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Abstract— We consider a two-user energy harvesting broadcast
channel, and characterize the delay minimal transmission policies
that minimize the total delay experienced by the data packets in
the system. We consider a continuous time system where the delay
experienced by each bit is given by the time spent by the bit in
the queue waiting to be transmitted to its receiver. We consider
the case where all data packets are available at the transmitter at
the beginning of the communication session. We characterize the
optimal solution in terms of the Lagrange multipliers, and present
an iterative algorithm that optimally calculates their values. Our
results show that in the optimal policy, both users may not be
served simultaneously all the time; there may be times where
only the strong user or only the weak user is served alone. We
also show that the optimal policy may have gaps in transmission
where none of the users is served until the next energy arrival.

I. INTRODUCTION

We consider an energy harvesting broadcast channel where
the transmitter relies solely on energy harvested from nature to
deliver data packets to two users on the downlink. We assume
that the data packets are available at the transmitter at the
beginning, and the energy arrives (is harvested) throughout
the communication session. The transmitter needs to adapt its
transmission power to its energy harvesting profile. Optimal re-
source allocation and scheduling policies have been considered
for various energy harvesting communication models. Earlier
works focus on throughput maximization and transmission
completion time minimization policies for single user settings
[1]–[4], multiple access channels [5], broadcast channels [6],
relay and two-hop networks [7], [8]. Later works introduce
energy sharing concepts to improve system throughput [9],
and incorporate system aspects of energy harvesting into
problem formulations, such as energy losses [10], transmission
processing costs [11], and receiver decoding costs [12].

Reference [13] revisits the single-user energy harvesting
communication system and considers the problem of delay
minimization, as opposed to transmission completion time
(e.g., deadline) minimization or throughput maximization. The
delay experienced by each bit is given by the amount of
time the bit spends in the queue waiting to be transmitted.
Reference [13] shows that unlike most results in the literature
on energy harvesting, the optimal transmit power in this case is
not piece-wise constant; it decreases between energy harvests
and may drop to zero before the next energy harvest. The
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intuition for this is that the later sent bits in the queue
experience cumulative delay including the delays of the earlier
sent bits; therefore, earlier sent bits need to be sent out faster
which necessitates using higher powers earlier.

In this paper, we consider a multi-user version of the
problem studied in [13]. We consider a two user energy
harvesting broadcast channel where the data packets intended
for both users are available before the transmission starts. In
this system, there is a trade-off between the delays experienced
by both users; as more resources (power) is allocated to a user,
its delay decreases while the delay of the other user increases.
We consider the minimization of the sum delay in the system.
We formulate the problem using a Lagrangian framework, and
express the optimal solution in terms of Lagrange multipliers.
We develop an iterative algorithm that solves the optimum
Lagrange multipliers by enforcing the KKT optimality condi-
tions. We show that the optimal transmission power decreases
between energy harvests, and may possibly hit zero before the
next energy harvest, yielding communication gaps, where no
data is transmitted. During active communication data may
be sent to both users, or only to the stronger, or only to the
weaker user, depending on the energy harvesting profile.

Finally, we contrast our work with [6] which developed an
algorithm that minimized the transmission completion time,
i.e., a time by which all data is delivered to users. To that
end, [6] studies the throughput maximization problem, and
shows that, for general priorities, there exists a cut-off power
level such that only the total power above this level is used
to serve the weaker user. In particular, for sum throughput
maximization, this cut-off is infinity, and all power is allocated
to packets sent to the stronger user. In contrast, in our sum
delay minimization problem, the weaker user always gets a
share of the transmitted power, as otherwise, its delay becomes
unbounded. In our work, we show that there exists a cut-off
time, beyond which data is sent only to the weaker user.

II. SYSTEM MODEL

We consider an energy harvesting two-user broadcast chan-
nel, where energy is harvested at times {t0, t1, . . . , tM−1} in
amounts {E0, E1, . . . , EM−1}, respectively, with t0 = 0. We
denote the cumulative harvested energy as:

Ea(t) =

m−1∑
i=0

Ei, tm−1 < t ≤ tm, m = 1, . . . ,M (1)



where we define tM = ∞. The data packets are available
before the communication starts, in amounts B1 and B2, for
the first and the second user, respectively.

The physical layer is a degraded broadcast channel,

Yj = X + Zj , j = 1, 2 (2)

where X is the transmitted signal, Yj is the received signal
of user j, and Zj is the Gaussian noise at receiver j with
variance σ2

j . We assume σ2
1 = 1 < σ2

2 , σ
2, i.e., the first user

is stronger. The capacity region for this channel is [14]

r1 ≤
1

2
log (1 + αP ) , r2 ≤

1

2
log

(
1 +

(1− α)P

αP + σ2

)
(3)

where α is the fraction of the total power assigned to the first
(stronger) user, and log is the natural logarithm. Working on
the boundary of the capacity region we have,

P = e2(r1+r2) +
(
σ2 − 1

)
e2r2 − σ2 , g (r1, r2) (4)

which is the minimum power needed to achieve rates r1 and
r2, at the first and the second user, respectively. Note that
g(r1, r2) is strictly convex in (r1, r2) [15]. We call a policy
feasible if the following are satisfied:∫ t

0

g (r1(τ), r2(τ)) dτ ≤ Ea(t), ∀t (5)∫ ∞
0

r1(t)dt = B1 (6)∫ ∞
0

r2(t)dt = B2 (7)

where the first constraint is the energy causality constraint, and
the remaining two are to ensure data delivery to both users.

The average delay experienced by each user is given by [13]

D1 =

∫ ∞
0

r1 (t) tdt (8)

D2 =

∫ ∞
0

r2 (t) tdt (9)

Note that, each delay expression is the integral of rate multi-
plied by time as in [13]. Unlike [13], in this two-user setting,
there is a trade-off between the delays experienced by the
two users. This trade-off can be characterized by developing
the delay region, similar to departure region in [6], where
all achievable (D1, D2) can be plotted. In can be shown
that this region is strictly convex, and in order to achieve,
pareto-optimum delay points, one needs to solve weighted sum
delay minimization problems in the form of minµ1D1+µ2D2

subject to energy causality constraints. We skip such a general
treatment due to space limitations here, and instead, focus
on the sum delay minimization problem by taking µ1 =
µ2 = 1. Therefore, in this paper, we consider the following
optimization problem:

min
r1,r2

∫ ∞
0

r1 (τ) τdτ +

∫ ∞
0

r2 (τ) τdτ

s.t.
∫ tm

0

g (r1(τ), r2(τ)) dτ ≤ Ea(tm), m = 1, . . . ,M

∫ ∞
0

r1(τ)dτ = B1∫ ∞
0

r2(τ)dτ = B2

r1(t) ≥ 0, r2(t) ≥ 0, ∀t (10)

III. MINIMUM SUM DELAY POLICY

We note that (10) is a convex optimization problem [15].
We solve using a Lagrangian approach:

L =

∫ ∞
0

r1 (τ) τdτ +

∫ ∞
0

r2 (τ) τdτ

+

M∑
m=1

λm

(∫ tm

0

g (r1(τ), r2(τ)) dτ − Ea(tm)

)
− ν1

(∫ ∞
0

r1(τ)dτ −B1

)
− ν2

(∫ ∞
0

r2(τ)dτ −B2

)
−
∫ ∞
0

γ1(τ)r1(τ)dτ −
∫ ∞
0

γ2(τ)r2(τ)dτ (11)

where {λm}, ν1, ν2, γ1(t), and γ2(t) are the Lagrange
multipliers. KKT optimality conditions are:

t+ λ(t)
∂g (r1(t), r2(t))

∂r1(t)
− ν1 − γ1(t) = 0 (12)

t+ λ(t)
∂g (r1(t), r2(t))

∂r2(t)
− ν2 − γ2(t) = 0 (13)

where we have:

λ(t) =
∑

{m:tm≥t}

λm (14)

∂g (r1(t), r2(t))

∂r1(t)
= 2e2(r1(t)+r2(t)) (15)

∂g (r1(t), r2(t))

∂r2(t)
= 2e2(r1(t)+r2(t)) + 2

(
σ2 − 1

)
e2r2(t) (16)

along with the complementary slackness conditions:

λm

(∫ tm

0

g (r1(τ), r2(τ)) dτ − Ea(tm)

)
= 0, ∀m (17)

ν1

(∫ ∞
0

r1(τ)dτ −B1

)
= 0, γ1(t)r1(t) = 0 ∀t (18)

ν2

(∫ ∞
0

r2(τ)dτ −B2

)
= 0, γ2(t)r2(t) = 0 ∀t (19)

From the above KKT conditions, we can write the rates and
total power expressions in terms of the Lagrange multipliers.
First, we write the rates expressions as:

r1(t) =
1

2
log

((
σ2 − 1

)
(γ1 (t) + ν1 − t)

γ2 (t)− γ1 (t) + ν2 − ν1

)
(20)

r2(t) =
1

2
log

(
γ2 (t)− γ1 (t) + ν2 − ν1

λ (t) (σ2 − 1)

)
(21)

We now state the following result.

Lemma 1 The optimal Lagrange multipliers (ν∗1 , ν
∗
2 ) satisfy:

ν∗1 < ν∗2 < σ2ν∗1 .



Proof: We show this by contradiction. Assume ν∗2 ≤ ν∗1 . Then,
by (21), the value of r2(t) is well-defined only if γ2(t) > 0
∀t, which means by complementary slackness that r2(t) = 0
∀t. Therefore, assuming B2 > 0, the weak user will never get
to receive any of its data. This proves the first inequality.

To show the second inequality, assume σ2ν∗1 ≤ ν∗2 . Thus,(
σ2 − 1

)
(ν1 − t)

γ2 (t) + ν2 − ν1
≤ 1, ∀t, γ2(t) ≥ 0 (22)

Therefore, the right hand side of (20) can only be positive if
γ1(t) > 0, but this means, by complementary slackness, that
r1(t) = 0, which is a contradiction. Hence, r1(t) = 0 ∀t, and,
assuming B1 > 0, the strong user will never get to receive
any of its data. �

Next, we characterize the optimal total transmit power
g (r1(t), r2(t)) by the following lemma.

Lemma 2 In the optimal policy, the total transmit power
g (r1(t), r2(t)) is given by

g(r1(t), r2(t)) = max

{
ν2 − t
λ(t)

− σ2,
ν1 − t
λ(t)

− 1

}+

(23)

Proof: From (13) and (16), we have

g(r1(t), r2(t)) =
ν2 + γ2(t)− t

λ(t)
− σ2 (24)

Since from (15) and (16) we always have

∂g(r1(t), r2(t))

∂r2(t)
− σ2 ≥ ∂g(r1(t), r2(t))

∂r1(t)
− 1 (25)

with equality iff r2(t) = 0, from (12) and (13), we have

ν2 + γ2(t)− t
λ(t)

− σ2 ≥ ν1 + γ1(t)− t
λ(t)

− 1 (26)

Thus, if r2(t) > 0, by complementary slackness γ2(t) = 0,
and the total power is given by

g(r1(t), r2(t)) =
ν2 − t
λ(t)

− σ2 (27)

>
ν1 + γ1(t)− t

λ(t)
− 1 (28)

≥ ν1 − t
λ(t)

− 1 (29)

On the other hand, if r2(t) = 0 and r1(t) > 0, we have

g(r1(t), r2(t)) =
ν2 + γ2(t)− t

λ(t)
− σ2 (30)

=
ν1 − t
λ(t)

− 1 (31)

≥ ν2 − t
λ(t)

− σ2 (32)

Finally, if both rates are zero, then the total power is zero.
Combining this with the above gives (23). �

The above lemma shows that the optimal power decreases
with time between energy harvests, and can reach zero before

increasing again with the next energy harvest. The following
lemmas characterize the structure of the optimal policy.

Lemma 3 In the optimal policy, the transmission starts by
sending data to the strong user, and finishes by sending data
to the weak user.

Proof: We show this by contradiction. Assume that the trans-
mission starts by sending data to the weak user only, i.e.,
r2(0) > r1(0) = 0.1 By complementary slackness, we have
γ2(0) = 0. By Lemma 1, since σ2ν1 > ν2, we have(

σ2 − 1
)

(γ1(0) + ν1)

ν2 − ν1 − γ1(0)
> 1, ∀γ1(0) ≥ 0 (33)

which implies, by (20), that r1(0) > 0, which is a contra-
diction. For the second part of the lemma, assume that the
transmission ends at some time tf with r1(tf ) > r2(tf ) = 0.
By Lemma 2, we know that this can only occur if λ(tf ) >
ν2−ν1
σ2−1 , λth. Since λ(t) is non-increasing, we have λ(t) ≥
λ(tf ), ∀t ≤ tf . This means that λ(t) does not fall below λth
throughout the transmission, which is equivalent to saying,
again by Lemma 2, that the weak user does not receive any
of its data, which is a contradiction. �

Lemma 4 For t < tth ,
σ2ν1−ν2
σ2−1 , if the transmitter is sending

data, then it is sending to the strong user.

Proof: We show this by contradiction. Assume that for some
t < tth data is sent only to the weak user, i.e., we have
r1(t) = 0 and r2(t) > 0. By complementary slackness,
we have γ2(t) = 0. Since t < tth, it follows by simple
manipulations that the numerator of the term inside the log
in (20) is strictly larger than its denominator ∀γ1(t) ≥ 0, i.e.,
r1(t) > 0, which is a contradiction. The only case where
r1(t) = 0 for some t < tth is when γ2(t) > 0, which means
by complementary slackness that r2(t) = 0. �

A. Modes of Operation

There can be four different modes of operation at a given
time, depending on which user is receiving data. The first
mode is when only the strong user is receiving data, i.e.,
r1(t) > 0 and r2(t) = 0. By Lemma 2, this can be the case
only if λ(t) ≥ λth = ν2−ν1

σ2−1 . In this mode, we have the total
power and the strong user’s rate given by

g(r1(t), 0) =
ν1 − t
λ(t)

− 1 (34)

r1(t) =
1

2
log

(
ν1 − t
λ(t)

)
(35)

The second mode of operation is when both users are
receiving data, i.e., r1(t) > 0 and r2(t) > 0. Again by Lemma
2, this can be the case only if λ(t) < λth. Moreover, by (20),

1Extension of the contradiction arguments in this lemma to an ε-length
interval, ε > 0, follows directly.



we also need t < tth = σ2ν1−ν2
σ2−1 . In this mode, the total power

and the users’ rates are given by

g(r1(t), r2(t)) =
ν2 − t
λ(t)

− σ2 (36)

r1(t) =
1

2
log

(
(σ2 − 1)(ν1 − t)

ν2 − ν1

)
(37)

r2(t) =
1

2
log

(
ν2 − ν1

λ(t)(σ2 − 1)

)
(38)

The third mode of operation is when only the weak user is
receiving data, i.e., r1(t) = 0 and r2(t) > 0. For this to occur
we need both λ(t) < λth and t ≥ tth. The total power and
the weak user’s rate are then given by

g(0, r2(t)) =
ν2 − t
λ(t)

− σ2 (39)

r2(t) =
1

2
log

(
ν2 − t
λ(t)σ2

)
(40)

The fourth mode is when both rates (and the power) are
zero. We denote this mode as a communication gap. These
gaps may occur, for instance, if there is a small amount of
energy in the battery that is insufficient to deliver all the data,
and a large amount of energy arrives later. The transmitter may
then finish up this small amount of energy to send some bits
out and wait for additional energy to send the remaining bits.

B. Finding the value of λ(t)

We next characterize the rates and powers. The following
lemma shows that λ(t) is a piecewise constant function.

Lemma 5 In the optimal policy, the Lagrange multiplier
function λ(t) is piecewise constant, with possible changes only
when energy is depleted.

Proof: By the complementary slackness conditions on λ(t),

λ∗m = 0, if E∗(tm) < Ea(tm) (41)
E∗(tm) = Ea(tm), if λ∗m > 0 (42)

Therefore, λ(t) remains constant between energy harvests, and
can only decrease when λm > 0 for some m, which happens
only when energy is depleted. �

By Lemma 5, λ(t) is a sequence rather than a continuous
function of time. We denote the times of change of λ(t) by
{s1, s2, . . . , sL} with s1 = 0, and the values of λ(t) between
such times by

λ(t) =

{
λck, t ∈ [sk, sk+1)

λcL, t ∈ [sL,∞)
(43)

Next, we characterize the optimal {λck} sequentially. Deter-
mining the value of λck requires the knowledge of ν∗1 and ν∗2 ,
and also which mode of operation is active during the interval
[sk, sk+1). Let us define Bj(t) as the total amount of bits
transmitted to user j by time t. The next theorem shows how
to compute λck given the mode of operation. The proof uses
similar steps as in [13, Lemmas 2 and 3] and is omitted here.

Theorem 1 Given a mode of operation, with the optimal ν∗1 ,
ν∗2 , λcl , sl, ∀l < k, define the following quantities ∀m: tm > sk

λ̄m : E∗(sk) +

∫ tm

sk

g(r1(τ), r2(τ))+dτ = Ea(tm) (44)

λ̃1 : B∗1(sk) +

∫ ∞
sk

r1(τ)+dτ = B1 (45)

λ̃2 : B∗2(sk) +

∫ ∞
sk

r2(τ)+dτ = B2 (46)

where r1, r2, and g(r1, r2) are defined by the mode of
operation in Section III-A, with the convention that λ̃j = 0
whenever a mode of operation has rj = 0, j = 1, 2. Then, the
optimal λck for this mode of operation is given by

λck = max{λ̄m, λ̃1, λ̃2}, ∀m : tm > sk (47)

The results in Theorem 1 imply that one has to know
the mode of operation before computing the optimal values
of the Lagrange multipliers. Note that communication gaps
occur naturally due to the (·)+ operation in these expressions.
In the next section, we develop an iterative algorithm that
computes {λck} based on an initial assignment of the mode
of operation and the values of ν1, ν2. The algorithm is based
on the necessary conditions stated in the previous lemmas. By
Lemma 1, we know that the optimal values of ν1, ν2 lie in a
cone in R2

++. We also know, by Lemmas 2 and 3, that the
communication stops if t > ν2. Therefore, we find an upper
bound on the value of ν∗2 as follows. First, we move all of
the energy to tM−1, the arrival time of the last energy packet,
and start the communication from there. Second, we solve this
single energy arrival problem and find its optimal ν∗2 which
we denote by νsingle

2 . Therefore, an upper bound on ν∗2 of the
multiple energy arrival problem is

ν∗2 ≤ ν
single
2 + tM−1 , ν

ub (48)

Once this upper bound is found, one can perform a two-
dimensional grid search over the feasible region of ν1, ν2:

Rν1ν2 =
{
ν1, ν2 : 0 < ν1 < ν2 < σ2ν1, ν2 ≤ νub} (49)

Next, we analyze the single energy arrival case to characterize
the upper bound on ν∗2 .

C. Single Energy Arrival

For the single energy arrival case, we first note that there
can be no communication gaps, as this can only increase the
delay. We also note that since there is only one value of
λ, corresponding to only one energy arrival constraint, the
optimal power is given by the first term in (23). If not, then
the weak user will never receive its data. Hence, the first mode
of operation where only the strong user is receiving data never
occurs. Thus, the optimal total power is given by

ps(t) =
ν2 − t
λ
− σ2, ∀t ≤ tf , ν2 − λσ2 (50)

where the subscript s denotes single arrival, and tf is such
that ps(t) is non-negative. From the above, we also note that



Algorithm 1 Solving for {λck} given (ν1, ν2)

1: Assume transmission starts with Mode 1
2: repeat
3: Find the next λck using (47)
4: until λck < λth
5: Set the mode of operation as Mode 2
6: repeat
7: Find the next λck using (47)
8: until t > tth
9: Set the mode of operation as Mode 3

10: repeat
11: Find the next λck using (47)
12: until Weak user’s data or transmission energy is finished

λ cannot be 0, or else the power is infinitely large. Since λ > 0,
by complementary slackness, the transmitter has to consume
all of its energy by the end of transmission. This simplifies the
single energy arrival problem, as in this case, we have all the
three constraints, both users’ data and transmitter’s energy, met
with equality. Therefore, we can solve for the optimal values
of the Lagrange multipliers satisfying the following:∫ tth

0

1

2
log

(
(σ2 − 1)(ν1 − t)

ν2 − ν1

)
dt = B1 (51)

tth
2

log

(
ν2 − ν1
λ(σ2 − 1)

)
+

∫ tf

tth

1

2
log

(
ν2 − t
λσ2

)
dt = B2 (52)∫ tf

0

ps(t)dt = E (53)

The above three equations are direct consequences of the
modes of operation analysis in Section III-A. These can be
further simplified into:

ν1
2

log

(
(σ2 − 1)ν1
ν2 − ν1

)
= B1 (54)

ν2
2

log

(
ν2 − ν1
λ(σ2 − 1)

)
= B2 (55)(

ν2 − λσ2
)2

2λ
= E (56)

Note that (54)-(56) have three equations in three unknowns,
and can be solved numerically for the values of λ∗, ν∗1 , and ν∗2 .
Note from the above analysis that, since we always start with
the second mode of operation, where both users receive data,
in this setting, we have λ < λth. This implies that tf > tth,
and enables the following stronger version of Lemma 3.

Lemma 6 In the optimal policy solving (10), transmission
always ends by sending data only to the weak user.

Proof: In the single energy arrival case, since tf > tth, we
always end transmission by sending data only to the weak
user. In the multiple arrival case, the last energy arrival can be
viewed as a single energy arrival problem with the remaining
data in the data buffers as modified constraints. Then the single
energy arrival result applies, yielding the stated result. �

Algorithm 2 Finding the optimal (ν∗1 , ν
∗
2 )

1: Fix ν1 = ε > 0 small enough
2: while ν1 ≤ νub do
3: Fix ν2 = ν1 + ε
4: while ν2 ≤ min{σ2ν1, ν

ub} do
5: Solve for {λck} via Algorithm 1
6: if B1(∞) = B1 and B2(∞) = B2 then
7: Declare current policy as optimal
8: else
9: ν2 ← ν2 + ε

10: end if
11: end while
12: ν1 ← ν1 + ε
13: end while

We have now characterized how to get the upper bound νub

in (48). In the next section we present an iterative algorithm
to find the optimal Lagrange multipliers solving problem (10).

IV. ITERATIVE SOLUTION

The analysis presented in Theorem 1 describes an optimal
method of finding {λck} given ν∗1 and ν∗2 . To find the latter
two, we perform a grid search over the region Rν1ν2 , which
is fully characterized by the single arrival analysis. We perform
the search as follows. We fix (ν1, ν2) ∈ Rν1ν2 , and solve for
{λck} to acquire a transmission policy accordingly. We denote
by Mode 1, Mode 2, and Mode 3, the mode of operation where
data is sent only to the strong user, both users, and only to the
weak user, respectively. Since Mode 1 can only occur at the
beginning, we assume that the transmission starts according to
that mode, and compute the corresponding λs by Theorem 1.
If these λs are all less than λth, then they are correct. We
move to Mode 2 once we get a value of λ larger than λth. We
stay at Mode 2 until the time passes tth, then move to Mode
3 till the end of communication. By Lemma 6, we know that
Mode 3 always exists. The transmission then ends whenever
the weak user’s data or the transmission energy is finished.
We summarize these in Algorithm 1 above.

After we find the transmission policy, we check whether
the data buffers of both users are empty. If this is the case,
then by the convexity of the problem, this policy is optimal
as we have thus found a feasible policy satisfying the KKT
conditions [15]. Note that we might end up with a policy that
either does not finish up all the users’ data, or even transmits
more than the available. If either is the case, we re-solve using
another (ν1, ν2) point. Since the region Rν1ν2 is bounded,
iterations are guaranteed to find the optimal solution according
to the above stopping criterion. We summarize how to find the
optimal (ν1, ν2) in Algorithm 2 above.

V. NUMERICAL RESULTS

We present a numerical example to illustrate the results in
this paper. We consider a system where energy arrives with
values [6, 10, 4, 5] at times t = [0, 70, 100, 150], with amounts
of data B1 = 8 and B2 = 4.25 intended for the strong and the
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Fig. 1. Optimal power and rates for a system with four energy arrivals.

weak user, respectively. We first find the upper bound on ν∗2
by solving the single energy arrival case by setting E = 25 in
(56) and finding the value of νsingle

2 . Adding tM−1 = 150, we
get νub ' 170. We then apply Algorithm 2 to find the optimal
total power allocation for the multiple arrival case and the
corresponding users’ rates. These are shown in Fig. 1 as a
function of time. We see that all four modes of operation are
present in this example: the transmitter begins by sending data
only to the strong user (Mode 1) until it consumes the initial
energy arrival, and stays silent until the next energy arrival,
then it sends data to both users simultaneously (Mode 2) until
all strong user’s data is finished, which occurs at tth ' 79.4.
Then, it starts sending data only to the weak user (Mode 3),
before keeping silent until the third energy arrival, and then
finishes up the weak user’s data. Note that the fourth energy
arrival is not used in this example. In Fig. 2, we show the
corresponding optimal total energy and data consumption for
this policy as a function of time.

Next, we compare this to the transmission completion time
minimization problem in [6] with the same data values and
energy arrival profile. The optimal transmission completion
time is equal to T ∗ = 90. Calculating the delay achieved by
such policy gives D ' 717.2. On the other hand, our delay
minimizing policy achieves a smaller delay of D∗ ' 593.3,
however, it takes a larger amount of time to finish T '
101.5. This shows that there exists a trade-off between delay
minimization and transmission completion time minimization,
and that the two problems are different, even when all data is
available before the start of communication. That is, finishing
data delivery by a minimum time, and having data experience
minimum overall delay yield different optimum policies.

VI. CONCLUSION

We considered a two-user energy harvesting broadcast chan-
nel and characterized the minimal sum delay policy subject
to energy harvesting constraints, when all data intended for
both users is available before transmission. We showed that
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Fig. 2. Optimal energy and data consumption.

the optimal power is decreasing between energy harvests, and
that there can be times when data is sent only to the strong
user, both users, or only to the weak user. We also showed
that there can be communication gaps where the transmitter
is silent between energy arrivals. We presented an algorithm
to find the optimal policy iteratively.
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