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Abstract—Response time plays a key role in Web services, as it
significantly impacts user engagement, and consequently the Web
providers’ revenue. Using a large search engine as a case study,
we propose a machine learning based analysis framework, called
FOCUS, as the first step to automatically debug high search
response time (HSRT) in search logs. The output of FOCUS offers
a promising starting point for operators’ further investigation.

FOCUS has been deployed in one of the largest search engines
for 2.5 months and analyzed about one billion search logs.
Compared with a previous approach, FOCUS generates 90%
less items for investigation and achieves both higher recall and
higher precision. The results of FOCUS enable us to make several
interesting observations. For example, we find that popular
queries are more image-intensive (e.g., TV series and shopping),
but they have relatively low SRT because they are cached
well by servers. Additionally, as suggested by the first-month
analysis results of FOCUS, we conduct an optimization on image
transmission time. A one-month real-world deployment shows
that we successfully reduce the 80th percentile of search response
time by 253ms, and reduce the fraction of HSRT by one third.

I. INTRODUCTION

As people increasingly rely on Web services, such as Inter-
net searching, online shopping, and social networks, for their
daily lives, it has become critical for Web service providers
to very timely respond to users’ requests. This is because
even slightly higher response time can hurt users’ experience,
decrease their engagement with Websites [1], and impact the
providers’ revenue. For example, previous work shows that
every 0.1s of delay costs Amazon 1% in sales [2]; an additional
delay of 0.5s decreases the revenue of Bing by 1.2% [3].
Meanwhile, several measurement studies have shown that high
response time of Web services is not uncommon in the real
world [4], [5]. While there are many types of Web services
whose response time is important, in this paper we focus on
Web search engines, one of the most popular Web services,
and its Search Response Time (SRT) [6].

To understand High SRT (HSRT), search providers typically
instrument a javascript agent into their pages and measure the
user-perceived SRT and SRT components at a client side [6],
[7]. Additional observable and measurable attributes, such
as the number of embedded images and whether a page
contains ads, are also logged by the javascript agent if they
are considered to potentially impact SRT based on operators’
domain knowledge [6].

To help search operators debug HSRT, in this paper we aim
to develop a search log analysis framework (called FOCUS)
to automatically answer the following three questions:
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1) What are the HSRT conditions (the combinations of
attributes and specific values in search logs which have
a higher concentration of HSRT)?

2) Which HSRT condition types are prevalent across days?
3) How does each attribute affect SRT in those prevalent

HSRT condition types?

The answers to the above questions can offer a promising
starting point to narrow down the HSRT debugging space to
a few suspect attributes and specific values, based on which
further effective investigation can be done through taking
advantage of additional data sources (beyond search logs) and
domain knowledge. Note that the further investigation itself
(based on the output of FOCUS) is outside the research scope
of this paper. FOCUS has one component for each of the
above questions: a decision tree based classifier to identify
HSRT conditions in search logs of each day; a clustering based
condition type miner to combine similar HSRT conditions into
one type, and find the prevalent condition types across days;
and an attribute effect estimator to analyze the effect of each
individual attribute on SRT within a prevalent condition type.

Our main contributions are as follows:

• We first highlight the importance of addressing HSRT by
showing that more than 30% of the queries from the
studied search engine have SRT higher than 1s, enough
to potentially interrupt a user’s flow of thought [8], and a
value which most search engines such as Google [7] and
the studied search engine try to stay below.

• To the best of our knowledge, this is the first work that
aims to identify HSRT conditions in interdependent multi-
attribute search logs. Our design goals are to tackle the
challenges (highlighted in §II) caused by interdependent
attributes and to offer an actionable output. Different from
a previous approach [9] which uses critical clustering to
analyze multi-attribute video logs, we first model HSRT
condition identification as a multi-dimension classification
problem. Then, in our decision tree based classifier, the
mechanisms of stopping conditions, branch splits and label
assignment are specifically tailored for our problem, in order
to achieve a proper tradeoff between recall and precision.

• FOCUS has been deployed in one of the largest search en-
gines for 2.5 months and analyzed about one billion search
logs. Compared with critical clustering, FOCUS generates
90% less items for operators to further investigate, and
achieves both higher recall and higher precision. In addition,
FOCUS enables us to make some interesting observations.



For example, we find that popular queries are more image-
intensive (e.g., TV series and shopping), but they have
relatively low SRT because their result pages are cached
well by servers. In another example, ads, a major revenue
source for search engines, can also inflate SRT which in
turn might hurt the revenue [3]. This observation highlights
the importance of accurate ads targeting from a new angle
of avoiding inflating SRT.

• Based on the first-month results of FOCUS (from day 1 to
day 31), we find that optimizing image transmission time
has the most potential improvement on HSRT. To this end,
we deploy an existing method, called embedding base64-
encoded images in HTML [10], in the studied search engine
to accelerate images transimission. A one-month real-world
deployment (from day 44 to day 74) shows that the 80th

percentile of SRT has been reduced by 253ms, and the
HSRT fraction has been reduced by one third.

II. PRELIMINARIES

We now present the studied search logs, the definition of
HSRT, some preliminary results, and the value and challenges
of answering the three questions raised in §I.

A. Search Logs

The studied search engine, S, is one of the largest in the
world and primarily serves users in mainland China. Using a
methodology similar to that in [6], S instruments a javascript
agent into its pages to randomly sample and log 1% of the
queries submitted from PC browsers. The data are then sent
back to S’s log servers to generate search logs. Since S
serves hundreds of millions of queries everyday, we believe
the sample size of 1% is statistically significant enough [11].
Through offline control experiments, the operators of S verify
that the data collection has a negligible impact on SRT.

For each measured query, its search log records two types
of data: 1) SRT and SRT components; 2) several attributes,
which are both measurable to the agent and are considered
to potentially impact SRT based on the operators’ domain
knowledge. We emphasize that the choice of these attributes is
not part of the design of FOCUS. We just take them as given,
but FOCUS can work with other attributes when available.
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Fig. 1. Simplified timeline of a search.

1) SRT and SRT Components: Fig. 1 shows a simplified
timeline of a search. Several key time points are recorded: t1
is when a query is submitted; t2 is when the result HTML file
has been downloaded; t3 is when a browser finishes parsing
the HTML; t4 is when the page is completely rendered. SRT is
measured by t4 − t1, the user-perceived search response time.

Based on the above time points, SRT can be broken down
into four main components: T

server

, the server response time

of the HTML file, which is recorded by servers; T
net

= t2 −
t1−T

server

, the network transmission time of the HTML file;
T
browser

= t3 − t2, the browser parsing time of the HTML;
T
other

= t4 − t3, the remaining time spent before the page is
rendered, e.g., download time of images from image servers.
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Fig. 2. Distribution of SRT and HSRT.
2) Query Attributes: The search logs record the following

attributes for each measured query:
• Browser engine: Browser engines are recognized from

the “User-Agent” string obtained by the javascript agent.
Browser names were not used because different browsers
with the same engine support similar features. Overall, there
are six major recorded browser engines in search logs:
WebKit (e.g., Chrome, Safari, and 360 Secure Browser),
Gecko (e.g., Firefox), Trident LEGC (legacy) (e.g., MSIE6
and MSIE7), Trident 4.0 (e.g., MSIE8), Trident 5.0+ (e.g.,
MSIE9, MSIE10, and MSIE 11), and others.

• ISP: Based on the client IP, S uses a BGP table to convert
the IP to its Internet Service Provider. We observe that the
top seven ISPs account for nearly 95% of the queries. They
are China Telecom, China Unicom, China Mobile, China
Netcom, China Tietong, CERNET (China Education and
Research Network), and GWBN (Great Wall Broadband
Network). We classify other ISPs as “others”.

• Location: Based on the client IP, S uses an IP-to-
geolocation database to convert the client IP to its geo-
graphic location. The basic unit of a location is a province
(e.g., Beijing). In total, there are 32 provinces.

• #Images: This is the number of embedded images in a
result page. We observe that over 99% of the result pages
have less than 50 images, and the maximum is 133.

• Ads: A result page contains paid ad links or not.
• LoadingMode: The loading mode of a result page can

be either synchronous or asynchronous. In synchronous
loading, browsers have to reload the entire page for each
query, while in asynchronous loading (e.g., Ajax), browsers
can refresh just the regions that need to be updated, e.g.,
the result list, but not the search box and the logo of S.
Since in S, asynchronous loading is, in general, faster than
synchronous loading, S by default generates asynchronous
loading pages unless browsers (e.g., most Trident LEGC
based browsers) do not support them,

• BackgroundPVs: On the server side, S also post-analyzes
the logs and generates the backgroundPVs (page views) for
each query. The backgroundPVs for a query q is measured
by the number of queries served within 30s before and after
q is served. It reflects the average search request load when
q is served. Due to confidentiality constraints, we normalize
specific backgroundPVs by the maximum value.
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Fig. 3. Relationships between each attribute and the fraction of HSRT. Values of each categoric attribute are sorted by the fraction of HSRT. For brevity,
provinces are represented by their indexes. The 2 leftmost provinces are Zhejiang and Jiangsu, and the 2 rightmost provinces are Xinjiang and Qinghai.

B. HSRT and HSRT conditions

Fig. 2(a) shows the CDF of SRT in the search logs from
day 1 to day 31. The result shows that around 30% of SRT
is longer than 1s, long enough to interrupt user’s flow of
thought [8]. Google [7] as well as S both aim at delivering and
rendering pages within 1s. Thus, without the loss of generality,
in this paper we define high SRT (or HSRT for short) as the
SRT longer than 1s. Fig. 2(b) shows the fraction of HSRT in
each day. The result shows that HSRT is evenly spread out
and not concentrated in time. This suggests that HSRT might
be mainly caused by some continuous problems (e.g., many
images) as opposed to occasional events (e.g., DDoS attacks).

The above results confirm that HSRT does exist and can be
quite common. Hence, the three questions raised in §I are very
valuable as they provide a reasonable explanation of HSRT,
and thus can serve as a promising starting point of HSRT
debugging. To provide some intuitions of HSRT conditions
(specific definition is given in §III-A), we first show some
correlation analysis between each individual attribute and the
fraction of HSRT, using the first-month search logs (day 1 to
day 31). In Fig. 3, we bin queries in the search logs based on
the value of each attribute, and calculate the fraction of HSRT
in each bin. The result visually confirms that HSRT does not
uniformly spread through some attributes, and concentrates on
certain attribute values, e.g., ads (Fig. 3(g)).
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Fig. 4. Interdependence between attributes.
Challenges of identifying HSRT Conditions: Identifying

HSRT conditions (§I) in multi-dimensional search logs poses
several challenges: (a) Naive single dimension based methods,
such as the above pair-wise correlation analysis, are inefficient,
because HSRT conditions can be a combination of several
attributes, which are invisible for single dimension based
methods. For example, we find that although WebKit alone
has the smallest fraction of HSRT among browser engines

(Fig. 3(d)), the fraction of HSRT is large when WebKit
encounters ads and many images (§IV). (b) Attributes can
be potentially interdependent on each other. For example,
Fig. 4(a) shows that there are more images when result pages
contain ads, and Fig. 4(b) shows that Trident LEGC based
browsers load most pages synchronously. As a result, it is
difficult to determine which attribute, or they together is
(are) to be blamed for HSRT. (c) We need to avoid output
overlapping conditions, like {#images > 30}, {ads = yes},
and {#images > 20, ads = yes}, since they would be
unintuitive for operators to find the underlying causes (e.g.,
is the overlapping part, or the non-overlapping part alone the
key problem? ), thus not actionable.

III. DESIGN

In this section, we present FOCUS, a search log analysis
framework to answer the three questions raised in §I.

A. Core Idea and System Overview

To solve the above challenges, we define our probem as
follows. First, we define a condition as a combination of
attributes and specific values in search logs (to solve challenge
(a)), like {#images > 20, ads = yes}. We define a HSRT
condition as the condition that covers at least 1% of total
queries, and has the fraction of HSRT larger than the global
level ( # of HSRT queries in a HSRT condition

# of queries in a HSRT condition > # of HSRT queries
# of queries ). We

intend to find a set of non-overlapping HSRT conditions (to
solve challenge (c)) that can cover HSRT queries as many as
possible with a small number of HSRT conditions (to solve
challenge (b) following Occam’s razor principle [12]).

To identify the set of HSRT conditions we want, we
model the problem as a classification problem. Considering
an illustrative example in Fig. 5. We map query logs into
a multi-dimensional space by considering each attribute as a
dimension. Each query in the space has a class label of either
high SRT or low SRT. Classification is a task of identifying
(non-overlapping) decision boundaries in the space and tell
which region has a large fraction of HSRT. Those regions
being identified as HSRT can serve as HSRT conditions.

Machine learning is one typical solution for classifica-
tion [13]. However, we need to be careful when choosing
a machine learning algorithm to solve our problem. First,
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rather than being used as a black box, the classification
model, or the decision boundaries generated by the algorithm
should be easy to interpret, so that we can obtain intuitive
HSRT conditions from it. Hence, algorithms using complex
functions as their classification models are infeasible here,
such as logistic regressions, support vector machines, and
neural networks. Second, the algorithm should be able to
handle the interdependencies between attributes. For example,
naive Bayes assumes independent attributes, which does not
always hold (Fig. 4). We seek a machine learning algorithm
based on the above considerations, and find that decision
trees [14] meet the requirements. Decision trees do not assume
independent attributes. Furthermore, decision trees are a very
intuitive model that can be naturally expressed by combi-
nations of attributes and specific values, e.g., {#images >
10 ^ browser engine = Trident LEGC} ) HSRT. Because
of these advantages, decision trees have also been proved to
be usable for practitioners [15], [9], [16]. In this paper, we
also choose decision trees as our classification algorithm.

We do not use critical clustering [9], a hierarchical structure
based method, because the HSRT conditions identified by it
can overlap each other. We compare our decision tree based
method to critical clustering in §IV-A.

FOCUS
Search logs
of each day

Decision Tree
Based Classifier

Condition Type 
Miner

Further 
Investigation

Attribute Effect 
Estimator

Day n
HSRT conditions of 

each day

Client-side
Logger

Prevalent 
Condition Types 

Across Days

Attribute  Effects
In Condition Types

Fig. 6. Overview of FOCUS.
System Overview: Based on the above core idea, we

propose a search log analysis framework called FOCUS. The
overview of FOCUS is shown in Fig. 6. It includes three
components, each of which answers one question in §I. First,
we begin by using a decision tree based classifier to identify
HSRT conditions in search logs. Since the operators from
S conduct daily inspection on SRT, we analyze search logs
of each day separately. Second, we use a clustering based
condition type miner to identify condition types of similar
HSRT conditions, and find prevalent condition types across
days. Third, we use an attribute effect estimator to analyze
how an attribute affects SRT and SRT components in each
prevalent condition type. Those prevalent condition types and
their attribute effects on SRT, output by FOCUS, provide op-
erators a valuable starting point for further investigation. Next,
we describe the design details of each FOCUS component.

B. Decision Tree Based Classifier

Now, we introduce some basics of decision trees [14] and
how we tailor their internal mechanisms to enable them to
identify HSRT conditions we want. At a high level, a decision
tree greedily selects from the data one best attribute at a time
to split the data into smaller subsets. The heuristic is that
purer subsets (i.e., the subset has one-class data as much as
possible) are preferred. The splitting is recursively applied to
each subset until some stopping conditions are satisfied. Fig. 7
shows an exemplary decision tree built from our one-day data.
An internal node is a test attribute and its branches are the
attribute conditions. They together form an split. A leaf node
represents a class label, high SRT (HSRT) or low SRT. Each
path from the root node to a HSRT leaf node represents a
HSRT condition, which is described by a logical AND (^)
combination of the attribute conditions along the path. For ex-
ample, {#images > 32^browser engine = WebKit^ ISP =
ChinaTelecom} is the HSRT condition identified by the thick
path in Fig. 7. #images > 8 is ignored in the description since
#images > 8 ^#images > 32 ) #images > 32. Next, we
describe how a decision tree is built and our special design
choices in it so that we can use a decision tree to identify
HSRT conditions we want.
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Fig. 7. Decision tree built from our one-day data. The thick path identifies a
HSRT condition. HSRT branching attribute conditions are in bold and shaded.

1) Expressing Attribute splits: First of all, at each node, to
determine the best split, a decision tree first specifies all the
splits, and then select the best one based on an impurity mea-
sure. For a categoric attribute like browser engine, we generate
its splits using one-against-others binary split1 [17]. For
example, a split of browser engine could be browser engine =
WebKit or browser engine = notWebKit. Thus, a categoric
attribute with n distinct values has n ways of splits. For a
numeric attribute like #images, its splits can be expressed by
a binary split of {#image  v} and {#image > v}, where
v is a split position. Therefore, a numeric attribute with n
distinct values generates n − 1 splits. Note that, an attribute
can be used to split the data more than once in a decision tree
(e.g., #image and ISP in Fig. 7), since the descendant nodes

1We also consider multiway split and exhaustive binary split [14], but the
former is biased towards the attribute with more distinct values, and the latter
is computation-intensive. So we do not use them in our design.



after the attribute split can still have different values of that
attribute.

2) Evaluating splits: After obtaining all the split candi-
dates, we quantify the impurity of the subsets generated by
each split using information gain, which is a popular impurity
measure adopted by decision tree algorithms like ID3 and
C4.5. The information gain is based on Shannon entropy. First,
the entropy of set X is defined as H(X) =

P
i

P [X =
c
i

] log 1
P [X=ci]

, where P [X = c
i

] is the probability that X

belongs to class c
i

. The purer X is, the lower H(X) is. Then,
the conditional entropy of X given an split A is defined as
H(X|A) =

P
j

P [A = a
j

]H(X|A = a
j

), where {a
j

} is the
attribute conditions in the splits. Finally, the information gain
of A is defined as H(X)−H(X|A). Intuitively, this measure
quantifies how much impurity of X can be reduced by A.
Thus, we choose the split with the highest information gain.

3) Stopping Tree Growing: In principle, the data can be
recursively split until all the data of each node either belong
to the same class or have the identical value of every attribute.
However, in this way, a decision tree often grows too deep,
and a leaf node may characterize very few data. In practice,
earlier stopping conditions are used to get a simple but more
general tree. In order for leaf nodes to meet the definition of
HSRT conditions, we adopt a method that limits the minimum
size of leaf nodes (MinLeaf). For example, if MinLeaf = 1%,
we stop splitting a node if any of its child nodes contains less
than 1% of total data. To configure MinLeaf properly for each
day, we sweep the space of MinLeaf starting from 1% with
the granularity of 1%, and select MinLeaf that maximizes the
number of HSRT queries covered by HSRT conditions of that
day. For tie-breaking, we choose MinLeaf that leads to the
least HSRT conditions.

4) Assigning Labels: After a tree stops growing, based on
the definition of HSRT conditions, we assign HSRT labels to
the leaf nodes whose fraction of HSRT is larger than the global
fraction of HSRT. We do not adopt the default method, which
requires the fraction of HSRT larger than 50%, because of the
imbalance class problem [18] (only about 30% of the search
logs are HSRT (Fig. 2(b))). When faced with imbalanced data,
the default method is biased towards the dominant class (low
SRT), and identifies very few, even no HSRT leaf nodes.

5) Identifying HSRT branching attribute conditions: It is
not necessarily true that all the attribute conditions appearing
in a HSRT condition would increase the fraction of HSRT.
After a split in a decision tree, the fraction of HSRT in
child nodes can be either larger or smaller than that in the
parent node. We call an attribute condition a HSRT branching
attribute condition (shown in bold in the decision tree) if
the node generated by the attribute condition has a larger
fraction of HSRT than its parent node. For example, along the
thick line in Fig. 7, #images > 8#images > 8#images > 8 and #images > 32#images > 32#images > 32 are two
HSRT branching attribute conditions, while browser engine =
WebKit and ISP = ChinaTelecom are not.

C. Condition Type Miner
To provide a high-level understanding of HSRT conditions

identified by decision trees, we analyze the types of HSRT
conditions that offer similar implications but are slightly dif-
ferent. For example, the first two HSRT conditions in Table I
are basically the same, except a small difference on #images.

The condition types can be defined at different granular-
ities. If we use critical clustering method [9], when HSRT
conditions contain the same attribute combination regardless
of specific values, they belong to one type. For example, all
the three HSRT conditions in Table I belong to the type of
{#images, browser engine, ads}. However, this definition is
too coarse-grained for operators to understand specific prob-
lems. For example, which browser engine should be blamed?
Motivated by this example, we define condition types at a rela-
tively fine granularity to ensure that one condition type should
provide similar detailed implications. Specifically, a group of
HSRT conditions belong to the same HSRT condition type if
and only if they have (i) the same combination of attributes,
(ii) the same value for each categoric attribute, and (iii) similar
intervals for each numeric attribute.

TABLE I
EXAMPLES OF HSRT CONDITIONS.

ID HSRT condition
#images browser engine ads

1 > 9 notWebKit no

2 > 10 notWebKit no

3 > 22 WebKit yes

Specifically, we first group HSRT conditions according to (i)
and (ii). For example, the first two HSRT conditions in Table I
belong to one group. Then, in a group, we identify similar
intervals for each existing numeric attribute using hierarchical
clustering. The main idea of hierarchical clustering is that for a
given numeric attribute, initially, each interval is in a cluster by
itself; then, we repeatedly merge the two most similar clusters
into one until no clusters are similar enough to be merged. We
use Jaccard index to measure the similarity between intervals.
The Jaccard index for two intervals a and b is Jacc(a, b) =
|a\b|
|a[b| . Note that the intervals are bounded by the maximum
and the minimum of the numeric attribute. For example, the
Jaccard index of #images > 9 and #images > 10 in Table I
is |[10,133]\[11,133]|

|[10,133][[11,133]| =
122
123 = 99%, as max(#images) = 133.

To measure the similarity between clusters A and B, we use
sim(A,B) = min{Jacc(a, b) : a 2 A, b 2 B}, where a
and b are the attribute intervals in A and B, respectively.
We let the similarity between A and B depend on the least
similar intervals in them, so that we can ensure that any two
attribute intervals in the merged cluster must be similar to each
other; otherwise, the clusters cannot be merged. The clustering
stops if sim(A,B) < x for any two clusters A and B. We
sweep the space of x with the granularity of 5%, and find
that the clustering results are the closest to the operators’
expectation when x = 95% for #images and x = 90% for
backgroundPVs. Thus, we use these settings to analyze S’s
search logs. For example, the first two HSRT conditions in
Table I belong to the same condition type {#images > i, i 2
{9, 10} ^ browser engine = notWebKit ^ ads = no}.



D. Attribute Effect Estimator:

Within each condition type C = {c1^c2^· · · ci · · ·^cn}, we
design a method to understand how each attribute condition
c
i

affects SRT. For example, what is the HSRT fraction
caused by c

i

in C? Which SRT components (e.g., T
net

and T
server

) are affected by c
i

? To answer these questions,
inspired by controlled experiments, we isolate the effects of
c
i

in C as follows. First, we each time flip one attribute
condition c

i

to the opposite c̄
i

to get a variant condition
type C 0

i

= {c1 ^ c2 ^ · · · c̄
i

· · · ^ c
n

}. For example, Table II
shows C 0

i

for a condition type C. Then, for the days when C
appears in, we calculate and compare the fraction of HSRT
and the average SRT components under C and under C 0

i

in
search logs. Since the number of search logs of each day
is huge, both C and C 0

i

can contain enough data to show
reliable statistics. As a result, we believe that the historical
data based comparison can provide a reasonable estimate of
the attribute effects, similar to the spirit of control experiments.
The estimates can also serve as the potential improvement
in C if we optimize an attribute condition c

i

. The comparison
between C and C 0

i

in each day is based on the specific HSRT
conditions of that day. For example, in a day if the specific
HSRT condition of C is {#images > 9 ^ browser engine =
notWebKit ^ ads = no}, then the variant condition of C 0

1 is
{#images  9^browser engine = notWebKit^ads = no}.

TABLE II
VARIANT CONDITION TYPES BY FLIPPING ONE ATTRIBUTE CONDITION

(HIGHLIGHTED) TO THE OPPOSITE EACH TIME.

Condition type c1 c2 c3
#images browser engine ads

C > i, i 2 {9, 10} notWebKit no

C0
1  i, i 2 {9, 10} notWebKit no

C0
2 > i, i 2 {9, 10} WebKit no

C0
3 > i, i 2 {9, 10} notWebKit yes

IV. RESULTS

We deployed FOCUS in S to analyze the first-month search
logs (from day 1 to day 31). We first present the evaluation
of FOCUS. Then, we show the results output by FOCUS
(condition types and attribute effects). Last, we highlight some
interesting observations by further investigating these results.

A. Evaluation
We do not compare FOCUS with other machine learning

algorithms because their complex models are difficult to
obtain HSRT conditions. Instead, we compare FOCUS with a
hierarchical structure based method called critical clustering,
which was used in [9] to analyze multi-dimensional data for
video service. Fig. 8 shows the CDF of daily performance
of FOCUS and critical clustering. First, in Fig. 8(a) we
see that FOCUS only generates no more than four HSRT
conditions per day. Yet, critical clustering generates 24 to 55
HSRT conditions each day. So many HSRT conditions hinder
operators from getting key insights or further investigating
them. Second, Fig. 8(b) shows that FOCUS has higher or
similar recall ( # of HSRT queries in HSRT conditions

# of HSRT queries ) compared with
critical clustering. The median of recall of FOCUS is about
75%, which indicates that FOCUS explains a relatively large

fraction of HSRT queries. Third, Fig. 8(c) depicts the precision
( # of HSRT queries in HSRT conditions

# of queries in HSRT conditions ) of two methods. As a point of
reference, we also show the global fraction of HSRT as a
baseline. We see that the precision of FOCUS is higher than
that of critical clustering. It means that HSRT is more likely to
happen under the HSRT conditions identified by FOCUS. Note
that recall and precision are a typical trade-off. Our strategy of
balancing them is based on the definition of HSRT conditions,
i.e., precision should be higher than the baseline and recall
should be maximized (§III-A).

Overall, compared with critical clustering, FOCUS gener-
ates 10 times less HSRT conditions and achieves both higher
recall and higher precision.

Fig. 8. Comparison between FOCUS and critical clustering.

B. Condition Types

Using FOCUS, we find 36 condition types from 58 different
HSRT conditions in the search logs of the first month. First we
analyze the temporal prevalence of those condition types. We
define the prevalence of a condition type as the number of days
that it appears in. Fig. 9(a) shows the distribution of condition
types over days. It visually confirms that several condition
types are more prevalent. Fig. 9(b) shows the CDF of the
prevalence of condition types. We observe that there are five
condition types (around 16% of all condition types) appearing
in more than five days in the first month. This implies that the
SRT consistently suffers from certain recurrent problems. On
the other hand, the remaining condition types are transient and
disappear by themselves. Thus, they cannot provide reliable
observations for designing long-term optimization methods.
In the rest of this paper, we focus on the prevalent condition
types (appearing in more than five days in a month).

Fig. 9. (a) Distribution of condition types over days. (b) CDF of the prevalence
of condition types.

Table III shows the prevalent condition types in the first
month. In a condition type, #images > i, i 2 {i1, i2, ..., in}
means that the HSRT conditions in that condition types have
#images > i, where i 2 {i1, i2, ..., in}. The HSRT branching
attribute conditions are shown in bold. The result shows
that the dominant HSRT branching attribute conditions is
in the format of #images > x, which appears in every



TABLE III
PREVALENT CONDITION TYPES IN THE FIRST MONTH (FROM DAY 1 TO DAY 31). HSRT BRANCHING ATTRIBUTE CONDITIONS ARE SHOWN IN BOLD.

Condition Prevalent condition type Prevalence HSRT
type ID (days) Coverage

1 #images > i, i 2 {5, 6, 7, 8, 9}#images > i, i 2 {5, 6, 7, 8, 9}
#images > i, i 2 {5, 6, 7, 8, 9} ^ browser engine = notWebKit

browser engine = notWebKit

browser engine = notWebKit 21 43%
2 #images > i, i 2 {5, 6, 7, 8, 9}#images > i, i 2 {5, 6, 7, 8, 9}

#images > i, i 2 {5, 6, 7, 8, 9} ^ ISP = notChinaTelecom

ISP = notChinaTelecom

ISP = notChinaTelecom ^ browser engine = WebKit 15 25%
3 #images > i, i 2 {25, 26, 27}#images > i, i 2 {25, 26, 27}

#images > i, i 2 {25, 26, 27} ^ ISP = ChinaTelecom ^ browser engine = WebKit 7 9%
4 #images > i, i 2 {5, 6, 8}#images > i, i 2 {5, 6, 8}

#images > i, i 2 {5, 6, 8} ^ ISP = ChinaTelecom ^ browser engine = WebKit ^ ads = yes

ads = yes

ads = yes 6 9%

TABLE IV
EFFECTS OF ATTRIBUTE CONDITIONS, SORTED BY THE HSRT% COLUMN. THE VARIATIONS GREATER THAN ZERO ARE HIGHLIGHTED.

Row# Category Condition Attribute condition to be flipped Performance variations after flipping an attribute condition
type ID HSRT% SRT T

net

T
server

T
browser

T
other

1

Images

1 #images > i, i 2 {5, 6, 7, 8, 9}#images > i, i 2 {5, 6, 7, 8, 9}
#images > i, i 2 {5, 6, 7, 8, 9} -61% -39% -26% +33% -43% -83%

2 4 #images > i, i 2 {5, 6, 8}#images > i, i 2 {5, 6, 8}
#images > i, i 2 {5, 6, 8} -59% -36% -29% +43% -40% -78%

3 2 #images > i, i 2 {5, 6, 7, 8, 9}#images > i, i 2 {5, 6, 7, 8, 9}
#images > i, i 2 {5, 6, 7, 8, 9} -53% -32% -29% +42% -36% -77%

4 3 #images > i, i 2 {25, 26, 27}#images > i, i 2 {25, 26, 27}
#images > i, i 2 {25, 26, 27} -33% -20% -21% +37% -22% -39%

5 Browsers 1 browser engine = notWebKit

browser engine = notWebKit

browser engine = notWebKit -24% -14% -7% -3% -63% -5%
6 ISPs 2 ISP = notChinaTelecom

ISP = notChinaTelecom

ISP = notChinaTelecom -22% -12% -14% -21% -7% -6%
7 Ads 4 ads = yes

ads = yes

ads = yes -19% -12% -19% -3% -27% -9%
8 ISPs 3 ISP = ChinaTelecom +22% +12% +10% +28% +7% +8%
9 4 ISP = ChinaTelecom +27% +12% +14% +26% +5% +4%

10
Browsers

3 browser engine = WebKit +27% +13% +5% +7% +174% -1%
11 2 browser engine = WebKit +28% +14% +7% +2% +168% +3%
12 4 browser engine = WebKit +40% +21% +13% +8% +194% -1%

prevalent condition type. Interestingly, we find that, by default,
the maximum number of concurrent connections of different
browsers is also around nine, similar to the bound of #images
in condition type 1, 2, 4 in Table III. So the maximum number
of concurrent connections might be a possible bottleneck for
images transmission.

On the other hand, we see that the attributes of
backgroundPVs, location, and loadingmode do not appear
in these prevalent condition types at all. For backgroundPVs,
it is because S always provisions enough server capacity, e.g.,
at peak hours, the search service only uses less than 50%
of the server capacity of S. This can also be confirmed by
the previous observation that backgroundPVs are less corre-
lated with HSRT (Fig. 3(b)). As for loadingmode, although
synchronous loading seems to be much related with HSRT
according to single-dimensional view in Fig. 3(f), HSRT might
be explained better by browser engine, which has a higher
explanatory power than loadingmode, due to two reasons.
First, loadingmode is very dependent on browser engine. For
example, most Trident LEGC based browsers use synchronous
loading pages (Fig. 4(b)). In addition, browser engine also
affects HSRT through other SRT components (e.g., T

browser

).
This observation demonstrates the advantage of FOCUS over
single-dimensional view only (Fig. 3(f)), especially for in-
terdependent attributes. Similarly, we find that location does
not show up in prevalent condition types because it is highly
correlated with ISP (not shown).

C. Attribute Effects
We use FOCUS to analyze the individual attribute effect in

those prevalent condition types. In Table IV, the results are
sorted by the variation of the fraction of HSRT in condition
types (HSRT% column) caused by flipping an attribute con-
dition. We highlight the variations greater than zero (getting
worse after flipping an attribute condition). Overall, we see

that, as expected, only flipping the HSRT branching attribute
conditions can yield improvements on HSRT%. Moreover,
attribute conditions in the format of #images > x are all
ranked at the top. It indicates that, for the studied month, by
focusing efforts on reducing the impact of images on SRT, we
can get the highest potential improvement on HSRT.
D. Observations by Further Investigation

Table III and Table IV are the output of FOCUS to the
operators for the studied month. These results offer operators
several directions to further investigate. Especially, Table IV
raises some interesting questions:
1) Why does reducing #images increase T

server

, the time
that servers prepare the result HTML (row 1, 2, 3, and 4
of Table IV)?

2) How do ads inflate SRT? Why do the pages with ads need
more T

net

and T
browser

(row 7)?
3) Why does WebKit engine perform better, especially greatly

decreasing T
browser

(row 5, 10, 11, and 12)?
4) It is natural that switching ISPs can affect network trans-

mission time (T
net

), but why does switching to China
Telecom reduce T

server

by over 20% (row 6, 8, and 9)?
We and the operators further investigate these questions

based on the domain knowledge and other data sources. We
obtain the following observations and explanations:

1) Popular queries are more image-intensive, but they
have a relatively lower SRT because of the server-side
cache of the result HTML. To answer the first question
(why reducing #images in row 1, 2, 3, 4 of Table IV can
increase T

server

column), based on the domain knowledge,
an important factor that can cause T

server

increase is that the
result HTML files are not cached by servers. The operators
from S said that a cache miss can introduce over 100ms delay
for T

server

. Whether a query is cached or not largely depends
on the frequency of the query. That is, popular queries (e.g.,



TV series and shopping, according to the top 10 most frequent
queries) have a high probability to be cached. Combining
these things together, one possible explanation is that popular
queries are more image-intensive, thus query popularity acts
as the hidden factor that connect images and the cache hit
ratio, which further impacts T

server

. To verify this, we exploit
another data source: one-day cache logs at the server side.
The logs record specific queries and whether they are cached
by servers when they are submitted. We count the frequency
of each query, and group queries if their frequencies have
the same order of magnitude. For each group, we calculate
the cache hit ratio, and the average of #images, SRT, and
SRT components2. Table V shows the result. Due to the
confidential reasons, we normalize reported frequencies by
an arbitrary value f . First, the result confirms that popular
queries have a higher cache hit ratio, and shorter T

server

.
The result also shows that popular queries are more image-
intensive. These two relationships together lead to the earlier
observation that queries with less images seem to have high
T
server

. In addition, the result also shows that, popular queries,
though more image-intensive, have relatively low SRT because
that the reduction of T

server

caused by a high cache hit ratio is
more than the increase of T

browser

and T
other

(images parsing
and downloading time) introduced by more images.

TABLE V
CHARACTERISTICS OF POPULAR QUERIES.

Query frequency [1, f ] (f, 10f ] (10f, 100f ] (100f,1)

Cache hit ratio 0.32 0.75 0.95 0.99
AVG #images 19 22 28 32
AVG SRT (ms) 785 663 659 643
AVG T

net

(ms) 132 121 127 114
AVG T

server

(ms) 400 250 205 191
AVG T

browser

(ms) 71 86 93 93
AVG T

other

(ms) 182 206 234 244

2) Ads, a major revenue source for search engines, on
the other hand, also inflate SRT. Row 7 of Table IV shows
that ads can cost 19% longer downloading time of the HTML
(T

net

column) and 27% longer time for browsers to parse the
page (T

browser

column). This is because those paid ads are
additional to the organic results. For example, if an ad-free
page presents ten results by default, a page with ads could
contain 15 results, five of which are paid ads. As such, ads
expand the page size and cost browsers more time to download
a page (T

net

) and parse it (T
browser

). Considering the fact that
high SRT can impact the revenue of search engines [3], this
observation highlights the importance of accurate ads targeting
from a new angle of avoiding inflating SRT.

3) Webkit based browsers have a lower SRT when
loading the result pages of SSS. In row 5, 10, 11, and 12 of
Table IV, we see that switching to WebKit can significantly
reduce the time of parsing pages (T

browser

column). The
reasons are two folds. One is because, S supports a lot of
advanced features that require cooperation between browsers
and servers, e.g., SPDY, and Webkit based browsers (and also

2Because S does not regularly store cache logs, adding “cache” to the
attribute list is left as our future work.

Gecko based and Trident 5.0+ based browsers) support more
such features than other browsers. The other reason is that
WebKit based browsers implement several local optimization
methods to reduce page loading time, such as DNS pre-
resolving and page pre-rendering [19].

4) Queries from the largest ISP by query count receives
better treatment of SSS. In row 6, 8, and 9 of Table IV, to
investigate why switching ISPs affects T

server

column, we
check the performance logs of data centers, and observe that
the response time of the data centers serving ChinaTelecom
is on average 80ms less than that of other data centers. We
interviewed the operators and find that when building or
renting data centers, they have several considerations, such
as costs, climates, powers, bandwidths, and ISP PVs. Since
ChinaTelecom is the largest ISP in China and accounts
for over a half of the total queries, S focuses more efforts
on providing a better service there. For example, the two
newest also the highest-performance data centers both mainly
serve ChinaTelecom. This observation implies that users can
benefit from short server-side response time of S by accessing
Internet through the largest ISP.

V. OPTIMIZATION OF HIGH SRT IN PRACTICE
The previous section describes several observations by

further investigating the output of FOCUS. It also shows the
what-if improvement should we optimize a specific condition.
In this section, we show our real-world optimization by
focusing on #images, which seems to have the most potential
improvement according to the earlier analysis. Instead of
reducing the number of images in result pages, which would
disturb the existing services of S, the operators and we
together choose to reduce the transmission time of images
through an existing technique called base64 encoding [10].
The main idea is to base64 encode images, and embed them
in-line into a HTML file. Then browsers can download many
small images together in a single HTTP connection, thus
alleviating the influence of TCP slow start and the number
limitation of concurrent HTTP connections.

Deployment and results: We deployed base64 encoding for
the images on the right-hand side of result pages (accounting
for 73% of all the images). We did not deploy this optimization
for Trident LEGC and Trident 4.0 based browsers as they do
not support base64 encoding well. The deployment started
from day 44, and we have collected one-month search logs
since then (day 44 to day 74). Fig. 10 shows the impact of this
base64 deployment. First, Fig. 10(a) shows that, right after the
deployment, the fraction of HSRT per day was immediately
decreased by one third (from around 30% to 20% ). Also,
the 80th percentile of SRT has been reduced by 253ms (not
shown). To further understand the improvement, in Fig. 10(b)
we show that the fraction of HSRT was decreased by about
25% after the deployment for the pages with a large number
of images. Furthermore, we find that the fraction of HSRT
was decreased by 38% ⇠ 50% on the browsers which support
base64 encoding (Fig. 10(c)). As expected, the results of
Trident 4.0 and Trident LEGC based browsers remain the same
after the optimization as they do not support base64 encoding.
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Fig. 10. Performance before and after the optimization of base64 encoding.

A natural question after the deployment is: have the HSRT
condition types changed? To answer this question, we use FO-
CUS to analyze the search logs from day 44 to day 74, and ob-
tain three prevalent condition types: {loadingmode = sync},
{#images > i, i 2 {6, 7, 8, 9, 10} ^ loadingmode =
async ^ browser engine = Trident 4.0}, and {#images >
{4, 6, 8, 11} ^ browser engine = notWebKit}. We find that
most of the prevalent condition types in the previous month
(day 1 to day 31) have disappeared, and some previously-
existing but not prevalent condition types surfaced as prevalent
conditions after the optimization, i.e., the first two of the
above three condition types. We believe that, through focusing
efforts on the newly surfaced HSRT condition types, we can
iteratively get rid of the most serious HSRT condition types
by applying optimization approaches one by one. Due to the
consideration of space, we do not show the attribute effects.

VI. RELATED WORK
Many efforts have been put into researching Web response

time. We briefly introduce some of them to put our work
in context. Several studies measure the impact of Web re-
sponse time on users’ experience [1] or the revenue of Web
providers [2], [3]. Some studies highlight that long Web
response time is not uncommon [4], [5]. These efforts provide
us a good motivation to analyze HSRT conditions, but they do
not focus on this direction. The research in [6] is most similar
to us, which also studies SRT. But they focus on explaining the
SRT variation by SRT components, and find the impact factors
of each SRT components based on the domain knowledge.
Instead, we focus on HSRT, and our method is designed to
automatically identify the factors responsible for HSRT (i.e.,
HSRT conditions) in search logs. Some work like [20] intends
to identify object dependencies in page loading from browsers.
However, our search log based analysis is from a provider-
side view. In the domain of Internet videos, Jiang et al. [9]
propose a critical clustering method to identify the conditions
of problem video sessions. The problem is similar to ours, and
we also compare their method to ours (§IV).

VII. CONCLUSION
Web providers devote their efforts to timely responding

to user requests, because long response time can decrease
user engagement and reduce Web providers’ revenue. In this
paper, using a large search engine as a case study, we propose
FOCUS, a machine learning based analysis framework, to
automatically mine search logs. FOCUS is able to identify
the conditions in multi-dimensional search logs that HSRT
queries concentrate on, and also estimate the attribute effects
on SRT. The output of FOCUS provides operators a promising
starting point to debug HSRT. We deploy FOCUS in the

large search engine to analyze one-month search logs (from
day 1 to day 31). We find several interesting observations
about SRT by further investigating the results of FOCUS. In
addition, as suggested by the results of FOCUS, we conduct
an optimization on image transmission time. A one-month
real-world deployment (from day 44 to day 74) shows that
it successfully reduces the fraction of HSRT by one third.
We believe FOCUS is a general framework, and can be
applied to other search engines and other Web services beyond
search. We believe it is an important first step towards fully
automatically debugging Web search response time.
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