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Internet is composed of independent autonomous systems (ASes) which are selfish by nat-
ure. In the current inter-domain routing system, for an AS, incoming traffic is harder to con-
trol than outgoing traffic because its incoming traffic routing is ultimately determined by
other ASes. This problem stays the same in the leading new routing architecture proposals
(such as transit edge separation protocols) when addressing scalability challenges. In this
paper, we use LISP as an example to study cooperative incoming traffic engineering in a
selfish multi-AS context in such proposals. First, we analyze conflicted egress tunnel rou-
ters (ETRs) selections of edge ASes, which choose ETRs that are best for their individual
delay performance, but neglect incoming traffic engineering performance of other edge
ASes. Then, we propose the cooperative incoming traffic engineering, where edge ASes sac-
rifice limited delay performance for optimizing incoming traffic engineering performance
between each other. Furthermore, we measure the delay variations between different
RLOCs with experiments on PlanetLab to verify the rationality of considering the impact
of ETR selections on delay performance. Finally we evaluate the performance of coopera-
tive incoming traffic engineering. The proposed method achieves Pareto optimality and
can greatly improve the robustness and resiliency of ASes based on simulations.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction

Internet is composed of more than 45,000 autonomous
systems (ASes). About 84% are edge ASes [1], i.e., they
appear only as source ASes or destination ASes, first or last
in routing table’s AS paths. The other ASes are transit ASes.
Edge ASes provide network connections for clients, content
providers and data centers while transit ASes transit pack-
ets between different edge ASes. Most of the edge ASes are
multi-homed [1], that is, typically, each edge AS has more
than one path connecting it to the rest of the Internet.

Standard inter-domain traffic engineering (TE) consists
of outgoing traffic engineering and incoming traffic
engineering. For a specific edge AS, outgoing traffic engi-
neering is relatively easy to optimize because routing outgo-
ing traffic is decided by the AS itself. On the contrary,
incoming traffic engineering is difficult to optimize because
routing incoming traffic is decided by other ASes in the
Internet. For an edge AS, the ideal incoming traffic engineer-
ing is that the incoming traffic is uniformly distributed over
its entrance paths (edge routers) so that its link bandwidth
resources can be best utilized and the probability of conges-
tion caused by traffic fluctuations can be reduced to the min-
imum. This is especially important for edge ASes, because
incoming traffic is uncontrollable and is highly correlated
with Quality of Service (QoS) of content consumers [2,3]
inside the edge ASes.

In the current network architecture, the above goal is
expected to be accomplished by inter-domain routing
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protocol BGP. In BGP, an AS can selectively advertise its
prefixes, which is a coarse-grained method to control its
incoming traffic. Furthermore, an AS also can modify rele-
vant parameters to show its preferred path of incoming
traffic to its neighbors, such as artificially increasing the
minimum AS path or changing the minimum MED value
[4]. In practice, however, ASes can choose to neglect their
neighbors’ preference declarations and use their own rout-
ing policies to maximize their own optimization objectives.
For example, an AS may route traffic to its neighbor AS
through the closest path (hot-potato policy) regardless of
the impact on the incoming traffic engineering perfor-
mance of its neighbor AS. Such selfish behaviors may lead
to many undesirable consequences, such as low link utili-
zation and reduced network robustness [5]. Although pre-
vious works have shown that cooperative methods can
help achieve better overall performance in BGP [6–10],
however, the cooperation typically works between neigh-
boring ASes, not between two remote ASes.

In the past decade, as new network architectures are
designed and promoted (e.g. LISP [11], SDN [12], NDN
[13]), it is expected that network performance can be
greatly improved. At the same time, these new architec-
tures provide new methods and challenges for incoming
traffic engineering. Among all the new proposals, one lead-
ing direction lies in a family of protocols called Transit-Edge
Separate Internet, such as [11,14–16], some of which, such
as LISP (Locator Identifier Separation Protocol) [11], have
recently become RFC [17] and Internet standards. These
new protocols can greatly alleviate the scalability problem
of BGP (e.g. the global routing table size could be reduced
by 43–90% in LISP [18]). At present, it is implemented in
some new routers (e.g., in some Cisco routers) and is under
testing in the (http://www.lisp4.nettestbed). Some compa-
nies such as Facebook have deployed their testing serving
systems based on LISP for exchanging traffic [19].

We take LISP as a case study to investigate what
changes new architectures bring to incoming traffic engi-
neering. Our work may not be adapted to all the new archi-
tectures. We focus on theses changes, which we consider
necessary for better understanding traffic engineering in
new environments and future Internet protocol designs.

In LISP, edge ASes can exchange their routing informa-
tion with each other for incoming traffic engineering,
which is quite different from that in BGP. On the one hand,
it provides a fine-grained and more direct way for edge
ASes to control their incoming traffic (specified in
Section 2). On the other hand, however, an AS has to decide
how to optimize its incoming traffic engineering when it
can exchange routing information with many other ASes.
Although LISP RFC provides an interface for traffic engi-
neering negotiation between edge ASes [11], it does not
explicitly indicate how negotiation works in a multi-AS
scenario. Due to the above reasons, we propose coopera-
tive incoming traffic engineering in a selfish multi-AS
scenario based on the cooperative game theory and make
the following contributions.

� Motivated by the potential conflict of incoming traf-
fic engineering performance and delay performance
of independent edge ASes under LISP architecture,
this paper proposes multi-AS incoming traffic engi-
neering, formulates it with a heuristic cooperative
game model, and solves it in a distributed manner.

� This paper evaluates delay differences between
different RLOCs with experiments on PlanetLab for
verifying the rationality of considering delay
performance when optimizing incoming traffic engi-
neering performance. Furthermore, extensive simu-
lations driven by PlanetLab measurement data are
performed to show the performance of cooperative
incoming traffic engineering.

The remainder of the paper is organized as follows. Sec-
tion 2 presents the LISP mechanism and analyzes motiva-
tions of cooperative incoming traffic engineering between
edge ASes. Section 3 presents the heuristic cooperative
game model and the distributed solution. Section 4 evalu-
ates delay differences between different RLOCs with exper-
iments on PlanetLab. Section 5 evaluates the performance
of cooperative incoming traffic engineering. Section 6
reviews related works, and Section 7 concludes the paper.
2. LISP and motivation

In this section, we first explain how a packet is trans-
mitted between edge ASes in LISP. Then we analyze the
conflicted ETR selections between edge ASes under LISP,
followed by our design motivation.
2.1. Locator identifier separation protocol

In LISP, transit core and end hosts are in two separate
address spaces divided by edge routers: Routing Locators
(RLOCs) and Endpoint Identifiers (EIDs). EIDs are the
addresses used to identify end hosts inside an edge AS
while RLOCs are the addresses used to identify edge rou-
ters in the transit network. Generally, an edge router
serves as both an ITR (Ingress Tunnel Router) and an ETR
(Egress Tunnel Router) with functions for exchanging traf-
fic with other edge ASes. Therefore, an edge router is also
called an xTR (x Tunnel Router).

An ITR can map EIDs to RLOCs. When receiving a packet
from inside the source edge AS, the ITR treats the source
address (in the source address field of the packet) and
the destination address (in the destination address field
of the packet) as two EIDs and performs the EID-to-RLOC
mapping lookup. First, the ITR prepends an ‘‘outer’’ IP
header, in which its globally-routable RLOC is added to
the source address field for the source EID. Then, one glob-
ally-routable RLOC of the destination AS is added to the
destination address field for the destination EID.

From EID-to-RLOC mapping lookup, the RLOC (the ITR
of the source AS) is added to the source address field of
the ‘‘outer’’ IP header while one of RLOCs (the ETRs of the
destination AS) is added to the destination address field
of the ‘‘outer’’ IP header. In the transit network, only RLOCs
are used as addresses for packet transition. An ETR can
map RLOCs to EIDs. When receiving a packet from the tran-
sit network, the ETR strips the ‘‘outer’’ IP header and for-
wards this packet to the end host inside the destination AS.

http://www.lisp4.nettestbed
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We illustrate the packet transmission process by an
example as depicted in Fig. 1. Assuming that an end host
with the address EIDx in ASi sends traffic to another end
host with the address EIDy in ASj. For the sake of simplicity,
we use the address to stand for its entity. For example, EIDx

denotes the end host with the address EIDx.
EIDx sends traffic flows to one of its ITR, such as ITR

(RLOCi1) according to the intra-domain routing protocol
such as the shortest path in OSPF. ITR (RLOCi1), then
performs EID-to-RLOC mapping process and prepends
an‘‘outer’’ IP header for each packet of the traffic. In the
source address field of the ‘‘outer’’ IP header, EIDx is
mapped to RLOCi1. In the destination address field of the
‘‘outer’’ IP header, EIDy may be mapped to ETR (RLOCj1)
or ETR (RLOCj2), which is suggested by ASj, e.g., ETR
(RLOCj1). After that, the packet is forwarded to the transit
core with the destination address RLOCj1. The transit core
works in a usual way and routes traffic to RLOCj1. Upon
receiving the packet, ETR (RLOCj1) strips the ‘‘outer’’ IP
header and forwards this packet to EIDy. EIDy sends traffic
to EIDx in the same way.

In summary, The ETR selection is suggested by the
destination AS but decided by the source AS. Actually, the
destination AS first sends available ETRs with additional
preferences, which suggests that the source AS better
sends traffic flows based on announced preferences. How-
ever, the source AS has the final routing choice of the ETR
for the destination edge AS. In an interest-dependent con-
text (e.g. the source AS and the destination AS belong to
Fig. 1. LISP network
the same ISP), the source AS will follow the announced
preferences of the destination AS. However, in the scenario
that independent ISPs manage ASes for their own indepen-
dent interests, there may exist conflict over ETR selections.

2.2. Conflict of ETR selections

The conflict of ETR selections is basically caused by
interest-independent edge ASes pursuing different aspects
of performance. Under LISP architecture, ETR selections
affect two aspects of performance: delay performance
and incoming traffic engineering performance in different
ways.

First, ETR selections affect delay performance of traffic
flows. For two remote edge ASes (such as ASi and ASj in
Fig. 1) with bidirectional traffic, they are both the source
ASes and the destination ASes for the other AS. As the
source ASes, they can choose their ETRs for their outgoing
traffic to the other edge AS. Which ETRs to choose affects
the one-way delay of their outgoing traffic because differ-
ent ETR selections lead to different routing paths of traffic
in the transit network (the second phase of packet trans-
missions from EIDx to EIDy in Fig. 1).

Formally, let RLOCis denote the sth RLOC of ASi (s = 1,2 in
Fig. 1), qijðs; tÞ denote the traffic volume from RLOCis to
RLOCjt , and dijðs; tÞ denote the one-way delay between
RLOCis to RLOCjt . Then the total delay dij (dji) of traffic
between ASi and ASj can be expressed in Eq. (1). The first
item is total delay of outgoing traffic from ASi to ASj, and
architecture.



1 RLOCis also receives traffic from ASes which do not belong to N edge
ASes in this model, which is fixed and can be regarded as the background
traffic. We omit it in Eq. (4).

2 We ignore the intra-domain traffic because ASi is the edge AS and has
fewer intra-domain traffic compared with the inter-domain traffic.
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the second item is total delay of outgoing traffic from ASj to
ASi. Because the outgoing traffic qijðs; tÞ of ASi (qjiðt; sÞ of ASj)
is also the incoming traffic of ASj (ASi), then dij ¼ dji.

dij ¼ dji ¼
X
s¼1;2

X
t¼1;2

qijðs; tÞdijðs; tÞ þ
X
t¼1;2

X
s¼1;2

qjiðt; sÞdjiðt; sÞ:

ð1Þ

qijðs; tÞ and qjiðt; sÞ are controlled by ETR selections of ASi

and ASj respectively. ASi and ASj can adjust qijðs; tÞ and
qjiðt; sÞ to partially affect dij. That is, ASi controls qijðs; tÞ to
change the first item in Eq. (1) while ASj controls qjiðt; sÞ
to change the second item in Eq. (1). dij (dji) only depends
on ETR selections of ASi and ASj. The smaller dij, the higher
throughput between ASi and ASj. Hence, if ASi and ASj both
want to maximize the throughput between them, they
choose ETRs to best minimize dij.

dij only reflects delay performance of traffic between ASi

and ASj. Generally, an edge AS ASi have bidirectional traffic
with many other edge ASes. the delay (di) of all the traffic
of ASi can be expressed in Eq. (2). Ni is the set of edge ASes
which exchange traffic with ASi. According to Eqs. (1) and
(2), the delay performance of ASi depends on both ETR
selections of ASi and ETR selections of other edge ASes
exchanging traffic with ASi.

di ¼
X
j2Ni

dij: ð2Þ

Besides, ETR selections also affect incoming traffic engi-
neering of each edge AS. Different from its impact on delay
performance, the incoming traffic engineering perfor-
mance of one edge AS only depends on ETR selections of
the other edge ASes sending traffic to it but not ETR selec-
tions of itself. For an edge AS (ASi in Fig. 1), it receives traf-
fic from the outside Internet via RLOCs (RLOCi1 and RLOCi2).
When other edge ASes send traffic to ASi, they can indepen-
dently select ETRs of ASi, which results in different incom-
ing traffic (rið1Þ and rið2Þ) over RLOCi1 and RLOCi2. Incoming
traffic rið1Þ and rið2Þ further affect the load distribution of
links inside ASi, because the incoming traffic should be
transferred to clients inside ASi based on the intra-domain
routing policy such as OSPF. Hence, when rið1Þ and rið2Þ
change, the load distributions of links inside ASi change
along with it.

2.3. Motivation of cooperative incoming traffic engineering

From the above analysis, the incoming traffic of an edge
AS (ASi) is actually decided by many other edge ASes
sending traffic to it under LISP architecture. In an inter-
est-independent context, other edge ASes may choose ETRs
only for their individual delay performance goals, but
neglect incoming traffic engineering performance of ASi,
which could result in unbalanced incoming traffic of ASi

and degrade its robustness and resiliency of network
management.

Given the fact that one edge AS cannot optimize its own
incoming traffic engineering performance, our motivation
is whether a group of edge ASes can cooperatively change
their ETR selections for optimizing incoming traffic engi-
neering performance between each other. On the one hand,
an edge AS changes its ETR selections for optimizing
incoming traffic engineering performance of other edge
ASes. On the other hand, the incoming traffic engineering
performance of this edge AS is optimized by other edge
ASes.

3. Cooperative incoming traffic engineering

In this section, we first model inter-domain traffic
engineering between edge ASes under LISP, then formu-
late constraints of cooperative incoming traffic engineer-
ing of edge ASes, followed by the heuristic optimization
objective. Finally, we solve the problem in a distributed
manner. The notations in this section are summarized in
Table 1.

3.1. Modeling multi-AS inter-domain traffic engineering

We consider the multi-AS scenario in LISP, where N inter-
est-independent edge ASes (ASi; i ¼ 1;2; . . . ;N) exchange a
relevant amount of traffic in a stable manner between each
other. ASi exchanges traffic with other edge ASes via its
RLOCs falling into the edge of ASi, as shown in Fig. 1. Specif-
ically, ASi has Ki RLOCs. Its sth RLOC (RLOCis) sends traffic
qijðs; tÞ to tth RLOC (RLOCjt) of ASj and receives traffic
qjiðt; sÞ from RLOCjt . The total sending traffic from RLOCis to
ASj is the sum of traffic from RLOCis to RLOCjt; t ¼
1;2; . . . ;Kj, as shown in Eq. (3). In reality, Q ijðsÞ is the sending
traffic demand from clients inside ASi to clients inside ASj,
which is fixed and is decided by the intra-domain routing
policy of ASi.

Q ijðsÞ ¼
XKj

t¼1

qijðs; tÞ;8i; j; s ¼ 1;2; . . . ;Ki: ð3Þ

The incoming traffic riðsÞ; s ¼ 1;2; . . . ;Ki of RLOCis

depends on ETR selections of other edge ASes. When other
edge ASes send traffic to ASi, they can independently select
ETRs of ASi and choose whether to send their traffic to ASi

via RLOCis. Hence, riðsÞ is the result of ETR selections of the
other ðN � 1Þ edge ASes, as shown in Eq. (4).1

riðsÞ ¼
X
j–i

XKj

t¼1

qjiðt; sÞ;8i; s ¼ 1;2; . . . ;Ki: ð4Þ

riðsÞ; s ¼ 1;2; . . . ;Ki decides the load distributions of links
inside ASi, as shown in Fig. 1. riðsÞ includes many traffic
flows which should be transmitted to internal routers of
ASi. When RLOCis (such as RLOCi1 in Fig. 1) receives traffic
riðsÞ;RLOCis will further route the traffic flows to the corre-
sponding internal routers of ASi through internal links of
ASi. Let Ei denote the internal link set of ASi and
bilðsÞ 2 ½0;1� denote the proportion of riðsÞ flowing through
link l. Then the load of l 2 Ei is the sum of traffic which is
received from all the RLOCs of ASi and goes through link
l, as shown in Eq. (5).2 The normalized traffic load of link l



Table 1
Notations.

ASi The ith edge AS
RLOCis The sth RLOC of ASi

Ki The number of RLOCs of ASi

qijðs; tÞ Traffic sent from RLOCis to RLOCjt

dijðs; tÞ One way delay from RLOCis to RLOCjt

QijðsÞ Traffic demand from RLOCis to ASj

riðsÞ The incoming traffic to ASi via RLOCis

Ei The link set inside the edge ASi

l One link inside some specific edge AS
bilðsÞ The proportion of riðsÞ flowing through link l
Cl The link capacity of link l
ul The traffic (load) of link l
ûl The normalized load of link l: ul divided by Cl
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is ul divided by the link capacity cl, as shown in Eq. (6).
When intra-domain routing policy is fixed, bilðsÞ is fixed,
and incoming traffic distribution over RLOCs uniquely deci-
des the traffic load of links inside ASi.

ul ¼
XKi

s¼1

bilðsÞriðsÞ;8i; l 2 Ei: ð5Þ

ûl ¼
ul

cl
;8i; l 2 Ei: ð6Þ

The traffic engineering performance of one edge AS (ASi)
can be expressed by a function wiðûlÞ; l 2 Ei of normalized
traffic loads of links ûl; l 2 Ei in ASi. Generally in the litera-
ture, there are two typical metrics for evaluating traffic
engineering performance: maximum link utilization and
network cost [20,21]. Maximum link utilization represents
the utilization of the most congested link in an AS, as
shown in Eq. (7) and the optimization objective of ASi is
to minimize the maximum link utility min wi.

wi ¼ max
l2Ei

ûl;8i: ð7Þ

Network cost represents the overall load balance perfor-
mance of ASi. Specifically, the normalized load of each link
is mapped to a score /ðûlÞ; l 2 Ei and network cost is the
sum of the scores in ASi. Eq. (8) presents the general form
of network cost, and the optimization objective of ASi is
to minimize the network cost min wi. Generally, the map-
ping function is an increasing convex function, where the
link score /ðûÞ increases in a nonlinear way as the load
over one link increases. The increasing convex mapping
function represents that it is cheaper to add traffic to a link
with light traffic, but it is more expensive to add traffic to a
link with heavy traffic. This design is based on the fact that
the heavier load one link has, the longer queueing delay
the traffic on this link has. All the traffic flows across the
link will suffer from this increasing delay. Therefore, longer
delay in one link degrades the performance of all the traffic
flows across this link. As a result, /ðûÞ can be used to mea-
sure the influence of the traffic load over a link on delay
performance of traffic flows on this link.

wi ¼
X
l2Ei

/ðûlÞ;8i: ð8Þ

In some sense, ‘‘maximum link utility’’ is a kind of special
form of ‘‘network cost’’. The metric network cost is equal
to the metric maximum link utility when we map all the
links except the most congested link to the score 0 while
mapping the most congested link as it is (the mapping
function is still an increasing convex function). Besides,
the mapping function could have different forms, as long
as /ðûÞ is an increasing convex function.

In our context, we use network cost as the metric,
which can be easily extended to the maximum link utiliza-
tion metric. The proposed cooperative game model and
method in the rest of this section are applicable to a gen-
eral network cost metric. One typical mapping function is
proposed in [20], as shown in Eq. (9). We use it as an exam-
ple to driven the simulations in Section 5, but the model is
general and is also applied to other forms of /. Overall, For
the edge AS ASi, the purpose of incoming traffic engineer-
ing is to adjust the distribution of riðsÞ; s ¼ 1;2; . . . ;Ki so
that the traffic load over links inside ASi could lead to the
minimum network cost.

/ðûÞ ¼

û; 0 6 û < 1
3 ;

3û� 2
3 ;

1
3 6 û < 2

3 ;

10û� 16
3 ;

2
3 6 û < 9

10 ;

70û� 178
3 ; 9

10 6 û < 1;

500u� 1468
3 ; 1 6 û < 11

10 ;

5000û� 16318
3 ; 11

10 6 û <1:

8>>>>>>>>><
>>>>>>>>>:

ð9Þ
3.2. Constraints formulation

As presented in the previous subsection, incoming traf-
fic engineering performance (wi) of each edge AS (ASi) is
affected by its incoming traffic over RLOCs, which is finally
decided by ETR selections of other edge ASes. However,
ETR selections also impact on delay performance of both
the source ASes and the destination AS. When another
source edge AS (ASj) sends traffic to ASi, it chooses ETRs
of the destination AS (ASi) for either minimizing delay dij

or minimizing network cost wi.
In our context that N interest-independent edge ASes

send traffic between each other, each AS is both the source
AS and the destination AS. As the source AS, it wishes to
select ETRs best for delay performance of its traffic flows.
As the destination AS, it hopes that other source ASes can
select ETRs best for its incoming traffic engineering perfor-
mance. The conflict lies in the fact that one edge AS
chooses ETRs to optimize its delay performance, but could
have a negative effect on incoming traffic engineering per-
formance of other edge ASes. From another point of view,
in the scenario that N ASes wish to cooperatively optimize
incoming traffic engineering performance between each
other, they will change their ETR selections for incoming
traffic engineering performance of other edge ASes, but
could degrade the delay performance of its own traffic
flows. Considering the incentive of cooperative incoming
traffic engineering, it is reasonable to assume that each
AS has the constraint that it only sacrifices limited delay
performance for optimizing the incoming traffic engineer-
ing performance of N edge ASes.

Formally, let d0i and di denote the delay of ASi before and
after cooperative incoming traffic engineering respectively,
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as shown in Eqs. (10) and (11). q0ijðs; tÞ and qijðs; tÞ are traffic
from RLOCis to RLOCjt before and after cooperative incom-
ing traffic engineering, respectively. We formulate the
delay constraint that the delay increase after cooperation
di cannot exceed ai times of that before cooperation d0i.
ai 2 ½1;þ1� is the delay increasing factor, which reflects
the delay increase of ASi due to changing ETR selections
for optimizing incoming traffic engineering performance
of edge ASes. Considering the fact that dijðs; tÞ ¼ djiðt; sÞ,
we combine Eqs. (10)–(12), and have Eq. (13).

d0i ¼
X
j–i

XKi

s¼1

XKj

t¼1

q0ijðs; tÞdijðs; tÞ þ q0jiðt; sÞdjiðt; sÞ;8i: ð10Þ

di ¼
X
j–i

XKi

s¼1

XKj

t¼1

qijðs; tÞdijðs; tÞ þ qjiðt; sÞdjiðt; sÞ;8i: ð11Þ

di 6 aid
0
i: ð12Þ

X
j–i

XKi

s¼1

XKj

t¼1

ðqijðs; tÞ þ qjiðt; sÞ � aiðq0ijðs; tÞ

þ q0jiðt; sÞÞdijðs; tÞ 6 0: ð13Þ

Furthermore, there are another two constraints for the
decision variable qijðs; tÞ. First, the outgoing traffic demand
Q ijðsÞ of each RLOC (RLOCis) to ASj is given and is the sum of
traffic from RLOCis to RLOCit; t ¼ 1;2; . . . ;Kj, as shown in
Eq. (3). Second, the traffic from one RLOC of an edge AS
to the RLOC of the other edge AS should be positive, as
shown in Eq. (14).

qijðs; tÞP 0;8i; j; s ¼ 1;2; . . . ;Ki; t ¼ 1;2; . . . ;Kj: ð14Þ
3.3. Optimization objective

Our motivation is that N interest-independent edge
ASes cooperatively optimize incoming traffic engineering
performance with each other through ETR selections. How-
ever, ETR selections change delay performance of traffic of
edge ASes as well. On the one hand, one source edge AS
wants to send the traffic to the destination ETR with the
minimum delay. On the other hand, one destination edge
AS wants other source edge ASes to change their ETR
selections to optimize this destination edge AS’ incoming
traffic engineering performance. If the source edge AS
follows the destination edge AS’s suggestions of ETR
selection, the source edge AS might benefit destination
edge AS’s incoming traffic engineering performance, but
might hurt its own outgoing traffic delay performance.
Furthermore, one destination edge AS’ incoming traffic
engineering performance is affected by many source edge
ASes’ traffic. Overall, one edge AS’s delay performance sac-
rifice might not necessarily bring benefit to its incoming
traffic engineering performance.

With consideration on both utilization and fairness, we
choose to use cooperative game theory to solve the
cooperative incoming traffic engineering problem. In a
cooperative game, two or more players enter the game
with their individual utilities and act with each other for
a win–win solution. Specifically, the players’ individual
utilities constitute a social utility in certain form and all
the players optimize this social utility. The classic social
utility in cooperative game theory is Nash bargaining
[22], which is the serial product of all the individual util-
ities. It can be proved that Nash bargaining can guarantee
that all players acquire the maximum and equal individ-
ual utilities.

However, the social utility in our scenario cannot be
modeled by standard Nash bargaining. Specifically, there
are two aspects of performance for each edge AS: traffic
engineering performance and delay performance. Each
edge AS wishes to optimize its traffic engineering perfor-
mance which is decided by other edge ASes, and each edge
AS can act best for its delay performance but affect traffic
engineering performance of other edge ASes. First, these
two kinds of performance cannot be perfectly combined
by one individual utility. Besides, different edge ASes have
different initial incoming traffic engineering performance,
which means that the improvement space of incoming
traffic engineering performance of edge ASes are different.
Also, different edge ASes could sacrifice different delay per-
formance, which means that different edge ASes could con-
tribute different improvements for incoming traffic
engineering performance of other edge ASes.

Hence, we propose a heuristic cooperative game social
utility inspired by Nash bargaining [22] and its transforma-
tion [23]. First, the individual utility of ASi can be expressed

by ðw0i � wiÞ
ai=
PN

k¼1
ak , where w0i and wi are the network cost

of ASi before and after cooperation, respectively. The nor-
malized delay increase is assigned to the individual welfare
by using the exponentiation of the utility gains. The higher
ai, the higher contribution of ASi to incoming traffic engi-
neering performance for other edge ASes. The social utility
is the serial product of individual utility, as shown in Eq.
(15). Note that the proposed social utility is a heuristic
optimization objective combining both traffic engineering
performance and delay performance into together. The
social utility guarantees that incoming traffic engineering
performance of all the edge ASes can be improved
(w0i � wi > 0) but does not guarantee absolute fairness like
that in Nash bargaining.

max U ¼
Y

i

ðw0i � wiÞ
ai=
PN

k¼1
ak ;

s:t:

di 6 aid
0
i;

Q ijðsÞ ¼
XKj

t¼1

qijðs; tÞ;8i; j; s ¼ 1;2; . . . ;Ki;

qijðs; tÞP 0;8i; j; s ¼ 1;2; . . . ;Ki; t ¼ 1;2; . . . ;Kj:

ð15Þ

In Eq. (15), w0i and wi are the function of q0ijðs; tÞ and
qijðs; tÞ based on Eqs. (4)–(6) and (8). d0i and di are also
the function of qijðs; tÞ based on Eqs. (10)–(12). The above
problem can be solved by changing qijðs; tÞ through ETR
selections. Due to monotony of logarithmic function, Eq.
(15) can be transformed to Eq. (16) without changing the
solution of the original problem.
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max lnU ¼
X

i

aiP
kak

lnðw0i � wiÞ;

s:t:

di 6 aid
0
i;

Q ijðsÞ ¼
XKj

t¼1

qijðs; tÞ;8i; j; s ¼ 1;2; . . . ;Ki;

qijðs; tÞP 0;8i; j; s ¼ 1;2; . . . ;Ki; t ¼ 1;2; . . . ;Kj:

ð16Þ

It can be verified that the second derivative of the
optimization objective in Eq. (15) is always less than or
equal to 0 (proved in Appendix A). So the optimization
objective is the convex optimization problem. The con-
straints in Eq. (15) are all linear, which satisfy the ‘‘quality
constraints’’ [24]. For the convex problem with linear
constraints, the general method is to obtain the KKT
condition. However, if there are N edge ASes and ASi has
Ki RLOCs. There is total N þ

P
iKiðN � 1Þ (N constraints

for delayi and
P

iKiðN � 1Þ constraints for QijðsÞ) con-
straints the problem. The number of constraints increases
nonlinearly as the increase of N and Ki, so the computa-
tional complexity will grow substantially, the optimal
solution cannot be obtained by using optimization soft-
ware directly within limited time. Therefore, we turn to
solve the problem in a distributed manner to reduce the
computational complexity, which is specified in the next
subsection.

Furthermore, there are some practical issues that should
be explained about the optimization objective. First, the
parameters (dijðs;tÞ; qijðs;tÞ8i; j; s¼1;2; . . . ;Ki; j¼1;2; . . . ;Kj)
in the optimization objective Eq. (15) are obtained in a large
time scale such as a month or a quarter. In practice, the delay
dijðs;tÞ (traffic volume qijðs;tÞ) between RLOCs can be sam-
pled periodically within a period of time such as
dijðs;t;T1Þ;dijðs;t;T2Þ; . . . ;dijðs;t;TMÞ (qijðs;t;T1Þ;qijðs;t;T2Þ; . . . ;
qijðs;t;TMÞ), M is the total sample number. dijðs;tÞ (qijðs;tÞ)
is time average values based on the samples, as shown in
Eqs. (17) and (18). dijðs;tÞ (qijðs;tÞ) reflects the general delay
(traffic volume) parameters between RLOCs and is not much
affected by the transient and instant delay (traffic volume)
change between RLOCs.

dijðs;tÞ¼
1
M

XM

Tm¼1

dijðs;t;TmÞ;8i; j; s¼1;2;...;Ki; t¼1;2;...;Kj: ð17Þ

qijðs;tÞ¼
1
M

XM

Tm¼1

qijðs;t;TmÞ;8i; j; s¼1;2;...;Ki; t¼1;2;...;Kj: ð18Þ

Second, this model assumes that the transit network is
not heavily loaded, which means that dijðs; tÞ is not the
function of qijðs; tÞ. This is because that the transit network
bandwidth is typically over-provisioned significantly and
ISPs of transit networks can routinely conduct traffic
engineering through various methods to avoid potential
congestions. Switching the transit path for one pair of
edge ASes typically should have little impact on the
utilization of the transit links, thus should have little
impact on traffic queueing on the transit core networks,
but the change to the propagation delay can be non-trivial
because of potentially switching to a longer or shorter
path (processing delay and transmission delay are
relatively trivial compared with propagation delay).
Therefore, we consider the propagation delay as the main
variable factor of the delay in the transit core network in
our model.

Our model can be extended to more complicated mod-
els, where parameters (such as delay and traffic) could be
dynamic and the optimization objective could be the func-
tion of these parameters. These complicated models need
the modification of solution methods, which are out of
the scope of this paper, and can be proposed and solved
in the future.

3.4. Distributed method

In this subsection, we add some artificial variables to
decouple the original problem, and propose a distributed
method based on Lagrange decomposition.

We divide the variables of Eq. (15) into two categories:
incoming traffic variables and outgoing traffic variables.
For ASi and ASj; qijðs; tÞ is the outgoing traffic variables for
ASi and the incoming traffic variables for ASj. For each edge
AS (ASi), we add a group of artificial incoming traffic vari-
ables. qjiðt; sÞ is an artificial incoming traffic variables,
which means ASi’s expected traffic from RLOCjt to RLOCis.
To keep the solution of the original problem the same,
we add a constraint for each artificial variables, as shown
in Eq. (19).

qjiðt; sÞ ¼ qjiðt; sÞ: ð19Þ

First, due to the convexity of the optimization objective
and the linear constraints, the original problem has strong
duality. We can solve it by solving the dual problem [24].
We add the artificial constraint (Eq. (19)) into the optimi-
zation objective and formulate the dual problem of Eq.
(16), as shown in Eq. (20). Eq. (20) can be proved to be a
convex problem [24]. v jiðt; sÞ is lagrangian multiplier [24].
v is the set of v jiðt; sÞ.

LðvÞ ¼
X

i

aiP
kak

lnðw0i � wiÞ þ
X

i

X
j

XKi

s¼1

XKj

t¼1

v jiðt; sÞ

� ðqjiðt; sÞ � qjiðt; sÞÞ;
s:t:

di 6 aid
0
i;

Q ijðsÞ ¼
XKj

t¼1

qijðs; tÞ;8i; j; s ¼ 1;2; . . . ;Ki;

qijðs; tÞP 0;8i; j; s ¼ 1;2; . . . ;Ki; t ¼ 1;2; . . . ;Kj:

ð20Þ
We replace all the incoming traffic variables with the

artificial variables, and keep outgoing traffic variables the
same. Then the optimization objective of Eq. (20) is shown
in Eqs. (21) and (22).

L ¼
X

i

Li: ð21Þ

Li ¼
aiP
kak

lnðw0i � wiÞ þ
X
j–i

X
s

X
t

v ijðs; tÞqijðs; tÞ

�
X
j–i

X
s

X
t

v jiðt; sÞqjiðt; sÞ: ð22Þ



Y. Zhang et al. / Computer Networks 73 (2014) 112–127 119
Note that Eq. (22) is the function of artificial variables of
ASi and the outgoing variables of ASi. Hence, it can be inde-
pendently solved by ASi with the corresponding con-
straints, as shown in Eq. (23).

Li ¼
aiP
kak

lnðw0i � wiÞ þ
X
j–i

X
s

X
t

v ijðs; tÞqijðs; tÞ

�
X
j–i

X
s

X
t

v jiðt; sÞqjiðt; sÞ;

s:t:

X
j–i

XKj

t¼1

XKi

s¼1

ðqjiðt; sÞ þ qijðs; tÞ

� aiðq0ijðs; tÞ þ q0jiðt; sÞÞdijðs; tÞ 6 0;

XKj

t¼1

qijðs; tÞ ¼ Q ijðsÞ;8i; s ¼ 1;2; . . . ;Ki;

XKi

s¼1

qjiðt; sÞ ¼ Q jiðtÞ;8j; t ¼ 1;2; . . . ;Kj;

qijðs; tÞP 0;8i; j; s ¼ 1;2; . . . ;Ki; t ¼ 1;2; . . . ;Kj: ð23Þ

Hence, the dual problem (Eq. (20)) can be first decom-
posed. Besides, based on sub-gradient methods [24], we
can use Lagrange parameters as interfaces to let the artifi-
cial variables and the original incoming traffic variables
tend to be the same through iterations. We assume at step
k, each edge AS has optimized its own optimization objec-
tive (Eq. (23)), and the Lagrange parameters are v jiðt; sÞk. If
Eq. (24) holds, and n is selected satisfying the diminishing
step size rules, v jiðt; sÞ converges in limited steps [25],
which means that the artificial variables are the same as
the original incoming traffic variables. According to Eq.
(20), the derivative of L is as Eq. (25), which can be substi-
tuted in Eq. (24). Thus, the specific algorithm can be shown
as Algorithm 1.

v jiðt; sÞkþ1 ¼max 0; n
@L

@v jiðt; sÞk

 !
: ð24Þ

@L
@v jiðt; sÞ

¼ qjiðt; sÞ � qjiðt; sÞ: ð25Þ

Algorithm 1. Distributed method
Iutput:
The delay increasing factor: ai; i ¼ 1;2; . . . N.
The traffic of each RLOC from its belonging AS to another A

Output:
The traffic between RLOCs of ASes: qjiðt; sÞ.

1: Initial the step-size n.
2: Initial Lagrange parameters v jiðt; sÞ.
3: Each edge AS independently optimizes its optimization obj
4: Update v jiðt; sÞ = max(0,v jiðt; sÞ � nðqjiðt; sÞ � qjiðt; sÞÞ;8i; j; s ¼
5: if All the v jiðt; sÞ no long change then
6: End algorithm.
7: else
8: Go to step 3.
9: end if
Algorithm 1 can be expressed as the following: (1) Ini-
tialize the Lagrange parameters and the delay increasing
factor a for each AS; (2) each AS calculates its individual
optimization objective based on Eq. (23); and (3) the
Lagrange parameters change according to step 4. Within
the limited number of iterations, the Lagrange parameters
converge and the algorithm ends.

There are some practical issues about the above algo-
rithm that deserve to be explained. First, as presented pre-
viously in this section, cooperative incoming traffic
engineering has a large time scale, such as a month or a
quarter. For each incoming traffic engineering cooperation,
edge ASes joining the cooperative game provides its AS
information (delay dijðs; tÞ and traffic qijðs; tÞ between its
own RLOCs and RLOCs of other edge ASes), its current net-
work cost (w0i), and its delay performance sacrifice toler-
ance (ai). After the algorithm runs, each AS updates its
newly RLOC choices of its outgoing traffic to other edge
ASes and also obtain its network cost change from w0i to wi.

Second, the algorithm can be run in central servers or
be performed in a distributed manner by edge ASes.
When the algorithm is run in central servers (note that
when there are many edge ASes joining the cooperative
game, more than one central server are needed to run
the distributed method because the calculation complex-
ity could be higher than one server can support), edge
ASes only submit its information but do not participate
in running the algorithm. In theory, there are possibilities
that some selfish edge ASes provide fake information to
change the social utility, so that it can acquire more traf-
fic engineering performance improvement with less delay
performance sacrifice. In practice, however, the social
utility is usually private and cannot be acquired by each
edge AS. Hence, it is difficult for a specific edge AS to
know how to change its own parameters to best benefit
its own performance because the information submission
interval is quite large. Besides, considering the fact that
the algorithm runs in a large time scale, it is also imprac-
tical for a specific edge AS to try submitting different
information to best benefit its own performance. Further-
more, some parameters can be actually submitted by two
edge ASes, which can be regarded as a verification.
For example, traffic volume qijðs; tÞ can be submitted by
both ASi and ASj. Hence, we believe that there is little
S: QjiðtÞ;8i; j; s ¼ 1;2; . . . ;Ki; t ¼ 1;2; . . . Kj.

ective Li; i ¼ 1;2; . . . ;N based on Eq. (23).
1;2; . . . ;Ki; t ¼ 1;2; . . . ;Kj.



Fig. 2. RTD measurement experiment based on PlanetLab.

3 Obviously, if there is no delay differences when edge ASes change ETRs,
edge ASes are willing to optimize incoming traffic engineering of other
ASes, because it will not bring any loss for themselves.
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motivations for an edge AS to provide false information
for its own interests.

When the algorithm is distributedly performed by edge
ASes, there are a set of common v jiðt; sÞ for each two RLOCs
(RLOCis and RLOCjt) of two specific edge ASes (ASi and ASj),
and a common n for all the edge ASes. Then ASi optimizes
its own optimization objective Li in Eq. (23), and v jiðt; sÞwill
change as the iterations. Until v jiðt; sÞ ¼
0;8i; j; s ¼ 1;2; . . . ;Ki; t ¼ 1;2; . . . ;Kj, the algorithm ends,
which means that qjiðt; sÞ ¼ qjiðt; sÞ;8i; j; s ¼ 1;2; . . . ;Ki;

t ¼ 1;2; . . . ;Kj in Eq. (25). Note that the change of v jiðt; sÞ is
decided by both ASi and ASj, and v jiðt; sÞ ¼ 0 represents the
success negotiation of ASi and ASj for the traffic qjiðt; sÞ. In
this distributed method, each edge AS does not have to sub-
mit its private AS information to all the other ASes or central
servers. Edge ASes perform the algorithm by the interface
parameters v and n.

Each edge AS just optimizes its artificial optimization
objective Li and decides whether its current incoming traffic
(qjiðt; sÞ) is the same as its expected incoming traffic (qjiðt; sÞ),
as shown in Eq. (25). Then ASi uses the difference between
qjiðt; sÞ and qjiðt; sÞ to perform its next individual optimiza-
tion no matter whether ASi wants to modify its own optimi-
zation objective. At this time, one edge AS could want to
cheat in the cooperation, which could result in frequent nego-
tiation between other edge ASes, but other edge ASes also
could refuse to cooperate with this edge AS. Hence, we
believe that the distributed method also provides incentives
for edge ASes to honestly cooperate with other edge ASes.

4. Delay evaluation of ETR selections

From previous sections, edge ASes sacrifice their delay
performance for incoming traffic engineering performance
of other edge ASes. The delay performance loss is caused by
ETR selections of source edge ASes. When source ASes
select different RLOCs of the destination ASes, they route
their corresponding traffic flows through different paths
with different delay. Hence, it is critical to measure delay
variations of different paths between edge ASes.3

In this section, we measure delay between RLOCs of dif-
ferent ASes based on PlanetLab. PlanetLab is a global
research network supporting the development of new net-
work services, which consists of 1173 nodes at 561 sites
worldwide. We can manipulate these nodes through a
struct called ‘‘slice’’ [26]. We deployed this experiment
within Europe, which has the highest density of nodes in
PlanetLab.

The purpose of this experiment is to record delay
between edge ASes. However, the nodes in PlanetLab are



0

20

40

60

80

100

120

140

160

180

200

    137-224     137-378      137-559         137-766     137-786     224-378    224-559

R
ou

nd
 tr

ip
 d

el
ay

 (m
s)

0

20

40

60

80

100

120

140

160

180

200

224-766   224-786 378-559  378-766 378-786  559-766  559-786  766-786

R
ou

nd
 tr

ip
 d

el
ay

 (m
s)

(a) (b)

Fig. 3. Round trip delay between two ASes.
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widely dispersed, and generally there is only one node in
one edge AS. It is difficult to let one node send traffic
through different RLOCs due to the fixed intra-domain
routing protocols. Considering the fact that delay of traffic
flows between two edge ASes is mainly caused by its trans-
mission through the transit ASes, so delay between transit
ASes also partially reflects delay between the edge ASes
within the transit ASes. Hence, we measure the delay
between transit ASes.

4.1. Experiment settings

The experiment scenario is depicted in Fig. 2. The red
numbers represent the AS numbers in experiment while
the green marks represent geographic positions of these
ASes. We choose the group of ASes with the AS number
{137 224 378 559 766 786} because there are more nodes
available to login. We can login some nodes in one AS, and
send packets to nodes of other ASes. Command ‘‘trace-
route’’ is used to find out the packet path from one AS to
another AS. For example, we login one node in AS 224
and send a packet from this node to another node in AS
137. This packet goes through a series of routers belonging
to AS 224, AS 1741, AS 1930, AS 559 and AS 137. The router
information can be recorded. Based on the router informa-
tion, we can roughly identify the edge routers of different
ASes as follows. For example, the ‘‘trace-route’’ packet goes
through router 1 (AS 224), router 2 (AS 224), router 3 (AS
1741), router 4 (AS 1741), router 5 (AS 1741), router 6
(AS 1930), router 7 (AS 559) and router 8 (AS 137) (Router
names have been omitted). Then we take router 2 as the
edge router resided in AS 224 which connects to AS
1741, and router 3 as the edge router resided in AS 1741
which connects to AS 224.

Then, we login different nodes in the source AS respec-
tively and send ‘‘trace-route’’ to different nodes in the des-
tination AS. After identifying the edge routers between two
ASes, we use ‘‘ping’’ to periodically record round trip delay
(RTD) between different RLOCs of different ASes, and accu-
mulate RTDs once an hour within one months.

4.2. Experiment results

We show the path RTD statistics between 6 ASes
(AS 137, AS 224, AS 378, AS 556, AS 766, and AS 786),
respectively in Fig. 3. We use boxplots to display RTD
statistical properties (Each box, between the min. and the
max., displays the first quartile, the median, and third
quartile). Each box represents the statistic RTD of one path
between two specific ASes. The median RTD can be
regarded as the delay of this path in a long time scale
and corresponds to the time scale of traffic engineering.

From Fig. 3, we find that the median RTDs of different
paths of two specific ASes are different in most cases. This
difference could be relatively large such as between AS 766
and AS 786 and could be quite small such as between AS
559 and AS 786. The root cause of the above observation
is that changing paths brings different routing distances
and routing hops, which lead to different propagation
delay and switching delay.

The purpose of this experiment is to show the impact
of ETR selections of edge ASes on delay performance. The
delay of different paths between two ASes can be roughly
regarded as the delay when two edge ASes change their
ETR selections, as specified at the beginning of Section 4.
If two ASes initially choose paths best for their delay per-
formance, their ETR selections form the routing path with
minimum RTD (For example in Fig. 3, if AS 766 exchanges
traffic with AS 786 and they both minimize delay, they
will choose the first path to exchange traffic and the RTD
is less than 40 ms). When they decide to cooperatively
optimize incoming traffic engineering performance
between each other, they change the ETR selections and
could exchange traffic in other paths, which results in
delay increase. This delay increase could be relatively large
and affect the bandwidth between two ASes, which can be
regarded as the delay performance loss. Hence, it is rea-
sonable to consider the delay performance variations
when we optimize incoming traffic engineering through
ETR selections.
5. Evaluation of cooperative incoming traffic
engineering

In this section, we evaluate the performance of cooper-
ative incoming traffic engineering driven by delay data
from PlanetLab. We first provide simulation settings, fol-
lowed by statistic performance evaluation and impact of
parameters on performance. The simulation parameters
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Fig. 4. The total network cost decrease of six edge ASes. X-axis is the total network cost decrease of the six edge ASes. Y-axis is the counts (cumulative
counts). ai ¼ 1:2; i ¼ 1;2; . . . ;6.
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are collected from different realistic scenarios as possible
as we can, but still could deviate from the reality.

5.1. Simulation settings

� Network. We assume 6 edge ASes exchange traffic
between each other and cooperatively optimize incom-
ing traffic engineering between each other. The network
is shown in Fig. 1, where N = 6. Each edge AS has two
RLOCs which is the typical scenario in reality [1].4

� Topology of edge ASes. Topology structures and positions
of RLOCs (edge routers) affect the performance of coop-
erative incoming traffic engineering. The ideally realis-
tic topology parameters should include the topology
of edge ASes, the link weights inside the edge AS, traffic
demands between edge ASes and traffic load on links in
an edge AS. However, there are almost no public topol-
ogies of edge ASes including its link weights (edge ASes
mainly belong to enterprises and the topologies are
generally not released). Hence, to obtain more realistic
and accurate topology parameters, we choose two pub-
lic topologies Abilene [27] and CERNET [28] as the
topologies for the edge ASes in the simulation instead,
which can provide a more detailed information about
topology and OSPF weights. We assume that DNVY
and KSCY are regarded as two edge routers in Abilene
4 The experiment in [37] demonstrates that more xTRs will benefit more
incoming traffic engineering performance, but the improvement from one
xTR to two xTRs is much larger than the improvement from two xTRs to
more than two xTRs. In reality, the most typical case is that one edge AS has
two RLOCs, only 17% of edge ASes in the Internet have more than two
RLOCs [1].
while Qingdao and Shanghai are regarded as two edge
routers in CERNET. The intra-domain routing policy is
OSPF with suggested links weights from [27,28]. The
link capacity inside each edge AS is 10 Gbps.
� Inter-domain traffic demand between ASes. We assume

that the total cooperative incoming traffic for each AS is
10 Gbps, which is the incoming traffic demand of each
edge AS. Each RLOC has the traffic demand 1 Gbps for a
destination AS, for example Qijð1Þ ¼ Qijð2Þ ¼ 1 Gbps.
The traffic demand is uniformly destined to the routers
inside the edge AS. We omit the intra-domain traffic
because intra-domain traffic is trivial compared to the
inter-domain traffic for edge ASes.
� Delay between RLOCs of edge ASes. The six edge ASes

needs C2
6 inter-domain delay data (each two edge ASes

need delay data), which corresponds to our experi-
ments in PlanetLab. Hence, we use the delay in Fig. 3
as the inter-domain delay between the six edge ASes.
In our simulation, there are four paths between each
two edge ASes (because there are two RLOCs of each
edge ASes), but the delay data in our experiment could
have more than 4 paths (For example, there are 6 paths
of RTDs between AS 137 and AS 224 in Fig. 3). In this
condition, we choose the first four groups of delay data
as the inter-AS delay between RLOCs of two ASes. We
randomly choose 100 groups of delay data to drive
our simulations.5
5 Here we use RTDs data in the experiment as the one-way delay in the
simulation because it is hard to directly obtain the one-way delay in our
experiment. We only use the simulation to show the impact of delay
variations on incoming traffic engineering performance, so RTD can also

reflect the one-way delay to some extent.
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Fig. 7. Delay in artificial simulation setting.
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5.2. Performance evaluation

5.2.1. Total incoming traffic engineering performance
We first evaluate cooperative incoming traffic engineer-

ing performance. Fig. 4(a) and (b) shows the total CDF of
network cost decrease of the six edge ASes. First, the topol-
ogy of edge ASes has a great impact on the network cost
decrease, because intra-domain routing protocols deicide
how incoming traffic is distributed over intra-domain links
of edge ASes. Abilene and CERNET are different topologies,
which means that the same incoming traffic distribution
over RLOCs leads to different load distributions of links
and different network cost.

Second, the cooperative performance (which is defined
as the network cost decrease after cooperation) is sensi-
tive to link delay. We take the Abilene topology as the
example. When edge ASes have the topology of Abilene,
there are more than 90% percent of simulation runs
where the sum of network cost decrease of six edge ASes
is between 60 and 180. There are 7 simulation runs,
where the sum of network cost decrease of six edge ASes
is less than 60. There is one simulation run, where the



Fig. 8. Pareto optimality in 2 ASes scenario in Abilene. The topology of the
edge AS is Abilene. a1 ¼ a2 ¼ 1:1. Both ASes receives 10 Gbps traffic from
the other AS. The path delay is shown in Fig. 7.
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Fig. 9. Impact of a on network cost when a of two ASes are the same. Two
ASes have the same topology. The delay between two ASes is shown in
Fig. 7. Each AS receives 10 Gbps from the other AS, and the sending traffic
of each RLOC of each AS is 5 Gbps. The received traffic of each RLOC is
uniformly distributed over the inside routers of the AS. X-axis is a. Y-axis
is the network cost of two ASes.
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sum of network cost decrease of six edge ASes is more
than 200.

Actually, the link delay decides ETR selections before
cooperation of edge ASes. Sometimes, edge ASes route traf-
fic best for their individual delay performance, which also
results in the balanced incoming traffic of the edge AS. In
this condition, edge ASes have balanced incoming traffic
even without cooperation, and there is no much improve-
ment of cooperative incoming traffic engineering. Simi-
larly, the link delay also could lead to very unbalanced
incoming traffic of a specific AS. In this condition, cooper-
ative incoming traffic engineering can greatly decrease
the network cost with a higher probability.

5.2.2. Individual incoming traffic engineering performance
Fig. 5 shows the network cost change of each edge AS.

First, network cost of all the edge ASes will not increase
after cooperation. Furthermore, higher network cost in
the initial state before cooperative incoming traffic
engineering leads to higher network cost decrease after
cooperation in statistic. The higher initial network cost
(before cooperation) means that some links inside the edge
AS are in heavier load, which also represents the more
unbalanced incoming traffic of the edge AS. Considering
the fact that network cost is a nonlinear function of the link
load, to balance the incoming traffic of edge ASes which
have a more unbalanced initial incoming traffic will
decrease the heavier load of the links inside the edge AS
and will reduce more network cost. This conclusion also
can be drawn from Fig. 6.

5.3. Pareto optimality

We further consider the pareto optimality in a simple
scenario that two edge ASes cooperate to optimize the
other’s network cost performance. The one way delay is
shown in Fig. 7 (The longest RTD is more than 3 times over
the shortest one in Fig. 3, so we choose the longest delay is
2.5 times over the shortest one) and the parameters of
inter-domain traffic and a are shown in Fig. 8. When two
edge ASes do not cooperate, their initial individual network
cost is 168.9. When they cooperate to optimize the other
AS’s network cost, the shadow area shows the cooperative
feasible region. their individual network cost decreases to
76.1, which is minimum under the condition that they
have equal network cost decrease. Hence, we verify that
the cooperative solution is Pareto optimality.

5.4. Impact of a on network cost

Fig. 9 shows the impact of a on network cost when a of
two ASes are the same. First, the network costs of the two
ASes are the same because they have the same parameters
and have the same status in the optimization objective (Eq.
(15)). As a gradually increases, each AS’s network cost goes
down when a 6 1:3 in Abilene (1.25 in CERNET). This is
because each edge AS can sacrifice more delay perfor-
mance of some flows for improving incoming traffic engi-
neering performance. When a > 1:3 and increases, each
AS’s network cost becomes optimal, the further increase
of a can no longer decrease its network cost.

Fig. 10 shows the mpact of a on network cost when a of
ASes are different. In Fig. 10(a) where two ASes exchange
traffic between each other, when a1 ¼ a2 ¼ 1:1, the net-
work cost of AS1 and AS2 are the same (76.1). As a1

increases and a2 keeps the same which means that AS1 is
willing to sacrifice more delay performance for cooperative
incoming traffic engineering. The network cost of AS1

decreases and the network cost of AS2 increases. The
increase of a1 changes the cooperative status between
AS1 and AS2. AS1 becomes more and more cooperative
and should decrease more network cost from cooperation,
which is contributed by AS2. But AS2 can less decrease its
network cost. Thus, the network cost of AS2 increases com-
pared to the scenario when a1 ¼ a2. When a2 ¼ 1:2 and
a2 ¼ 1:3, we have similar conclusions.



Fig. 10. Impact of a on network cost when a of ASes are different. The ASes have the same topology. The delay between each two ASes is shown in Fig. 7.
Each AS receives 10 Gbps which is uniformly from the other ASes, and is uniformly distributed over the inside routers of the AS. X-axis is a. Y-axis is the
network cost of the ASes.
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When the number of ASes increases, changing the coop-
erative status of one AS in the cooperative group becomes
more difficult. In the scenario of two ASes, the increase of a
of one AS will be conducive to lowering its network cost
while the network cost of the other AS will remarkably
increases (although this increase will not exceed that in
the initial state).

In the scenario of more ASes, the increase of a will be
still conducive to lowering its network cost, but the net-
work costs of the other ASes will slightly increase. This is
because the increase of a of one AS will not have so much
contributions to all the ASes on average. When there are
ten ASes cooperating with each other, the network cost of
other ASes even ceases to rise, as shown in Fig. 10(b)–(d).

6. Related work

There are some related work about cooperative traffic
engineering in BGP and LISP. [6,8,9,29–34] studied the
cooperation between ISPs in BGP. [30–32] focused on coop-
erative traffic engineering between ASes belonging to one
ISP. [6,8] modeled the cooperative traffic engineering in
BGP protocol. [29,33] considered the traffic engineering
between different ASes with the same optimization objec-
tives. [9] analyzed how neighboring ISPs can cooperate
with each other for inter-domain traffic engineering. [35]
provided a cooperative mechanism for traffic engineering
between ASes. [34] proposed a cooperative method based
on a series of learning process.

Some works have proposed methods for incoming traf-
fic engineering under LISP. [36] presented an open and
flexible solution that allows an ISP using identifier/locator
separation to engineer its inter-domain traffic. [37] focused
on incoming traffic engineering based on mapping assign-
ment under LISP. These works are applicable in a coopera-
tive Internet environment. In a simple two-AS scenario,
two edge ASes can directly negotiate with each other for
joint incoming traffic load balance optimization, which
makes sense when traffic between two edge ASes are bal-
anced (e.g., similar bit rates). This scenario has been ana-
lyzed in previous works [1,38]. Specifically, [1]
considered the selfishness of ASes and modeled traffic
engineering under LISP as a noncooperative game theory
in a two-AS scenario and proposed an enforced load
balance method for incoming traffic engineering. In [38],
the author extends the cooperation from two edge ASes
to multi-ASes. Specifically, a multi-AS cooperation is done
by each two edge ASes which have significant mutual
traffic between each other. Both [1,38] use abstract utilities
for the optimization objective. Different from these
works, our model is formulated by specific network
parameters instead of abstract utility. Besides, the concept
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of multi-AS cooperation in [38] is to decompose the multi-
AS cooperation into a serial of binary-AS cooperation
process. Our work builds an optimization objective, for
which all edge ASes join the cooperation and optimize
the same optimization objective simultaneously.

7. Conclusion

In this paper, we first analyze the potential conflict of
ETR selections of edge ASes under LISP when they pursue
both delay performance and incoming traffic engineering
performance. Then, we propose the cooperative incoming
traffic engineering framework for edge ASes in the transit
edge separation network, where edge ASes sacrifice limited
delay performance for optimizing incoming traffic engi-
neering performance between each other. We formulate
the cooperative incoming traffic engineering with a heuris-
tic cooperative game optimization objective, where delay
performance loss is considered as the contribution of edge
ASes. Furthermore, we evaluate delay variations between
different RLOCs with experiments on PlanetLab, and veri-
fies the rationality of considering delay performance when
optimizing incoming traffic engineering performance.
Finally, we evaluate the performance of cooperative
incoming traffic engineering by simulations driven by real
Internet delay data. Simulations show that our algorithm
fairly alleviates the unbalance of incoming traffic in a self-
ish multi-AS scenario.

Future work lies in the following two directions. First,
it is necessary to systematically analyze the gaming phe-
nomenon in the Internet, especially when different
aspects of performance of ASes are considered. Secondly,
because the number of ASes is neither very small (2 or
3) nor very large (infinite), it is interesting to explore
the cooperative mechanism design among the finite num-
ber of ASes.
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Appendix A

We prove Eq. (15) is a convex function. The first deriv-
ative of Eq. (15) is shown in Eq. (26). The second derivative
of Eq. (15) is shown in Eq. (27).
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riðsÞ is the total incoming traffic volume into sth RLOC of
ASi. So riðsÞ is the linear combination of qjiðt; sÞ ,as shown
in Eq. (29). As a result, Eq. (30) holds.
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X
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¼ 1: ð30Þ

Because wi is the network cost the ASi, which is nonlin-
early increase as the load increase. That is, as riðsÞ
increases, the network cost increases nonlinearly, which
is shown in Eqs. (31) and (32).

@wi

@riðsÞ
> 0: ð31Þ

@2wi

@riðsÞ2
> 0: ð32Þ

Eq. (33) holds because of the increasing delay factor a is
normalized. Eq. (34) holds because the network cost before
cooperation is not less than that after cooperative incom-
ing traffic engineering between edge ASes. We substitute
Eqs. (32)–(34) into Eq. (27) and prove that @2z

@qjiðt;sÞ2
< 0.

aiP
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< 1; 8i: ð33Þ
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