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Abstract— It is crucial for Internet company to provide highly
reliable web-based services. The web-based services always have
many components running in the large-scale infrastructure with
complex interactions. As an indispensable part of high reliability,
the diagnosis remains to be a thorny problem. With the growth
of system scale and complexity, it becomes even more difficult.
In this paper, we propose an automatic diagnosis system based
on causality graph to help system operators find the root causes.
The causality graph is mainly extracted from the historical data
of the monitoring system, and the method consists of four steps.
1) It utilizes a data mining method to extract the initial causality
graph. 2) Once a failure happens, it lists top-k suspects with a
ranking algorithm based on the causality graph. 3) Then system
operators check the suspects and label them either right or
wrong. 4) A supervised learning algorithm takes the labels as
the input to tune the causality graph, in order to improve the
diagnosis accuracy on step 2 iteratively. This method requires
neither knowledge about the design and implementation details
of the web-based service, nor instrumenting the services’ source
code. Our controlled experiments show that the root causes can
be ranked in top 3 with 100% accuracy after countable learning
iterations.

I. INTRODUCTION

Web-based services have permeated into people’s daily
lives, such as search engines, e-commerce, etc. Failures or
malfunctions in these services would cause great economic
losses and even affect people’s daily life. For example, Ama-
zon.com went down for 45 minutes in 2013, which cause 5
Million loss in business revenue [1]. Hence, quick and precise
diagnosis for web-based service is crucial.

Diagnosing the web-based service in large-scale Internet
company is challenging, because the system scale is becoming
larger, more complex, and evolving faster over time. Failures
are almost happening every week. Here we define the failure as
KPI (Key Performance Indicator) becoming anomalous, such
as PV (page view) decreasing rapidly, system’s response time
increasing dramatically, etc. Once a failure happens, a large
cardinality of suspicious symptoms would be reported by the
monitoring system, each suspicious symptom is recorded as
a symptom event. Due to the large scale of symptom events,
the root cause analysis (RCA) is hard to proceed precisely
and completely. Operators of web-based services heavily rely
on their domain knowledge and manual inspections to infer
the root cause. However, this manual diagnosis is tedious,
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time-consuming, and error-prone, especially in large web-
based services. Operators would dream about an efficient and
automatic diagnosis tool.

System diagnosis is quite a common research [2–5]. Under a
large, complex and dynamic system environment, the diagno-
sis for web-based services is still quite challenging. Pinpoint
[5] and Shelock [4] use trace technology to acquire system
components’ dependency graph, but they can not be easily
deployed because it needs instrument code in the software.
Orion [6] and CauseInfer [7] use TCP latency as a clue to build
the network application dependency, however, some symptoms
in service level can not be correlated through TCP latency. We
argue detailed diagnosis are needed. G-RCA [8] is a diagnosis
system based on causality graph, it is designed for ISP. Its
causality graph is configured by domain experts, but in web-
based services, it is not feasible due to the large scale and
dynamic environment. Some systems of web-based services
could be developed by many teams, no one can hardly know
the entire causality graph in the whole system. We believe
the key issue of automatic diagnosis is to figure out a fine-
grained causality graph. To the best of our knowledge, there
is no generic method which can automatically build a precise
causality graph for a dynamic and large scale web-based
service with low overhead.

To address the problem above, our approach is from a dif-
ferent angle, aiming to learn the causality graph from domain
experts’ mind automatically. In fact, the causality graph is in
domain experts’ mind because they have rich experience in
the system diagnosis. In the web-based service, the system
operators are the domain experts. In order to translate the
domain knowledge to a causality graph, we transform the
problem into a supervised machine learning problem. We
define the nodes in the causality graph as the symptom events
and the edges in the causality graph as the rules which
present the causality between two symptom events. Firstly,
we employ a data mining algorithm to automatically mine
the potential rules from historical data without application
knowledge. The potential rules make up the initial causality
graph. When a failure happens, our diagnosis system performs
RCA automatically based on the causality graph, and it lists
top-k suspicious root causes and their inference procedure.
Then the system operators examine whether the diagnosis
results are right or wrong in reality. What they need to do
is simply labeling the results of RCA. The labels make up
the training set for machine learning. At last, we select the978-1-5090-5252-3/16/$31.00 c©2016 IEEE



Random Forest [9] as our machine learning algorithm. It
trains an accurate classification model to improve the causality
graph. This diagnosis architecture is generic, adaptive, self-
learning and iterative. The latter component’s results provide
valuable feedback for the former component to learn and
adjust parameters to achieve better diagnosis accuracy.

Our contributions can be summarized as follows:
• Our system is the first automatic root cause analysis

framework for web-based service by learning the causal-
ity graph from domain experts. Iteratively applying data
mining, root cause analysis, feedback and machine learn-
ing techniques to make the whole system a local feedback
closed loop.

• We have implemented an effective label tool for system
operators, not only by using a ranking algorithm to sort
the suspicious root causes, but also making it easier to
label the RCA’s result for the learning causality graph.

• Our controlled experiment proves that our system can
rank the root cause in the top 3 with 100% accuracy
after a few times of learning iterations.
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Fig. 1. Web-based service architecture. E1, E2, E3 are the symptom events. E1
means the system failure, the root cause could be E2 or E3. The relationship
of E1,E2,E3 (E3 → E1, E2 → E1) makes up a simple causality graph.

II. SYSTEM OVERVIEW

Web-based services have large-scale infrastructure and soft-
ware, using commodity hardware and different networks.
Figure 1 shows the architecture of the web-based service,
which consists of network topology, front-end, back-end, etc.
Many software components are complicatedly coupled. When
the service’s KPIs become anomalous, many symptom events
would burst out due to complex coupling. According to the
operators’ domain knowledge, the relationships between these
symptom events are the key clues for the system diagnosis,
which make up the causality graph in this paper.

Figure 2 shows the overview of our system which can
identify the root cause of failure and learn the causality graph
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Fig. 2. System architecture

by data mining and machine learning methods. Our system is
divided into five important components:

1) Data Browser: it collects the data that presents the status
of the web-based services. The symptom events are generated
by anomaly detection or status checking. They are the basic
input of our system.

2) Candidate rule mining: it mines a list of candidate
rules from the historical data and computes some correlation
coefficients for the rules, which are the features for machine
learning.

3) RCA engine: when a failure happens, it localizes most
suspect root causes immediately for system operators based
on the causality graph and the candidate rules.

4) Feedback: it is hard to label the tremendous rules
directly. So here the operators can only label the rules in
the RCA engine’s result, which make up the training set for
machine learning.

5) Machine learning: after gathering enough labels, it
utilizes random forest algorithm [9] to build a more accurate
causality graph based on the rules before. In this way, the
accuracy of RCA’s result can be improved.

Our system is a self-learning and iterative system. Although
the web-based service system would be different after up-
grades or other changes, we believe our system could learn
to adapt to it, which would minimize operators’ effort and
company’s loss. Data Browser is introduced in section III and
Candidate rule mining is presented in section IV. Section V
introduces the detail of RCA engine, Feedback and Machine
learning.

III. DATA SET

Symptom events are the basic clues for diagnosis in op-
erators’ daily life. In order to obtain the causality graph
from operators’ mind, we qualify the symptom events in
operators’ mind first. Table I shows the data collected in our
system, including machine metric, process metric, network
metric, application metric, and manual operation. The data is
divided into two types: time series data and event sequence
data. By using anomaly detection algorithm [10], we can



TABLE I
DESCRIPTION OF THE DATA METRIC. THE DATA IS DIVIDED INTO TWO TYPES: TIME SERIES AND EVENT SEQUENCE, EVENT SEQUENCE IS EQUAL TO 0 OR

1, 1 MEANS THE SYMPTOM EVENT HAS HAPPENED AND VICE VERSA.

Data metric Event Description Location Type
Machine CPU usage, memory usage, NIC, disk usage, context switch,

etc.
Host Time series

Process CPU usage, memory usage, port status, file handle number,
etc.

Process Time series

Application function return value, page view number, port status, error
log number, etc.

Application Time series, Event sequence

Network network segment down, bandwidth decrease, etc. Network Time series, Event sequence
Manual operation configuration upgrade, software upgrade Operators’ action Event sequence

detect the abnormal points of time series data, and change
it to sequence data. All the sequence data is the symptom
events in our system, such as “CPU usage > 80%”, “memory
usage > 90%”, “process port down”, and “http port down”.
The instance’s format of each symptom event is (Name,
Time, Location, Type). Time represents the timestamp when
the symptom event occurred. Location represents where the
symptom event happened, such as host, cluster... etc. The
type of symptom event can be process, network, application,
manual operation... etc.

Because different data metrics have different properties,
there is no general method of anomaly detection. So our strate-
gies are CUSUM[10] and simple threshold detection. Manual
operation events is the operation on web-based services, such
as software upgrade, hardware upgrade, configuration upgrade,
etc. Finally, our data browser collects most of the diverse data
mentioned above. The data is shown on a graphical interface
which includes a graph diagram of the software components
as well as a chart of the data sequence of symptom events.
It is a useful tool that provides operators with a global view
of the service as well as enabling faster troubleshooting. The
data is stored in Hbase and HDFS [11]. Hbase is used to store
real-time data, and the HDFS is used to store the large scale
historical data.

IV. MINING CANDIDATE RULES

It is challenging for operators to find some valuable causal-
ity rules by analyzing all the symptom events manually.
Screening all the symptom events is a huge burden. Assuming
there are n symptom events, the potential rules in causality
graph is A(n, 2). Operators can hardly label all the possible
potential rules. Here we propose an automatic method to find
out the candidate rules by mining the historical data, narrow
down the scope of potential rules.

Definition of rule: E is symptom events unit, A,B ∈
E,A → B means A causes B and A happens before B. →
presents the causality.

Here we transform this problem into a mining association
rules problem. We utilize FP-Growth [12] to automatically
dig out the valuable candidate rules from historical symptom
events’ data. Based on the mining result, we can generate a
simple causality graph for diagnosis. Section V will introduce
how to improve the causality graph. The mining job in this
section can be divided into three parts. Section IV-A introduces
the basic mining theory and the rules’ features for machine

TABLE II
RULES’ FEATURES TO EVALUATE THE CORRELATION

Feature(A→ B) Description
Support [13] The frequency of A,B’s concurrence
C1 [13] Conditional probability:P (B|A)
C2 [13] Conditional probability:P (A|B)
Pearson [14] Novel statistical pearson correlation
Lift [13] P (AB)/((P (A) ∗ P (B)))
KULC [13] (P (A|B) + P (B|A))/2
IR [13] P (A)/(B)
Location relation A,B happened in the same host, cluster,

software component or not

learning. Section IV-B introduces how to compute rules’
causality, and section IV-C describes how to decrease the
redundant rules.

A. Compute rule’s feature

The symptom events’ data is consisted of name, timestamp,
location and type. Assuming we have n kinds of symptom
events, let E = {e1, e2......en}, ei represents symptom event i.
Here we sort the symptom events by time. Define a transaction
t as a subset of E, and the time window is a constant number
L. Due to our data properties, we defined L as ten times of
sample time, which is 10 minutes in our system. Hence, the
symptom events’ data in history is a sequence of transactions.

In the mining procedure, symptom events are considered
correlated when they occurred in the same transaction fre-
quently. Assuming symptom event ei, ej ⊂ E, by using the
FP-Growth algorithm [12], we can obtain two-stage results
like ei, ej , ei is associated with ej . The association rule can
be defined as ei → ej or ej → ei. For example, when
servers’ memory usage is very high, the web-based service
alway observes high response time, these two symptom events
are supposed to be “high memory usage” and “high response
time”. The result of FP-Growth [12] could be a associate rule
consisted of “high memory usage” and “high response time”.

After mining from the historical data, the candidate rules in
our system is a list of association rules. In the previous works,
a threshold for a correlation coefficient should be chosen to
classify whether the rule is right or wrong. However, this is
not easy in reality, one correlation coefficient is not enough to
explain the correlation of complex symptom events in web-
based service. We transform this problem into a machine
learning problem. Table II shows the features of A → B
for machine learning. Hence, we transform how to decide the
threshold of each feature into a classification problem. In order



to adapt to dynamic web-based service, the mining procedure
starts at a fixed time every day.

The features in table II can be easily computed except
for Pearson [13]. Due to imperfect clock synchronization,
and recording delays, the temporal information of each symp-
tom event is not 100% reliable. Pearson need to align the
symptom events’ timestamp. Here we devise a new method to
calculate Pearson.

Assuming R(E1, E2) is the association rule in figure 3, E1

is the time series presenting symptom event “CPU usage >
80%”, E2 presents symptom event “Software upgrade”. We
change the point event to range event with a time window,
which is ten times of sample time interval. Then we devise a
method to align the event. In figure 3, we use a time window
and shifting method to align two events. These time series are
divided into n time windows. In each time window, we shift
E2 to match E1. If there are more than one symptom event’s
instance in a time window, we merge them into a range event,
the alignment procedure is matching the middle point of the
range event. The forward shifting number and the backward
shifting number are recorded in all time windows. After this
transformation, E1, E2 are converted to Ẽ1, Ẽ2. The Pearson
are defined as equation 1, Pearson ∈ [−1, 1], the closer to 1
means the two events are more correlated.

Pearson =
Cov(Ẽ1, Ẽ2)√

V ar(Ẽ1)V ar(Ẽ2)
(1)
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Fig. 3. After alignment, the Pearson value shows E1 and E2 are truly
correlated.

B. Compute rule’s causality

The causality of the rules can hardly be decided by con-
dition probability or other statistics parameters. However, the
temporal information of events is not 100% accurate. [15] uses
the lag correlation to decide the causality based on imperfect
temporal information. Here we also utilize lag correlation as
Pearson correlation above. Its basic idea is comparing the
forward and backward shifting number. Assuming two events
E1, E2, if E1 always happens before E2 in each time window,
we conclude E1 causes E2. If E2 always happens before
E1, we conclude E2 causes E1. If the forward and backward
shifting number are comparable, we conclude E1 causes E2

and E1 can also causes E2.

C. Decrease redundant rules

Here we use the symptom events’ location information to
decrease the redundant rules. Because it is not perfect by using

FP-growth [12] to get the causality graph, some candidate
rules are coincidence. There is a simple domain knowledge
to constrict the rules: if two events’ location in one rule has
no relation, the rule can be eliminated. For example, A host’s
“memory usage > 80%” and B host’s “memory usage >
80%” make up one association rule, but A and B host do
not communicate directly or have no relationship at all, the
associate rule is not right. In a real web-based service, the
relation of symptom events’ location can be configured by
operators directly. It is useful for learning causality graph in
the next sections.

V. LEARNING CAUSALITY GRAPH

A accurate causality graph is the key to automatic diag-
nosis. When a KPI becomes anomalous, the cause inference
is triggered. We infer the root causes by searching on the
causality graph. The result is a sorted root cause list. Ideally,
the first one should be the real root cause. However, it depends
the accuracy of causality graph. After mining the historical
data, the candidate rule set is a relative coarse causality graph.
So our system collects feedback from operators and learns
from the feedback to improve the causality graph, in order
to perform a accurate diagnosis. Actually, it is a supervised
learning problem. Firstly, we use a general RCA engine to
infer the root causes and rank the root causes with a ranking
algorithm. Secondly, we design a human-computer interaction
scheme to collect labels from operators. At last, we utilize
machine learning technology to train a classify model for
improving the causality graph. In this way, our system can
learn the causality graph from operators after a few times of
iteration.

A. Root cause analysis

As mentioned in section III, The instance of each symptom
event is defined by (Id, Time, Location, Type).

Our system uses the causality graph to decide which in-
stances are related to the others. When the KPI becomes
anomalous, our system collects all the instances of the symp-
tom events at accident scene firstly. The time range of accident
scene is chosen by operators, the default is 30 minutes. Then a
directed acyclic graph of symptoms events is generated based
on the causality graph with spatio-temporal restriction. At last,
our system lists the suspect root causes to operators. The sim-
ple procedure is below: assuming E1, E2, E3, E4 four events
happened in the same time range, E4 is the symptom event of
a failure. If the causality graph contains E1 → E2, E2 → E3,
E3 → E4, the final result is E1 → E2 → E3 → E4. The root
cause of E4 is E1.

B. Root cause ranking

To be an efficient diagnosis system and accelerate the label
procedure, our system uses a ranking mechanism to rank the
most likely root causes in the top-k. We define Wr(e1→e2)

in equation 2 as the degree of e1 → e2 being a right rule.
Wr(e1→e2) is equal to a default value in the initial phase, and
it will be changed in each learning iteration.



Wr(e1→e2) =

{
0.5, default

F (f1, f2, f3, ...), F ∈ [0, 1]
(2)

f1, f2, f3 in F (f1, f2, f3, ...) are the features’ values of the
rule, function F is the machine learning classify model. Each
rule has the probability to be a right or wrong class in machine
learning. Here Wr(ei→ej) is the probability of rule ei → ej
being a right class. If Wr(e1→e2) ≥ 0.5, class of ei → ej is
right and vice versa.

When operator notices the symptom of anomalous KPI,
he/she will check the most likely symptom event that directly
causes the failure. So we propose a ranking method which
simulates the manual diagnosis procedure in figure 4. It is
a greedy depth-first search algorithm. The symptom event
of anomalous KPI is E0, our system firstly checks which
symptom events would trigger E0, so they are E1, E2. E1

is ranked before E2 because Wr(E0→E1) > Wr(E0→E2). Then
our system will check whether other symptom events would
trigger E1. In this way, the final ranking result is E3, E4, E2.
If the rules’ weight W are equal, we randomly choose one
symptom event to search its upstream nodes.
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Root(Causes Interference
E* E* → E+ → E,
E- E- → E+ → E,
E. E. → E,

E* E-

E+ E.
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Fig. 4. A simple example of root cause ranking

C. Collecting labels

When a failure happens, a list of ranked suspect root causes
will be presented along with the detail inference procedure.
The operators check whether the result is right or wrong and
give feedbacks. It is easy for them to label whether the root
causes are right or wrong. Figure 5 is an example of RCA’s
result in our system, it is divided into three parts: “Root
causes”, “Inference” and some buttons. 1) “Root causes” lists
the ranked suspect symptom events, and the max number of
the root causes is 6 in our system; 2) “Inference” shows the
rules that are used in root cause analysis. The arrows in the
“Inference” can be clicked, they have three states: uncertain,
confirmed, denied. At first, the states of the arrows are all
uncertain. If the operators can make sure the rule is right, they
can click on it and change the rule’s state to the right state.
Our system records all the click information which makes up
the training set for learning; 3) The button “Refresh” is used
to perform RCA again after giving feedbacks, if the operators
label some rules wrong, clicking “Refresh” will generate a new
result based on the new causality graph without wrong rules.
In this way, it can improve the ranked result and accelerate
the label procedure.

uncertain right wrong rules/are/all/ right

Fig. 5. The web UI of our label tool. It shows the RCA result of
symptom event “es quan url monitor”. The root causes are symptom events
“Sms center service unavailable” and “Sh01 client alive and response”.
Operator gives feedback by simply clicking the rules to change their state.

D. Machine learning

After collecting operators’ feedback, we use a machine
learning algorithm to train a classifier, which classifies the
rules in the causality graph into right or wrong class. At last,
we can get a more accurate causality graph.

Many supervised machine learning algorithm can be used
in this paper, such as decision tree [16], NaiveBayes[16],
RandomForest [9], RBFNetwork [16], Linear logistic [16]. We
utilize Random Forest [9] as our machine learning algorithm.
Table II is the rules’ features which can be used to describe
the rules’ correlation. In section VI, we would explain why
we choose Random Forest [9]. Actually it is relatively robust
and works well for our problem. We implemented it by Weka
[17].

VI. EVALUATION

Because the ground truth of the web-based service can be
hardly obtained in reality, we evaluate our system though a
controlled experiment with explicit ground truth in this section.
Section VI-A firstly describes the assumption of controlled
experiment with a simple ground truth. In the next, the
evaluation shows different machine learning algorithm’s ability
and why we choose Random Forest [9]. At last, our result
shows the root cause can be listed in top-k ( k = 3 ) after a
countable learning iterations.

A. Controlled experiment

e8

e0

e9

e1

e2

e6 e3 e5 e7

e4

e10

Fig. 6. Ground truth of a simple causality graph.



We firstly choose a simple ground truth of causality graph
in figure 6 to evaluate our system. Section VI-B shows that
our system works well with more complicate ground truths.
Here e0 is a failure event (anomalous KPI event) and the
other symptom events (e1 ∼ e10) will trigger the happen-
ing of e0. The leaf nodes e4, e5, e6, e7, e9, e10 are the root
causes. In reality, the noisy symptom events hinder system
operators to uncover the actual root cause, which is a key
reason why manual diagnosis is inefficiency. So we add some
noisy symptom events that randomly co-occurred with failure
event e0 at a close time. Here we add e11 ∼ e29 as the
noisy symptom events. The ground truth of causality graph
is randomly generated as a L (here L = 5) layer directed
acyclic graph(DAG). We believe our scheme of ground truth
is suitable for most diagnosis cases of the real complicate
web-based service. In fact, there are many failure events in a
web-based service. Each failure event has a causality graph
like figure 6. Our method is generic for each failure event. So
here we firstly take one failure event as an example to prove
our method works well.
Assumption:

• 1. The ground truth of causality graph is the domain
knowledge in system operators’ mind.

• 2. Root causes are the leaf nodes in the ground truth.
• 3. The direction of edge in causality graph means the

causality.
• 4. When giving feedback, operators label each rule ac-

cording to the ground truth. The rules in ground truth
should be confirmed as right rules and vice versa.

1) Data Simulation: Here we take figure 6 as an example
to describe how to simulate the data of the symptom events.
e0 is randomly triggered by root causes e4, e5, e6, e7, e9, or
e10. These symptom events are all happened in a close time,
the minimize time gap between two symptom events is 10
seconds. For example, when e9 happens, it will cause e8
happening in 10 seconds later and e8 will cause e0 happening
10 seconds later. Besides, the noisy events (e11 ∼ e29) are
randomly chosen to co-occur with e0, e8, e9. In every 15
minutes, one root cause symptom event is randomly (equal
probability) chosen to happen to cause e0 happening. In this
way, our RCA engine can perform root cause analysis and list
the suspect root causes for the operators in every 15 minutes.
At last, failure event e0 are triggered to happen for about
2880 times (one month) in our simulation data. Our goal is to
achieve a high accuracy diagnosis in this simulation data set.

2) Mining candidate rules: There are 30 kinds of symptom
events in our simulation data. The number of potential rules
between them is A(30, 2) = 820, but the number of right rules
is only 10. Hence, we firstly use FP-growth algorithm to mine
the candidate rules in the simulation data. The time window
length of a transaction is 15 minutes, and support > 20 is
the association rules’ condition. At last, 91 candidate rules
are generated, including 10 right rules in ground truth and 81
wrong rules. The ground truth are all included in candidate
rules. In this way, we narrow down the scope of potential

TABLE III
THE CONFIGURATION OF FIVE MACHINE LEARNING ALGORITHMS IN OUR

EXPERIMENT.

Algorithm Sampled Parameters
J48 (Decision
tree)

confidenceFactor = 0.25, minNumObj = 2,
numFolds = 3, seed = 1

NaiveBayes useKernelEsimator = false, useSuper-
viseDiscretization = false

Random Forest maxDepth = newFeatures = 0,
numTrees=100, seed =1

RBFNetwork clusteringSeed = 1, numClusters = 2, min-
StdDev = 0.1, ridge = 1.0E − 8 , maxIts =
-1

Logistic ridge = 1.0E − 8 , maxIts = -1

TABLE IV
FN,TF,NP,NF OF EACH ALGORITHM AFTER LEARNING

Algorithm TP FP TN FN
J48 10 0 81 0
NaiveBayes 7 2 79 3
RandomForest 10 0 81 0
RBFNetwork 8 3 78 2
Logistic 8 1 80 2

rules greatly, but the other wrong rules need to be filtered out
from our causality graph, in order to realize a high accuracy
diagnosis. In the next, we use machine learning to improve
our causality graph.

3) Evaluation of machine learning algorithms: Different
machine learning algorithms show different learning ability
in our controlled experiment. Utilizing a proper machine
learning algorithm is quite crucial in our system. Here we com-
pared five major machine learning algorithms implemented
in WEKA[17], and tables III presents the setting of our
algorithm.

Machine learning should be triggered with collecting
enough labels from operators. In our simulation, we start
machine learning in every one hour to tune the causality graph,
which means learning every 4 times of RCA. After machine
learning, the causality graph will be changed, and the RCA
in the future will be based on the new causality graph. Here
we treat this procedure as one learning iteration. One good
learning algorithm could increase the accuracy of causality
graph after a fewer learning iterations. Table IV shows the
true positive (TP), false positive (FP), true negative (TN), false
negative (FN) after learning. Accuracy = (TP + TN) / (P +
N). The result shows J48 [16] and Random Forest [9] can
learn the ground truth with 100% accuracy. What’s more, we
also consider the learning speed. Figure 7 presents different
algorithms’ accuracy, Random Forest is the first one that
converge with 100% accuracy. That’s why we choose Random
Forest as our learning algorithm and the result illuminates that
our method can learn the ground truth with a high accuracy.

4) Evaluation of causality graph: After mining the simu-
lation data, there are 10 right rules and 81 wrong rules in the
causality graph. After each learning iterations, random forest
keep training its classification model to improve the causality
graph. Figure 8 shows the wrong rule number are dramatically
decreased and the right rules set is equal to the ground truth.
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At last, the wrong rules are all eliminated from causality graph.
It proves our system works well.
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Fig. 8. The rules in causality graph. “RCA times” means the number of each
diagnosis for failure event e0.

5) Whether the root cause can be listed in top-3?: Our
system’s goal is listing the root cause in top-3. Figure 9
demonstrates that our system can learn to list the root cause
in top-3 after a few times of RCA. At last, the ratio of the
root cause in top-3 equals to 100%, that means our system can
localize the root cause in top-3 with 100% accuracy. Besides,
our system converges quickly after only 7 learning iterations
(28 times of RCA).
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Fig. 9. The ratio of root cause in top-3.

B. Evaluation of different ground truth

All the above results are based on ground truth in figure 6. In
this section, our experiment proves that our system can handle
more complicate ground truth. We have performed the same
experiment with different ground truth in table V. The rules
and root causes are all randomly simulated. It is impossible to

TABLE V
CONFIGURATION OF DIFFERENT GROUND TRUTH

Schemes #Node #Rule #Root Cause
1 50 49 34
2 100 99 65
3 200 199 134

list all the ground truth in the real web-based services, but we
believe our simulation scheme can represent the real ground
truth to some degree. Assuming right rule number in causality
graph is RY and wrong number is RN , the rule number of
ground truth is RG. The right rule ratio equals to RY /(RY +
RN ) and the right rule coverage equals to RY /RG. Figure
10 shows the right rule ratio and the right rule coverage in
causality graph. After operators giving feedback on the results
of about 300 times of RCA, the causality graph in our system
can contain the entire ground truth. The result shows that our
system can improve the ratio of the right rules, which means
the wrong rules can be eliminated along with learning. Figure
11 proves that our system can list the actual root cause in top
3 with a certain learning iterations.
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VII. RELATED WORK

Many previous researches work on the large system di-
agnosis. Some methods are based on mining log [18–20].
These methods use log information to localize the root cause.
They train the log’s normal patterns in the history and use
the pattern to detect the anomalies. Some works depend on
the dependency graph. Pinpoint [5] and Shelock [4] use trace



technology to get the dependency graph of the distribution
system. These tools record the execution path information
and locate the root cause, but they need instrument code
in software, the overhead is relative high for the web-based
service. RPC technology [21] is also used to find service’s
dependency graph, but it has a high developing and analysis
cost. Besides, dependency graph is different from causality
graph, it mainly locates the root cause at service level. Some
systems are based on causality graph. G-RCA [8] is designed
for ISP, its causality graph is configured by domain expert,
but it is quite hard for web-based service because of large
scale and dynamic environment. Orion [6] and CauseInfer
[7] use TCP latency as clue to build the network application
dependency. NICE [14] and [22] use statistical test to figure
out whether two events are correlated, the correlation is used
to build the causality graph.

VIII. CONCLUSION

Automatic web-based service diagnosis is important for the
Internet companies. It is closely related to the revenue and
user experience. In this paper, we propose a generic diagnosis
system for web-based services. It utilizes a data mining and
machine learning method to build an appropriate causality
graph automatically. Based on the causality graph, it realizes
an automatic and high accurate diagnosis. It doesn’t need detail
application information or instrumenting code in the web-
based service. What’s more, it utilizes a feedback mechanism
to learn the causality graph from system operators. After the
operators label the RCA result, it can learn to improve the
causality graph based on the operators’ feedback. The more
feedback collected in our system, the more accurate the causal-
ity graph would be. At last, we evaluate our system precisely
in a controlled experiment. The controlled experiment shows
that our system can list the root causes in top-3 with 100%
accuracy after a certain learning iterations.
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