As Fig. 6 shows, the configuration change
successfully balanced the traffic and had the expected effect.



This case study shows that, although the NIC throughput
had strong variability by its nature, FUNNEL still success-
fully detected and determined the KPI changes induced by
the configuration change, demonstrating FUNNEL’s capa-
bility to handle variable KPIs.

5.2 Rapidly Detecting Unexpected Behav-
ior Changes in Seasonal KPIs

To see how FUNNEL speeds up the detections of unex-
pected behavior changes, we randomly picked a small frac-
tion of software changes for which FUNNEL does not di-
rectly deliver the detection results to the operations team. In-
stead, the operations team independently assesses software
changes without the help of FUNNEL. In the below case,
we compare the speed of FUNNEL and manual inspection,
and demonstrate the performance of FUNNEL in detecting
seasonal KPIs’ unexpected changes

During the deployment of FUNNEL, the operations team
made a software upgrade aimed at improving the perfor-
mance of the advertising system. Advertising system is a
very large and complex system [8], and in fact 36752 KPIs
are included in the impact set in the software upgrade ac-
cording to FUNNEL. Manually investigating this upgrade’s
impact is infeasible. 10 minutes after the software upgrade,
FUNNEL detected 1141 KPI changes induced by the soft-
ware upgrade. More specifically, as Fig. 7 shows, the nor-
malized number of effective clicks on advertisements, i.e.,
clicks on advertisements that are considered as human be-
havior by the anti-cheating system, decreased dramatically
immediately after the software upgrade was conducted.
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Figure 7: Normalized number of effective clicks

Without using FUNNEL, the operations team indepen-
dently found the performance change after 1.5 h and then
quickly fixed the issue. The operations team confirmed that
the occurrence of the unexpected behavior changes due to
the software upgrade was a real significant incidents. It was
later carefully investigated. Specifically, the anti-cheating
service injects a check program, which is implemented with
JSON, into every advertisement to determine whether a click
on the advertisement is performed by a human or is a cheat
executed by an automated program. However, the software
upgrade failed to load the JSON program on the iPhone brow-
sers, i.e., the check program was not effective for iPhone

users. Therefore, all clicks on the advertisements by iPhone
users were considered as cheats, which resulted in the de-
cline in advertising revenue. The number of cheating clicks
monitored by the anti-cheating service returned to the nor-
mal level after the operations team had remedied the situa-
tion, and thus, a positive level shift occurred 1.5 h after the
software upgrade.

Had the operations team used FUNNEL to assess the im-
pact of the erroneous software upgrade, they could have much
more timely mitigated the loss caused by the upgrade. The
KPIs had strong seasonality, but FUNNEL still accurately
detected the performance changes and identified that the per-
formance changes are induced by the software upgrade, which
demonstrated that FUNNEL performed very well in the face
of seasonal KPIs.
6. RELATED WORK

The impact of software changes has attracted considerable
attention in recent years [9, 18, 19, 20, 24, 25]. Mahjmkar
et al. [20] developed MERCURY to detect the performance
impact of upgrades in large operational networks. MER-
CURY uses the CUSUM method to detect behavior changes
in KPIs, and applies statistical rule mining and network con-
figuration to identify commonality across the behavior changes.
PRISM [18] is developed to reduce the detection delay be-
tween the behavior change and the detection. The MRLS
method was developed in PRISM to rapidly and robustly de-
tect maintenance-induced behavior changes. However, the
MRLS method suffers from high computational cost, and
thus is not appropriate in our scenario. Litmus was devel-
oped to address the assessment of changes in cellular net-
works where external factors may over-shadow the assess-
ment [19]. Litmus applies a spatial regression algorithm for
the comparison of the treated and the control group.

The detection of behavior changes has a very rich liter-
ature. In [16], Principal Component Analysis (PCA) was
applied for anomaly detection in network. Yamada et al.
proposed a change point detection method, additive Hilbert-
Schmidt Independence Criterion (aHSIC), which was based
on supervised learning, and used the weighted sum of the
SIC scores for incorporating feature selection [28]. To detect
changes in seasonal time-series, Chef et al. applied a time
series decomposition based method, week-over-week [10].
7. CONCLUSION

We designed and implemented a new tool, FUNNEL, for
rapidly and robustly assessing the impact of software changes
in large Internet-based services. For each software change,
FUNNEL analyzes all the services, processes, and servers
that may be influenced and automatically constructs the im-
pact set. FUNNEL then detects performance changes in the
impact set rapidly and robustly by improving the robust-
ness and reducing the computational cost of SST, and de-
termines performance changes induced by software changes
using a DiD method. We evaluated FUNNEL by comparing
it with CUSUM and MRLS using 144 software changes and
showed that FUNNEL achieved high accuracy with short de-



tection delay and low computational cost. Operational expe-
riences of FUNNEL deployment show that FUNNEL can
assess the impact of software changes rapidly and robustly
in the face of seasonary and variable data. Compared to
manual efforts, in one specific case FUNNEL shortens the
assessment from 1.5 hours to 10 minutes, saving both time
and money.
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J. Rexford. A nice way to test openflow applications. In
NSDI, San Jose, CA, April 2012.

[10] Y. Chen, R. Mahajan, B. Sridharan, and Z.-L. Zhang. A
provider-side view of web search response time. SIGCOMM,
August 2013.

[11] G. H. Golub and C. F. Van Loan. Matrix computaions,
volume 3. Jhons Hopkins University Press, Baltimore, MD,
2012.

[12] H. Hassani, S. Heravi, and A. Zhigljavsky. Forecasting
european industrial production with singular spectrum

analysis. International journal of forecasting,
25(1):103–118, 2009.

[13] T. Idé and K. Inoue. Knowledge discovery from
heterogeneous dynamic systems using change-point
correlations. In SDM, pages 571–575, Newport Beach, CA,
USA, April 2005.

[14] T. Idé and K. Tsuda. Change-point detection using krylov
subspace learing. In SDM, Minneapolis, Minnesota, April
2007.

[15] R. Kohavi, A. Deng, B. Frasca, R. Longbotham, T. Walker,
and Y. Xu. Trustworthy online controlled experiments: Five
puzzling outcomes explained. In SIGKDD, Beijing, China,
August 2012.

[16] A. Lakhina, M. Crovella, and C. Diot. Mining anomalies
using traffic feature distributions. In SIGCOMM,
Philadelphia, PA, USA, August 2005.

[17] Z. Lin, M. Chen, and Y. Ma. The augmented lagrange
multiplier method for exact recovery of corrupted low-rank
matrices. arXiv preprint arXiv:1009.5055, 2010.

[18] A. Mahimkar, Z. Ge, J. Wang, J. Yates, Y. Zhang,
J. Emmons, B. Huntley, and M. Stockert. Rapid detection of
maintenance induced changes in service performance. In
CoNEXT, Tokyo, Japan, December 2011.

[19] A. Mahimkar, Z. Ge, J. Yates, C. Hristov, V. Cordaro,
S. Smith, J. Xu, and M. Stockert. Robust assessment of
changes in cellular networks. In CoNEXT, Santa Barbara,
California, USA, December 2013.

[20] A. Mahimkar, H. H. Song, Z. Ge, A. Shaikh, J. Wang,
J. Yates, Y. Zhang, and J. Emmons. Detecting the
performance impact of upgrades in large operational
networks. In SIGCOMM, New Delhi, India, August 2010.

[21] Y. Mohammad and T. Nishida. Robust singular spectrum
transform. In Next-Generation Applied Intelligence Lecture
Notes in Computer Science, pages 123–132, Tainan, Taiwan,
June 2009. Springer.

[22] V. Moskvina and A. Zhigljavsky. Change-point detection
algorithm based on the singular-spectrum analysis.
Communication in Statistics: Simulation and Computation,
32(2):319–352, 2003.

[23] W. H. Press. Numerical recipes 3rd edition: The art of
scientific computing. Cambridge university press, 2007.

[24] M. Reitblatt, N. Foster, J. Rexford, C. Schlesinger, and
D. Walker. Abstractions for network update. In SIGCOMM,
Helsinki, Finland, August 2012.

[25] R. R. Sambasivan, A. X. Zheng, M. De Rosa, E. Krevat,
S. Whitman, M. Stroucken, W. Wang, L. Xu, and G. R.
Ganger. Diagnosing performance changes by comparing
request flows. In NSDI, Boston, MA, USA, April 2011.

[26] W. R. Shadish, T. D. Cook, and D. T. Campbell.
Experimental and quasi-experimental designs for
generalized causal inference. Wadsworth Cengage Learning,
2002.

[27] E. A. Stuart, H. A. Huskamp, K. Duckworth, J. Simmons,
Z. Song, M. E. Chernew, and C. L. Barry. Using propensity
scores in difference-in-differences models to estimate the
effects of a policy change. Health Services and Outcomes
Research Methodology, 14(4):166–182, August 2014.

[28] M. Yamada, A. Kimura, F. Naya, and H. Sawada.
Change-point detection with feature selection in
high-dimensional time-series data. In IJCAI, Beijing, China,
August 2013.


