
MIFO: Multi-Path Interdomain Forwarding

Ming Zhu∗†, Dan Li∗†, Ying Liu∗†, Dan Pei∗†, K.K. Ramakrishnan‡, Lili Liu∗†, Jianping Wu∗†

∗Tsinghua National Laboratory for Information Science and Technology
†Department of Computer Science and Technology, Tsinghua University ‡University of California, Riverside, USA

Abstract—Today’s interdomain routing is traffic agnostic
when determining the single, best forwarding path. Naturally,
as it does not adapt to congestion, the path chosen is not always
optimal. In this paper, we focus on designing a multi-path
interdomain forwarding (MIFO) mechanism, where AS border
routers adaptively forward outbound traffic from a congested
default path to an alternative path, without touching the
interdomain routing protocols. Different from previous efforts
which enable multi-path on control plane, MIFO achieves
multi-path on data plane. The multiple alternative forwarding
paths are obtained by exploring local BGP RIB.
Multi-path forwarding on data plane can create a loop even

within a stable network. MIFO solves this problem with a
simple and practical approach. Several other challenges are
also addressed including preventing cycling packet between
iBGP peers and choosing the best alternative path from
among multiple candidates. Our evaluations show that MIFO
significantly improves the end-to-end throughput at the AS
level, compared to traditional BGP and MIRO. For example,
with only 50% of the ASes being MIFO capable, a significant
percentage of the flows (about 40%) can use at least 50%
of the inter-AS link capacity. In contrast, BGP and MIRO
routing make less effective use of the inter-AS links, with
only 7% and 17% of the flows can be so. Finally, we have
developed a prototype implementation of MIFO on Linux
with the forwarding engine in the kernel, with the routing
daemon developed on XORP platform. The experiments on a
testbed built with prototypes show that MIFO can improves
the aggregate throughput by 81% compared with BGP routing.

I. INTRODUCTION

A significant challenge facing today’s Internet is the rapid

growth of interdomain traffic volume [1]. Daily traffic in

large Internet Exchange Points (IXP) is often in tens of

petabytes (PB) [2]. Meanwhile, the hierarchical structure of

the Internet is becoming flatter [3], which leads to abundance

of paths existing between every pair of ASes. However, BGP,

as the dominant interdomain protocol, fails to take advantage

of the availability of a multitude of paths to increase the

end-to-end network throughput. Instead, today’s BGP routers

only use a single, default path, which when congested

This work is supported by the National Key Basic Research Program
of China (973 program) under Grant 2014CB347800, the National
Natural Science Foundation of China under Grant No.61170291,
No.61432002, the National High-tech R&D Program of China (863
program) under Grant 2013AA013303, and Tsinghua University Ini-
tiative Scientific Research Program.

leads to even poorer performance. With BGP being traffic

agnostic, it fails to react to congestion and burstiness in the

traffic [4]. The most recent industrial report [5] confirms that

congestion on the default path between popular ISPs (e.g.,
Verizon and Level3) is increasingly common.

There are two fundamentally causes for this. First is the

conflict between the rapid growth of traffic load and BGP’s

rigid, static, single-path routing principle. When there is
higher load, the lack of ability to use all available paths

means that the one path used is congested because all the

traffic is forwarded on that path. Secondly, the mismatch

between fast dynamics of traffic and slow route conver-
gence results in poor end-to-end network performance. More

specifically, dynamic traffic load leads to congestion hap-
pening on data plane, while changing forwarding path is

realized in control plane, such as reconfiguring the weight in

routing protocols (e.g., local preference in BGP) or statically
switching into an alternative path. The decoupling between

control plane and data plane makes it difficult to adapt.

In this paper we design Multi-Path Interdomain
FOrwarding (MIFO), which enables AS border routers to
adaptively offload outbound traffic from a congested default

path to an alternate path with only data plane modification,

rather than having the load information communicated to

the control plane and using it to recognize alternate paths.

Specifically, MIFO explores multiple paths learnt by the

control plane and uses load-aware forwarding at the data

plane over different outgoing AS paths, so as to keep

forwarding in line speed.

AS border routers in MIFO directly utilize existing mul-

tiple paths obtained from the local BGP RIB, without

requiring any additional protocol exchange in the control

plane. In the BGP RIB, different paths are learned from

different AS neighbors. It is therefore better to achieve

multi-path forwarding on data plane in order to reduce the

overhead of looking up in the RIB.

MIFO is an entirely distributed system and is compatible

with legacy routing system. However, several challenges

must be addressed in designing a practical solution. The

first and the greatest challenge is, in a distributed routing
system, multi-path forwarding can always create a loop
even within a stable network.Within present interdomain

2015 44th International Conference on Parallel Processing

0190-3918/15 $31.00 © 2015 IEEE

DOI 10.1109/ICPP.2015.27

181

2015 44th International Conference on Parallel Processing

0190-3918/15 $31.00 © 2015 IEEE

DOI 10.1109/ICPP.2015.27

180

2015 44th International Conference on Parallel Processing

0190-3918/15 $31.00 © 2015 IEEE

DOI 10.1109/ICPP.2015.27

180

2015 44th International Conference on Parallel Processing

0190-3918/15 $31.00 © 2015 IEEE

DOI 10.1109/ICPP.2015.27

180

2015 44th International Conference on Parallel Processing

0190-3918/15 $31.00 © 2015 IEEE

DOI 10.1109/ICPP.2015.27

180

2015 44th International Conference on Parallel Processing

0190-3918/15 $31.00 © 2015 IEEE

DOI 10.1109/ICPP.2015.27

180

���� ����	�
� ��������

�
	�������

�����������������	 ��

����������
���������	 ��

���� �������� ��������

	������� �� ��

�����
� ��

! ��

��

��

Figure 1: MIFO Overview.

routing protocols (e.g., BGP), whenever a router forwards
packets along with an alternative path instead of the default

path, a loop can be generated. We illustrate an example in

Section II-C to show that such loop can exist even under

a simple topology (e.g., only 3 nodes). The reason is the
inconsistency between control plane and data plane. It is

“loop-free” on control plane since packet is considered to

be always forwarded along the default path. However, on

data plane, the packet is possibly sent to an alternative path

to bypass a default congested outgoing link. In this case, the

loop may be generated in data plane, but is invisible to con-

trol plane. The second challenge is, a cycle may be produced
once packets are deflected from the default egress router

to another egress router directing to an alternative path,

either in MIFO or in BGP. The reason is the inconsistency

between iBGP peers: except for the default egress router

itself, all the other routers are unaware of the congestion on

the default path and thus sending packets back to the default

egress router. The third challenge is, once the default path
is congested, it is important to make the border router select

the best alternative path for subsequent packets in line speed,

in a fully distributed manner.

MIFO addresses the first challenge by leveraging a

“valley-free” rule into the data plane. More precisely, we

add a simple and practical constraint in the data plane to let

routers forward packets following a loop-free path. We not
only prove the correctness of this idea in theory, but also

propose an effective implementation by using just one bit

in the packets, which are supposed to be forwarded along

with an alternative path. In particular, MIFO consumes one

bit in packet header to denote the “valley-free” rule on

data plane. IP-in-IP encapsulation between iBGP routers is

applied to address the second challenge. By checking the

outer IP header, an iBGP router can easily decide whether

it can forward the packet to the iBGP peer on the default

path or not. Finally, to address the third challenge, border

routers measure the path quality by selective probing. In the

current design, we also come up with a greedy solution to

let border routers select the best alternative path depending

on local link capacity.

Extensive simulations based on traced AS-level Internet

topology and reasonable generated traffic show that MIFO

can significantly improve the end-to-end network throughput

at the AS level, compared to traditional BGP and MIRO. For

example, with only 50% of the ASes being MIFO capable,

a significant percentage of the flows (about 40%) can use

at least 50% of the inter-AS link capacity, i.e., the average
throughput of these flows is 500Mbps if the link capacity

is 1Gbps. In contrast, BGP and MIRO routing make less

effective use of the inter-AS links, with only 7% and 17%

of the flows attain 50% of the link capacity. We have also

developed a prototype implementation of MIFO on Linux

with the forwarding engine in the kernel, with the routing

daemon developed on XORP platform. The experiment

on a testbed built with prototypes show that MIFO can

improves the aggregate throughput by 81% compared with

BGP routing.

The rest of the paper is organized as follows. The fol-

lowing section presents the overview of MIFO. Section III

analyzes the root cause of loops in multi-path forwarding

and prove the correctness of our solution, as well as the

design details. Section IV evaluates MIFO’s performance.

Section V describes our prototype implementation of MIFO.

Section VI discusses related work. Finally, Section VII

concludes the paper.

II. OVERVIEW AND TECHNICAL CHALLENGES

In this section we present the basic idea and technical

challenges in designing MIFO.

A. Basic Idea

We now illustrate the basic idea of MIFO. As shown in

Figure 1, AS X learns two AS paths towards destination

a.b.c.d (for convenience we ignore the length of prefix in
our notation). Assume that the path learned from AS Y

is selected as the default path (red arrow), while the path

learned from AS Z is selected as the alternative one (green

arrow). We slightly modify the FIB by adding alt port filed,
which corresponds to the alternative path, as shown in Fig. 1.

As the traffic volume towards a.b.c.d through AS X grows
rapidly, congestion may occur on the default path. More

specifically, on the border router, more packets accumulate

in the tx queue of the default output port, i.e., port 1.
With MIFO, the router could adaptively deliver subsequent

packets for a.b.c.d to port 2, which corresponds to an
underutilized alternative path {X,Z, ∗}. Note that MIFO
does not specify how to identify the congestion on border

routers. It is an open to different congestion definitions.

Throughout this paper, we simply denote the queuing ratio

of output ports as the congestion signal.

To keep forwarding at line speed, MIFO implements path

selection in the data plane. In particular, once congestion

occurs, the border router directly forwards the packet to the

alternate port denoted in the FIB, rather than looking up the

BGP RIB in the control plane. Such a design significantly

182181181181181181

�� �
�� �� �
�� �� �

�� �
�� �� �
�� �� �

�� �
�� �� �
�� �� �

"	�#$�

(a) Loop on data plane.

"	�#$�

�� �

�� �

�� �

�	�#$� "	�
 �$%	��� "	�
 ���$�&	�'($ "	�

��

��

(b) Cycling between iBGP peers.

"	�#$�

��

��

�)

*&+$��$�

�,-�"�

�,,-�"�

�� �

�� .

�� /

�� 0

(c) Alternative path selection.

Figure 2: Three challenges.

reduces the overhead caused by switching between the two

planes, considering that congestion occurs frequently on

interdomain border routers [6]. The alternate port in the FIB

is updated by a MIFO daemon.

To avoid packet reordering issues, forwarding is deter-

ministic at the flow level. As Fig. 1 shows, packets with

same color belong to the same flow. The eventual path for

subsequent packet is determined by hashing1. MIFO prefers

the alternative path that has the higher available bandwidth.

More details of path selection is introduced in Section III-C.

B. Design Rationale

Although several studies [7–10] have explored multi-path

interdomain routing, the additional overhead in obtaining

alternative paths extremely limits them for practical use.

For example, to make every AS advertise alternative paths,

either a new message or an extra BGP attribute has to

be introduced. Moreover, routers have to maintain another

routing table to track the alternate paths in fast memory. In

our design, we aim at obtaining multiple paths with zero
overhead.
To achieve this, we just utilize existing paths in BGP RIB,

where different paths are learned from different neighboring

ASes. Given that paths are valid in BGP RIB (e.g., loop-
free), no further examination is required. The degree of path

diversity gained by an AS is therefore dependent on how

many neighbors it has. By examining the BGP RIB provided

by Routeview [11], we found that most of ASes are able to

benefit from multi-neighbor forwarding.

C. Challenges

Traffic-sensitive forwarding via MIFO can be easily de-

ployed on border routers while being compatible with legacy

routers. The key idea is to leverage alternative paths in

forwarding packets while avoiding congestion on default

paths. However, several challenges must be addressed in

designing a practical solution.

1 For example, a flow is identified by a five-tuple: source address, destination
address, source port, destination port, protocol type.

Loops on the Data Plane. We assume that the network
is in the stable state, meaning traditional loops caused

by inconsistent route views in a transient state are not

considered. The standard route selection rule is also adopted,

meaning that customer routes are preferred over peer routes,

which in turn are preferred over provider routes. In single

path routing, the full AS path vector in a BGP announcement

guarantees that each AS can avoid loops by filtering the

paths which contain its own number. However, for multi-

path routing, loops can still exists. More specifically, we

state that, within present inter-domain routing protocols
(e.g., BGP), whenever a router forwards packets along an
alternative path instead of the default path, a loop can be
generated.

Fig. 2(a) illustrates an example. ASes 1, 2 and 3 are

peering with each other, while AS 0 is their customer.

By following the route selection criteria, each AS uses the

direct link to AS 0 as its default path and routes via its

neighbors as its alternative path. Once congestion occurs on

the default path, rather than dropping the packets, each AS

would leverage the alternative paths in forwarding packets.

Considering the worst case where every default path (red

route) is congested, each AS may forward the packet along

with an alternative path (green route). As the dash lines

show, a loop is generated if each AS chooses the alternative

path in a clockwise direction. The root cause is the lack of a

constraint in forwarding packets on data plane. Recognizing

this, we demonstrate a simple and practical approach to solve

this problem in section III-A2.

Cycling between iBGP peers. The multiple paths at the
AS-level can be translated to different AS border router-

s. Take Fig. 2(b) as an example, in contrast to Fig. 1.

The alternative path is derived from another border router

compared to the default path. Once packets are deflected

from the default path to an alternative path, a cycle may

be produced between iBGP peers. As Fig. 2(b) shows, only

two paths are available towards the destination, where XY ∗
and XZ∗ are selected as the default path and alternative

183182182182182182

���	
�

Figure 3: Formalized Loop.

path respectively. Assume that the default path is congested.

Rather than sending packets to a eBGP peer, R1 prefers to

forward packets to an iBGP peer, R2, so as to deliver packets

through the alternative path. However, R2 will send packets

back to R1, which produces a cycle. The reason is that the

iBGP peers are out of sync in the data plane. In particular,

R2 is unaware of congestion on the default path through

R1 and still delivers packets to R1 to use the default path.

Section III-B presents an easy but elegant solution to solve

this problem.

Selecting the Best Alternative Path in a Distributed
Manner. Given that MIFO works in an entirely distributed
way, once congestion occurs on the default path, the border

routers of every AS have to independently choose the best

alternative path for each subsequent packet. Take Fig. 2(c) as

an example. As soon as congestion is observed on the default

path, the default egress router (R1) has to deliver subsequent

packets to an alternative path with the most available band-

width. Therefore, R1 prefers the alternative path through R3

since it has a larger available bandwidth (100Mbps) than

the path through R2 (10Mbps). We propose a simple, but

practical, greedy method to address this challenge and is

detailed in Section III-C.

III. MIFO DESIGN

In this section we design MIFO in details, in a particulary

notice on how to address the challenges elaborated in the

previous section.

A. Breaking the Loop on Data Plane

1) The Root Cause of Loop: In multi-path forwarding,
when an AS decides to forward a packet, the full path is

indeterminate. As Fig. 2(a) shown, when AS 1 forwards

packets to AS 2, it supposes that packets will follow the

path described in control plane, 1 → 2 → 0. However,
the real path in data plane is 1 → 2 → 3 → 1. This is
different from existing single-path routing, where data plane

strictly follows the default path selected by control plane.

The inconsistency between control plane and data plane is
the root cause of generating loop in multi-path forwarding.
Therefore, to prevent the loop: i) we can force the data plane
definitely follows control plane, or ii) examine the exact
packet path before forwarding, or iii) add some constraints
in data plane to drop the packet automatically.

The first approach falls back to single path routing by

only using default path, i.e., AS 1 either forwards packets
to AS 0 or drops them. The second approach means each

AS knows instantaneous global information, i.e., AS 1 will
drop the packet right away as soon as it founds that AS 3

and AS 2 are both congested on default path. To achieve

this, the link utilization between each pair of ASes has to

be endlessly propagated on Internet, which is unscalable and

impractical. Therefore, we adopt the third approach to break

the loop: add a simple constraint on data plane.
2) Main Idea of Loop Breaking: Currently, “valley-

free” [12] policies are only used on control plane to match

economic incentives, whereby routes through peers and

providers are exported only to customers, and customer

routes are exported to everyone. However, we prove that

the loop issues can be easily resolved by building a similar

regulation into data plane. Specifically, before forwarding

packets to an alternative path, current AS will examine

the business relationship with upstream neighbor (UN) and
downstream neighbor (DN). Here upstream and downstream
denote the direction of packets, incoming and outgoing

respectively. The procedure of path verification is described

as following:

• If UN is a customer: forward the packet to this path.
• If UN is a provider or a peer: forward the packet to
this path if and only if DN is a customer.

• Otherwise, drop the packet.

Take Fig. 2(a) for instance, when AS 2 receives packets

(towards AS 0) from AS 1, by learning that default path

(2 → 0) is congested, it will choose an alternative path (2 →
3 → 0) to forward packets. However, other than sending
packets to AS 3, AS 2 should directly drop packets since

both upstream neighbor (AS 1) and downstream neighbor

(AS 3) are AS 2’s peers, which violates the rule of path

verification. Consequently, the potential loop (1 → 2 →
3 → 1) in data plane is immediately cut off.

3) Correctness of the Idea: In our definition, a packet is
forwarded in loop-free if the packet reaches the destination

without loop, or the packet is dropped before forming a loop.

We then draw the conclusion and prove the correctness as

follow:

Theorem. Within multi-path interdomain forwarding, by
adding valley-free regulation in data plane, each packet is
forwarded in loop-free.

Proof: We first declare that the necessary condition to
generate a loop is that, at least one AS adopts the alternative

path other than the default path. This is an obvious fact since

BGP already ensures loop-free on default path through full

AS-path vector.

We then focus on the graph, G(V,E), where vertices
{v ∈ V } denote ASes and edges {e ∈ E} denote inter-
AS links. The business relationship between adjacent ASes

184183183183183183

can be defined as algebraic logic:

vi < vi+1, if (vi, vi+1) is (customer, provider)

vi = vi+1, if (vi, vi+1) is (peer, peer)

vi > vi+1, if (vi, vi+1) is (provider, customer)

Note that transitivity is only valid between customer and

provider, saying that:

if vi−1 > vi and vi > vi+1, then vi−1 > vi+1 (1)

if vi−1 < vi and vi < vi+1, then vi−1 < vi+1 (2)

However, it is not suitable in peering: if vi−1 = vi and
vi = vi+1, vi−1 and vi+1 can have any kinds of relation-

ship. Accordingly, the procedure of path verification can be

formalized as: vi is allowed to transit packets from vi−1 to

vi+1 if and only if:

vi−1 < vi or vi > vi+1 (3)

We next complete the proof by contradiction. As Fig. 3

shown, we denote v1 to represent the node who takes
alternative path other than default path, which results in

a loop. We assume the loop is clockwise (counterclock-

wise is the same), means packets are transferred through

v1 → v2 → ...vn → v1 → v2... where n > 2 and vi also
represents vn+i.

If v1 > v2, with Eq. 3, v2 can forward packets to v3 if
and only if v2 > v3. In a similar fashion along the loop, we
have v1 > v2 > v3... > vn. According to Eq. 1, it leads
to v1 > vn. However, to construct the loop, vn should also
forward packet to v1. Given that vn−1 > vn, by following
Eq. 3, it leads to vn > v1. Contradiction is generated.
If v1 = v2, with Eq. 3, it turns to v2 > v3. Applying

Eq. 3 along the loop, we have v2 > v3 > ... > vn > v1.
However, if vn > v1, by Eq. 3, v1 can forward packet to v2
if and only if v1 > v2, which contradicts with v1 = v2.
If v1 < v2, to form a loop, vn should forward the packet

to v1. With Eq. 3, it turns to vn < v1. Applying Eq. 3 in
a counterclockwise direction, we have v2 < ... < vn−1 <
vn < v1. According to Eq. 2, it leads to v2 < v1, which
contradicts with v1 < v2.
Therefore, by adding valley-free regulation on data plane,

it is loop-free in multi-path interdomain routing.

4) One More Bit is Enough: In AS level, the business
relationship with neighbors is predefined in control plane.

However, in our system, such information is also request-

ed in data plane to achieve loop-free packet forwarding.

Fig. 4 illustrates the forwarding process through three ASes,

Vi−1 → Vi → Vi+1. On one hand, as the packet entering

point in AS Vi, R1 is the only device who knows the

upstream neighbor is Vi−1 because of the direct connection.

On the other hand, as the packet exit point in AS Vi, R2

is the only device who knows the downstream neighbor is

Vi+1 (on alternative path) other than V
∗
i+1 (on default path).

����
/'1�

/'2�

/'

�	+ � �'�

�	+ � �'�

�
$�# � �'��
$�# � �'�

�	�#$� "	�
 �$%	��� "	�
 ���$�&	�'($ "	�

/�'2�

Figure 4: Tag-Check Strategy.

Therefore, to obtain a forwarding path in loop-free: R1

should tell R2 that the upstream neighbor is Vi−1, and R2

has to examine the relationships of (Vi−1, Vi) and (Vi, Vi+1)
in terms of Eq. 3. The key is to pass the relationship with
upstream neighbor from the packet entering point to the
packet exit point. To achieve this, we show that “one bit
is enough”.

Take Fig. 4 as an example. To transit the packet from Vi−1

to Vi+1, border router R2 on Vi is required to verify that

either Vi−1 < Vi or Vi > Vi+1. Given that the relationship

between Vi and Vi+1 is known due to the direct connection,

R2 only needs to determine whether Vi−1 < Vi or not. Such

information can be easily expressed by one bit: 1 denotes
Vi−1 < Vi and 0 denotes Vi−1 ≥ Vi. Therefore, a simple

“Tag-Check” approach is used to fulfill the path verification

on data plane:

• When the border router (e.g., R1) receives a packet

from an eBGP peer, it tags one bit to identify the

relationship with corresponding upstream neighbor.

• When the border router (e.g., R2) intends to deliver a

packet to an eBGP peer, it checks that bit in terms of

Eq. 3.

It is easy in deploying “Tag-Check” strategy in practise.

Multi-Protocol Label Switching (MPLS) is widely deployed

in ASes [13], where a label is inserted on each incoming

packet at entering point and removed at the exit point. This is

just right for “Tag-Check” strategy by consuming an unused

bit in the label. Even for the ASes without using MPLS,

it could be accomplished by taking one reserved bit in IP

header or allocate one bit in IP option filed.

B. Cycle Avoidance via IP-in-IP Encapsulation

The primary cause of cycling packets in Fig. 2(b) is the

asynchronism between iBGP peers. More specifically, R2

is unaware of the congestion through R1, and thus sends

packets back to R1 to use the default path. Therefore, a

notification mechanism is requested to keep iBGP peers have

a consistent view on data plane.

We adopt the means of IP-in-IP encapsulation for several

promising reasons. First, it is practical given that IP-in-IP

function is widely supported in current commercial routers.

Second, the reliability is guaranteed based on the existing

185184184184184184

Algorithm 1 Pseudocode of forwarding process
Input:

p: Incoming packet; Iin: input port;
1: if isIPinIP(p) � IP-in-IP packet
2: s ← GetPacketSender(p) � Sender is iBGP peer
3: StripOuterIPHeader(p);
4: Iout, Ialt ← FIBLookup(p);
5: if isConnectToEBGP(Iin) � Entering Point
6: Vup ← GetNeibor(Iin); � Get Upstream Neighbor
7: if isCustomer(Vup) � Tag
8: SetOneBit(p);
9: else
10: ClearOneBit(p);
11: if isCongest(Iout) or s = GetNextHop(Ialt)
12: if isConnectToIBGP(Ialt) � Alt path on iBGP peer
13: Encap(p); � Encapsulate by IP-in-IP
14: SendTo(p, Ialt); � Send to iBGP peer
15: return
16: Vdown ← GetNeibor(Ialt);
17: if isCustomer(Vdown) or isSetBit(p) � Check
18: SendTo(p, Ialt); � Alt path is Valley Free
19: else
20: Drop(p);
21: return
22: SendTo(p, Iout);
23: return

connection between each pair of iBGP peers. Finally, this

is a lightweight in-band approach, without any additional

messages.

The border router relies on the encapsulated IP header

to determine the forwarding path: default one or alternative

one. We take Fig. 2(b) as an instance to describe our non-

trivial approach. R1 is the final hop to exit local AS towards

the destination. Once R1 sees congestion on default outgoing

link (red arrow), it encapsulates each subsequent packet with

an outer IP header and forwards it to an iBGP peer, R2,

to leverage the alternative path (green arrow). The source

address and destination address in outer IP header are R1 and

R2 respectively. Once R2 receives the packet, it identifies

the sender (R1) by extracting the source address and obtains

the origin packet by decapsulating the outer IP header.

To forward the origin packet, R2 primarily compares the

corresponding nexthop with the sender. If the nexthop equals

to sender (means R1 is the nexthop as default), it indicates

the packet is “deflected” from the default path because of the

congestion. R2 thereupon sends the packet to an alternative

path (green arrow) instead. Otherwise, R2 forwards packet

to the nexthop (R1) directly.

C. Selecting the Best Alternative Path
The priority of an alternative path is identified by the

available bandwidth. Within an AS, the border routers peri-

odically measure the available bandwidth to other ASes and

communicate the measurement results with each other. As

shown in Fig. 1, the alt port in FIB is corresponded to the

alternative path with most available bandwidth.
Given that each pair of border routers are iBGP peer,

exchanging measurement results is easily implemented by

reusing the TCP session between them. Therefore, the key

step is to efficiently realize the measurement on border

routers. Plenty of measurement tools are developed in past

years [14]. However, none of these is suitable in our system.

On one hand, packets are fast forwarded while end-to-end

bandwidth estimation is extremely slow in comparison. On

the other hand, it is impractical to constantly measure such

many destinations, given that current BGP table has 500K

entries [15]. Even in AS level, there are 50K [15] potential

targets, which is still unacceptable.
In our design, we adopt a greedy method by simply

turning “path” measurement into “link” monitoring. Specif-

ically, the border router takes remaining capacity on direct

connected inter-AS link as the path available bandwidth.

Take Fig. 2(c) as example, other than probing the path band-

width [14], R2 and R3 merely monitor the spare capacity

on link XV and link XU respectively. Such greedy scheme

provides several advantages:

• It is considerably easier in exploring local link than
sending probe packets with complicated estimation

algorithm.

• Comparing with deferred path measuring, local link
monitoring achieves real-time results.

• As for a router, the amount of links is far less than the
number of ASes to be monitored.

D. MIFO Forwarding Engine

The MIFO forwarding engine on data plane is described

in pseudocode 1. When the border router receives a packet,

it examines the packet type at first. If the packet is encapsu-

lated by IP-in-IP (Line 1), it extracts the packet sender (Line

2) and strips the outer IP header to obtain the origin packet

(Line 3). The default output port and alternative output port

are acquired by looking up FIB (Line 4). If the packet

comes from an eBGP peer (Line 5), it means current router

is the packet entering point. Accordingly, it should check

the relationship with upstream neighbors (Line 6-7) and set

the bit to one if upstream neighbor is a customer (Line 8),

or clear the bit to zero in otherwise (Line 10). Finally, it

sends the packet to intradomain (Line 22). As described

in Section III-B, the router can detect congestion by either

seeing it on output port or receiving an encapsulated packet

from the default path (Line 11). Therefore, the packet should

be forwarded through the alternative path. If the alternative

path is on an iBGP peer (Line 12), the router encapsulates

186185185185185185

Date # of Nodes # of Links P/C Links Peering Links
11/2014 44,340 109,360 75,046 34,314

Table I: Attributes of Data-set.

the packet (Line 13) and sends it to that iBGP peer (Line

14). If the alternative path is on an eBGP peer, it forwards

the packet to the alternative path (Line 18) if path is verified

(Line 17), or drops the packet in otherwise (Line 20).

IV. PERFORMANCE EVALUATION

In this section, we study the performance of MIFO and

compare it with conventional BGP and MIRO [7] by using

an NS-3 simulation. MIRO implements multi-path interdo-

main routing by letting ASes advertise alternative routes to

neighbors. To achieve scalability, MIRO strictly limits the

number of routes that each AS can advertise. In our simu-

lation, all the link capacities are set to 1Gbps. The MIFO

forwarding engine is implemented on each routing node. The

evaluation is built on an actual AS-level topology [16] trace.

In addition to every AS representing a node, we expand

several tier-1 ASes to capture all of their internal topologies

at the router level; in doing so, we assume all the border

routers (iBGP peers) within a tier-1 AS are connected in a

full mesh topology.

We first show that MIFO provides sufficient path diversity,

and then evaluate the throughput improvement. Given that

a complete view of interdomain traffic matrix is difficult

to obtain because of proprietary restrictions, we instead

generate a synthetic traffic matrix in two ways. One is

to randomly choose a pair of ASes as the source and

destination, so as to analyze MIFO in a generic manner.

The second is to think of popular content providers as traffic

producers, such as Google (AS 15169) and Facebook (AS

32934), and take stub ASes as traffic consumers. We assume

that the traffic follows a power-law distribution, in that the

higher a content provider ranks (by the number of providers

and peers), more of its traffic is consumed. We believe that

this helps to have a more realistic evaluation of typical

real-world workloads. The start time for each flow follows

a Poisson process such that the average number of flows

initiated in one second is set to 100. The flow size is chosen

to be 10MB and packet size is set to 1KB.

A. Path Diversity

Given that both MIFO and MIRO exploit multiple paths,

we first study the path diversity with the AS-level topol-

ogy [16]. Table I summarizes the key features of the AS

topology. [16] measured global AS-links and inferred the

business relationship on each link, indicating that 69%

are provider-customer (P/C) and 31% are mutual peering

relationships.

To build the BGP RIB on each node, we use the standard

“valley-free” [12] export policies and route selection criteria,

 1

 10

 100

 1000

 10000

 0 20 40 60 80 100

T
he

 N
um

be
r

of
 P

at
hs

 p
er

 P
ai

rs

Percentage of Node Pairs

50% Deployed MIRO
100% Deployed MIRO

50% Deployed MIFO
100% Deployed MIFO

Figure 7: Available Paths Comparison.

with customer routes preferred over peer routes, which in

turn are preferred over provider routes. If multiple routes fall

in the same category, the first tie breaker is the length of AS

paths, and the second is the lowest next-hop AS identifier.

As for MIRO, we adopt the strict policy described in [7],

which indicates that each AS only announces the alternative

paths with the same local preference as the default path.

Fig. 7 illustrates the available paths between each AS pair

in MIFO and MIRO. In particular, we present the results both

for fully deployment and partial deployment. It is notable

that with even half of the ASes being MIFO capable, more

paths are available than when MIRO is fully deployed.

The reason is that the AS with MIRO only announces a

fraction of the alternative routes for the sake of scalability.

In contrast, the ASes with MIFO are able to leverages all

the available paths. In addition, as for the 100% deployment

of MIFO, 90% of the AS pairs have at least a hundred

alternative paths, and nearly half of the AS pairs have

thousands of available paths.

B. Throughput Improvement

Given an AS-level traffic matrix, we are interested in the

end-to-end throughput of flows compared to conventional

BGP routing (single path) and MIRO. We first take an

uniformly distributed traffic matrix with one million flows.
For each traffic flow, the source, destination are determined

by randomly choosing a pair of ASes. Fig. 5 illustrates

the cumulative distribution of flow throughput for varying

ratios of the deployment of MIFO and MIRO. As expected,

both MIFO and MIRO significantly dominate BGP since

there is insufficient network capacity when using single path

routing. When MIFO and MIRO are fully deployed, MIFO

outperforms MIRO significantly. Only half of the flows get

more than 500 Mbps end-to-end throughput in MIRO, while

nearly 80% flows can achieve more than 500 Mbps under

MIFO. Within 50% deployment of MIFO, it still enables half

of the flows to achieve 500 Mbps throughput, while only

35% flows reach this in MIRO. Even under 10% deployed

ratio, MIFO outperforms MIRO as well.

Next, we turn to a traffic matrix distributed according to

the power-law distribution, which is closer to a real-world

187186186186186186

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000

C
D

F
 (

%
)

Throughput (Mbps)

BGP
100% Deployed MIRO
100% Deployed MIFO

(a) 100% Deployment

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000

C
D

F
 (

%
)

Throughput (Mbps)

BGP
50% Deployed MIRO
50% Deployed MIFO

(b) 50% Deployment.

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000

C
D

F
 (

%
)

Throughput (Mbps)

BGP
10% Deployed MIRO
10% Deployed MIFO

(c) 10%. Deployment

Figure 5: Throughput Comparison against Different Deployment Ratio.

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000

C
D

F
 (

%
)

Throughput (Mbps)

BGP
50% Deployed MIRO
50% Deployed MIFO

(a) α = 0.8

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000

C
D

F
 (

%
)

Throughput (Mbps)

BGP
50% Deployed MIRO
50% Deployed MIFO

(b) α = 1.0

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000

C
D

F
 (

%
)

Throughput (Mbps)

BGP
50% Deployed MIRO
50% Deployed MIFO

(c) α = 1.2

Figure 6: Throughput Comparison against Power-Law Traffic Generation.

 0
 10
 20
 30
 40
 50
 60

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

%
 o

f T
ot

al
 T

ra
ffi

c

Proportion in Deploying MIFO

Traffic on Alternative Paths (%)

Figure 8: Traffic Offload on Alternative Paths.

workload [17]. More specifically, the probability of consum-

ing traffic from the i-th content provider is F (i) = a× i−α,

where a = 1/
∑N

i=1 i
−a and N is the number of content

providers, which is set to one million. We fix the deployment

ratio to 50% and vary α to understand the performance
under varying degrees of traffic skewness. The performance

of BGP routing degrades as the skewness grows, which can

be explained by the fact that serious congestion is caused by

the increasing traffic flowing through a limited number of

paths. In contrast, MIFO achieves much higher throughput

thanks to multi-path forwarding. MIFO outperforms MIRO

as well. Take α = 1.0 for instance. With MIFO, 40% of
flows get 500 Mbps bandwidth during the transfer, while

only 17% and 7% of the flows can achieve this in MIRO

and BGP routing, respectively.

C. Load Balancing

It is important to understand how much congestion on

inter-AS paths is relieved with the help of MIFO. Fig. 8 illus-

��

���

���

���

���

� � � 	 �

��

��
��

��
��

��
��

���� ������ ����

�����������
�

�� !

�" "

�� 	
� # � �

Figure 9: Path Switch Distribution.

trates the proportion of traffic offloaded to alternative paths

for varying degrees of MIFO deployment. We collect the

number of flows transferred on alternative paths and divide

it by the total number of flows. With 100% deployment of

MIFO, half of the flows are delivered over alternative paths,

rather than competing for bandwidth on default paths. It

indicates that MIFO utilizes more paths in order to provide

more network capacity. Even with a small deployment of

MIFO (e.g., 10%), a non-trivial amount of traffic (e.g., 9%)
is offloaded from the default paths.

D. Stability

We also evaluated the stability of MIFO. A path switch

happens if the border router deflects the traffic from the

default path to an alternative path, or resumes using the

default path after using an alternative path. It would be

unstable if most of the flows have a large number of

188187187187187187

Figure 10: Main modules in Prototype Implementation

switches, meaning traffic all shifts over first and then shifts

back. However, as Fig. 9 showen, more than half of flows

(67.7%) had a path switch only once and most flows (97.5%)

switch paths no more than twice. This indicates that MIFO

associated with most of the traffic is reasonably stable.

V. IMPLEMENTATION BASED EXPERIMENTS

In this section we report on experiments based on a proto-

type implementation of MIFO. The experiments were carried

out on a testbed, so as to characterize the performance of

MIFO in a real system.

A. Prototype Implementation

We have implemented the MIFO Daemon as a module in

the eXtensible Open Router Platform (XORP) [18] for the

control plane, and developed the MIFO Forwarding Engine

(MIFO FE) in Linux kernel space for the data plane. The

implementation includes 1500 lines of code in C++ (XORP)
and C (kernel).

Fig. 10 shows the implementation architecture. We de-

veloped a new module in XORP to implement the MIFO

Daemon. It interacts with the BGP module to acquire

available alternative paths. Further, it constantly collects

available link capacity from the data plane (through MIFO

FE) and updates the ’alt’ port in the FIB to direct packets

to the best alternative path. The MIFO Forwarding Engine

is realized as a kernel module. In addition, we re-implement

the FIB lookup function, ip mkroute input(), by adding two
callback functions: one is used to monitor the utilization of

each link, the other to interact with theMIFO Daemon and

update FIB entries. We also add ’alt port’ attribute into struct

fib table and modify related manipulation functions, such as
fib table insert() etc.

B. Experiment Setup

The testbed comprises 15 desktop machines. 4 of them

are end hosts to send and receive flows while the other 11

machines are equipped with the MIFO implementation and

function as routers. 6 ASes are constructed by these ma-

chines as shown in Fig. 11. All the machines are connected

by Gigabit Ethernet links.

30 TCP flows are produced from S1 to D1 one after

another, as well as from S2 to D2. Each flow is 100MB

in size and the data packet is set to 1KB. S1 and S2

�$%	��� "	�
 ���$�&	�'($ "	�

����

����

����

����

��

��

��

��

���	

���
��

�	

Figure 11: Experiment Topology

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2

 0 10 20 30 40 50

A
gg

re
ga

te
 T

hr
ou

gh
pu

t (
G

bp
s)

Time (seconds)

BGP
MIFO

(a) Aggregate Throughput

 0

 20

 40

 60

 80

 100

 0.5 1 1.5 2 2.5 3

C
D

F
 (

%
)

Flow Transfer Time (seconds)

BGP
MIFO

(b) Flow Completion Time

Figure 12: Testbed Experimental Result.

start transferring data at the same time. With BGP routing,

(S1, D1) and (S2, D2) take 1 → 3 → 4 → 5 and 2 →
3 → 4 → 5 as default AS path, respectively. Consequently,
the link between AS 3 and AS 4 is the bottleneck, with

contention between the flows (S1, D1) and (S2, D2). On

the other side, with MIFO, the border router Rd is able

to relieve congestion on the default path by leveraging the

alternative path 3 → 6 → 5 through the iBGP peer, Ra. We

run BGP routing as well as MIFO respectively, and observe

the completion time for each flow as well as the aggregate

throughput of the network.

C. Experimental Results

From Fig. 12(a), we see that MIFO significantly outper-

forms BGP routing by achieving much higher aggregate

throughput. With BGP routing, each flow gets limited link

capacity as a result of congestion through Rd. In contrast,

by delivering traffic through alternative paths through Ra, a

higher total end-end capacity is achievable with MIFO. The

aggregate throughput with MIFO is around 1.7Gbps, while

it is 0.94Gbps with BGP routing. Thus, MIFO improves the

aggregate throughput by 81% compared with BGP routing.

Fig. 12(b) illustrates the CDF of the flow completion time.

All the flows complete within 1.1s in MIFO, while 80%
transferred flows take more than 1.6s with BGP routing.

Moreover, completing all the flows take only 30s in MIFO

, but takes 51s in BGP routing.

VI. RELATED WORK

Multi-path Interdomain Routing. Several works have
been proposed to exploit path diversity by advertising

multiple paths in achieving a better interdomain routing.

189188188188188188

MIRO [7] enables each pair of ASes to negotiate an alterna-

tive path (e.g., bypass an AS with bad reputation). PDAR [8]
extends BGP to advertise a most disjoint alternative path

along with the best path. However, above solutions either

require dedicated communication channel (e.g., MIRO) or
produce extra BGP UPDATE messages (e.g., PDAR), which
causes additional communication overhead. In our design,

MIFO obtains multiple paths with zero overhead by learning

alternative paths in local BGP RIB. Moreover, no further

verification is needed since every path in BGP RIB is

validate. Therefore, the magnitude of path diversity gained

in MIFO is relied on the node degree in AS-level Internet

topology.

Internet Topological Features. Previous measurements
show that the hierarchy of Internet is becoming flatter [3].

The inferred AS-level Internet topology in Nov. 2014 has

a large average node degree but a small diameter [16],

while the real-time information about backbone routers

demonstrates the path richness in BGP RIB [11]. In addition,

popular content providers such as Google and Facebook

have enormous amounts of peers [19]. All these evidence

indicates that numerous paths are existed between each pair

of ASes, which benefits MIFO by allowing border routers

to forward packets among multiple paths.

Load Adaptive Forwarding. The fundamental goal of
MIFO is to optimize the network performance through load

adaptive forwarding. Most of past works accomplish this by

applying traffic engineering (TE) protocols [20–22] on top of

an existing MPLS infrastructure. Performance improvement

is achieved by adjusting the distribution of traffic among the

paths with the same ingress/egress nodes (e.g., TeXCP [21]).
However, these schemes only work on intradomain, with the

help of centralized control in local AS. Instead, MIFO works

on interdomain level in a fully distributed manner. MIFO

enables AS border routers to adaptively forward packets to

different paths.

VII. CONCLUSION

In this paper, we proposed a Multi-path inter-domain

forwarding mechanism (MIFO) that enables border routers

of each AS to adaptively forward packets on alternative

paths instead of being limited to a default path that may

be congested. MIFO allows the border routers to efficiently

obtain multiple paths from the local BGP RIB, whereby

different paths are learned from different neighbors with

zero overhead comparing with previous methodologies. The

key contribution of MIFO is to solve the challenges faced

in realizing multi-path forwarding in practice. First, MIFO

avoids loops on the data plane by subtly adopting “valley-

free” rule in the forwarding process. In addition to the proof

of correctness, we show that one more bit in the forwarding

policy is enough to realize MIFO in a real system. Second,

the issue of cycling between iBGP peers is addressed by

means of IP-in-IP encapsulation. Finally, MIFO provides

an efficient greedy method in selecting the best alternative

path. Our evaluation shows that MIFO can significantly

improve end-to-end throughput compared to conventional

BGP routing and other multi-path routing methods (e.g.,
MIRO). We also implemented the prototype of MIFO on

Linux with the XORP router platform. The experimental

results also show that MIFO notably improves end-to-end

throughput.

REFERENCES

[1] C. Labovitz, S. Iekel-Johnson, D. McPherson, J. Oberheide,
and F. Jahanian, “Internet inter-domain traffic,” in SIGCOMM,
2010.

[2] “Amsterdam Internet IXP.” https://www.ams-
ix.net/technical/statistics, 2014.

[3] P. Gill, M. Schapira, and S. Goldberg, “Let the market drive
deployment: A strategy for transitioning to BGP security,” in
SIGCOMM, 2011.

[4] H. Jiang and C. Dovrolis, “Why is the Internet traffic bursty
in short time scales?,” in SIGMETRICS, pp. 241–252, 2005.

[5] “INTERNET INTERDOMAIN CONGESTION.”
http://www.caida.org/publications/presentations/2014/bitag-
congestion/bitag-congestion.pdf.

[6] D. Clark, S. Bauer, k. claffy, A. Dhamdhere, B. Huffaker,
W. Lehr, and M. Luckie, “Measurement and Analysis of Inter-
net Interconnection and Congestion,” in Telecommunications
Policy Research Conference (TPRC), 2014.

[7] W. Xu and J. Rexford, “MIRO: multi-path interdomain rout-
ing,” in SIGCOMM, 2006.

[8] F. Wang and L. Gao, “Path diversity aware interdomain
routing.,” in INFOCOM, IEEE, 2009.

[9] Y. Liao and L. Gao, etc., “Reliable interdomain rout-
ing through multiple complementary routing processes.,” in
CoNEXT, 2008.

[10] N. Kushman, S. Kandula, D. Katabi, and B. Maggs, “R-BGP:
Staying connected in a connected world,” in NSDI, 2007.

[11] University of Oregon, “Routeviews.” http://www.routeviews
.org/.

[12] L. Gao and J. Rexford, “Stable Internet routing without global
coordination,” IEEE/ACM Trans. Network., 2001.

[13] X. Xiao, A. Hannan, and B. Bailey, “Traffic engineering with
mpls in the internet,” IEEE Network Magazine, 2000.

[14] E. Goldoni and M. Schivi, “End-to-end available bandwidth
estimation tools, an experimental comparison.,” in PAM,
2010.

[15] “BGP Table Size in 2014.” http://bgp.potaroo.net/, 2014.
[16] “AS Topology.” http://irl.cs.ucla.edu/topology/, 2014.
[17] L. A. Adamic and B. A. Huberman, “Zipf’s law and the

internet,” Glottometrics, vol. 3, pp. 143–150, 2002.
[18] “The eXtensible Open Router Platform.”

http://www.xorp.org/.
[19] Y. Shavitt and U. Weinsberg, “Topological trends of Internet

content providers,” CoRR, 2012.
[20] A. Elwalid, C. Jin, S. H. Low, and I. Widjaja, “MATE: MPLS

adaptive traffic engineering.,” in INFOCOM, 2001.
[21] S. Kandula, D. Katabi, B. S. Davie, and A. Charny, “Walking

the tightrope: responsive yet stable traffic engineering.,” in
SIGCOMM, 2005.

[22] “Traffic engineering extensions to ospf version 3.”
http://tools.ietf.org/html/rfc5329, 2008.

190189189189189189

