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Abstract— WiFi has become the primary method to access
the Internet. However, the WiFi-hop latency, particularly in
dense-WiFi environments, is far from satisfactory [1], to support
delay-sensitive applications such as Web browsing and VoIP. The
WiFi latency mainly comes from two kinds of queues: the host
queue and the distributed queue, which is caused by CSMA/CA
mechanism when multiple nodes contend for the channel. While
the host queue can be easily bypassed using priority scheduling at
end-host, the distributed queue is not. Previously, IEEE 802.11e
tries to provide priorities in this distributed queue by adjusting
the MAC layer parameters, but it does not scale when there are
increasing number of delay-sensitive flows.

In this paper, we propose and design QAir, a practical solution
to reduce WiFi latency of delay-sensitive flows in dense WiFi
networks. QAir takes a different approach to transfer this
distributed queue to host queue. Consequently, the delay-sensitive
flows can bypass the entire queue and their latency can be
greatly reduced. QAir works in a distributed manner with no
centralized scheduler. We have implemented QAir on commodity
WiFi devices. Experimental results show that, compared to the
802.11 DCF baseline, QAir can reduce the average WiFi-hop
latency of delay-sensitive flows by 50-75%.

I. INTRODUCTION

WiFi is one of the most popular methods to access the
Internet. Although the data rate of WiFi keeps increasing
quickly (e.g., IEEE 802.11 ac provides a capacity of as high
as 1300 Mbps), the MAC layer latency, however, remains
high. This latency can be particularly long in dense WiFi
networks where there are a large number of contending WiFi
nodes. According to a recent measurement study [1] in a
dense WiFi environment, the 90th percentile of WiFi hop
latency can exceed 25ms in the wild, making it hard to
support delay-sensitive traffic such as online gaming and
VoIP. Worse, application-level metrics, e.g., page load time
in Web browsing, may be 100× magnified by the last-hop
latency [2], due to multi-round data transmissions and complex
application-level logics. Thus, a 25ms WiFi latency may lead
to a page load time of 2500ms, resulting in unacceptable
quality of user experience (QoE).

The fundamental reason behind this large latency can be
explained as follows. Each WiFi frame will experience two
queues. The first queue is the local host queue, which includes
every queue from application layer, IP, 802.11 driver (e.g.,
ath9k), and physical layer (PHY) queue. Once a frame reaches
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the HOL of PHY queue, the DCF mechanism kicks in, and
the frame is now in a second queue, the distributed queue
in the air (i.e., wireless channel) where all HOL frames at
all nodes wait in a line for accessing the channel. Delay-
sensitive flows can potentially bypass the local host queue
with priority scheduling [3], but they cannot bypass the
distributed queue in the air (shared channel) which is imposed
by DCF (Distributed Coordination Function) [4] in the 802.11
CSMA/CA contention protocols.

The distributed queue in DCF roughly works as follows.
Suppose a WiFi frame is at the head of line of PHY queue
of a host, the wireless node (node A) will sense whether it
is at the head of line of the distributed queue (i.e., channel
is idle for a DIFS interval). If so, the frame is sent out
to the air; otherwise, the frame is placed in the distributed
queue at a location determined by a random value in [0,CW],
where CW is the Contention Window. Every time slot, node
A senses the channel again, and, if the channel is idle, moves
the frame one step forward towards the head of distributed
queue. If a frame is at the HOL of the distributed queue
(i.e., when timer expires), node A sends it out to the air.
If collision happens, node A will place the retry frame in a
location further back in the distributed queue (i.e., doubling
the contention window CW). Note that in a dense network, the
distributed queue length is heavily influenced by the number of
contending nodes. In general, the more contenders, the longer
the distributed queue and the higher the collision rate (when
multiple nodes think they are at HOL of the distributed queue),
thus the longer the latency.

Therefore, the fundamental problem is how to reduce the
latency caused by the distributed queue, where host-level
priority does not help. EDCA (Enhanced Distributed Channel
Access) in IEEE 802.11e allows frames with higher priority
tags, which have smaller contention parameters (CW and IFS),
to wait a shorter time in the distributed queue. However, as the
density of WiFi networks and the number of delay-sensitive
flows keep increasing, more and more flows will be assigned
into the highest priority category. This might cause serious
collision problems. To keep up with the increasing number
of delay-sensitive flows, IEEE 802.11e has to increase the
CW of each priority class, but a large CW will cause high
protocol cost on the channel which will further decrease the
overall throughput. In one word, the way by assigning different
flows different CW is not practical in today’s dense WiFi
environment.978-1-5386-2704-4/17/$31.00 c© 2017 IEEE



Our key idea to address the long latency problem caused by
the distributed queue is the following. Ideally, suppose there
is a centralized scheduler that globally schedules a frame’s
delivery to the PHY queue on each host. Such a scheduler
can control the length of the distributed queue (thus the latency
of the a HOL frame in PHY queue) by regulating the frame
delivery rate from the driver to the PHY queue. The scheduler
can also pick the frame with the highest priority (which might
actually arrive the latest) in the driver queue to deliver to
PHY queue. Thus a delay-sensitive frame can get the highest
priority locally (up to driver queue) and globally benefit from
a much smaller distributed queue. Unfortunately there is no
centralized scheduler, and the key challenge now is to develop
an algorithm that achieves similar effects but runs on nodes
in distributed manner.

We tackle the above key challenge using the following
mechanisms: 1) each node measures the per-frame latency to
estimate the number of contenders on the channel; 2) a frame
to be sent into the physical layer waits in the driver for a
time interval that is a function of the estimated number of
contenders. In other words, the length of distributed queue
can now be roughly controlled (e.g.,1) instead of being as
large as the number of contenders. The waiting time happens
mainly at the local queue, and late-arriving but high priority
frames can now be put to the front of the local queue in the
driver (i.e., bypassing majority of the host queue, excluding
the PHY queue) and quickly be sent to the distributed queue.
The latency measurement and the control logic are analogous
to the RTT measurement and congestion control in TCP (see
§III for more details). We thus name our proposed approach
as QAir (congestion control for the Queue in the Air).

QAir is a very practical solution and easy to be deployed
in existing WiFi networks. The control algorithm works in a
distributed way on each device, without requiring a centralized
scheduler. The changes to existing devices are minor and all
in software. Each device only needs to measure a latency and
implement the control algorithm, which can be easily done by
a software patch. QAir does not require but can work with
explicit priority tagging, and also provides a practical implicit
priority for delay sensitive applications.

We have implemented QAir on commodity WiFi devices
and built a dense WiFi testbed to evaluate its performance.
Experimental results show that QAir is able to reduce ping
RTT by 50% to 75% and without sacrificing throughput
performance, compared to the baseline IEEE 802.11 DCF
mechanism. In another small scale personalized live video
streaming experiment, QAir reduces the number of buffering
events from 7 to 0 and the e2e delay from 9.78s to 2.25s.

We make the following contributions in this paper:

• We propose and design a novel approach to reduce
the latency of WiFi without sacrificing throughput. Our
approach is practical and easy to deploy (§III and §IV).

• We implement our approach on commodity devices and
demonstrate how to accurately measure the delay of
frame in physical layer (§V).

DIFS backoff Transmission SIFS ACK
14	bytes

Fig. 1: Breakdown of per-frame latency in IEEE 802.11.

TABLE I: IEEE 802.11 parameters. GI means guard interval.
Variant Bit rate(Mbps) DIFS,SIFS,SLOT(us)

802.11n 400ns GI: 15-150 2.4GHz: 28/50, 10, 9/20
800ns GI: 13.5-135 5.0GHz: 34, 16, 9

802.11ac 400ns GI: 65-866.7 34, 16, 9800ns GI: 58.5-780

• We conduct experiments to evaluate our implementation
and verify the effectiveness of our approach (§VI).

II. WIFI LATENCY AND RELATED WORK

In this section, we define the problem of per-frame latency
in WiFi and describe the related work.

A. Per-Frame Latency in WiFi

In this paper, we aim to reduce the latency of a network
packet (i.e., a frame in WiFi MAC) imposed by WiFi MAC
layer. Such a latency is the time period between the time when
a frame is selected to be sent out by the WiFi network interface
card (NIC) and the time when the frame is successfully sent
out. Note that it does not include the queuing time of the frame
in the WiFi NIC 1.

Figure 1 illustrates the breakdown of a frame transmission.
The per-frame latency consists of two parts: a fixed part
including the DIFS, SIFS, the transmission of the frame (ttr),
and the transmission of the ACK (tack); and a dynamic part
of the backoff time (tcont). tcont is the latency caused by
the CSMA/CA (Carrier Sense Multiple Access with Collision
Avoidance) mechanism of WiFi. In CSMA/CA, to avoid
transmission collision, a WiFi device waits for a time period
randomly selected from a contention window (CW) of [0, CW ]
before transmitting a frame. The initial value of CW is
CWmin.

Even with the CSMA/CA mechanism, collisions may still
occur, when there are multiple devices in the same WiFi
network. If a collision happens, the frame transmission is
failed. The contention window will be doubled (capped by
a value of CWmax) and the frame must be re-transmitted.
In the case of multiple devices competing with each other to
access the channel, per-frame latency (labeled as t) can be
modeled by the following equation:

t = tconst + tcont + ttr (1)

where tconst is a constant time one frame must spent accord-
ing to IEEE 802.11 protocol. tconst = DIFS+SIFS+ tack,
which can be calculated using the values of Table I. ttr can

1However, for evaluations in §VI, we use the overall latency including all
the queuing time which is perceivable to users.
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Fig. 2: The WiFi-hop latency in the wild.

be calculated using the frame size and physical transmission
rate of this frame: ttr = framesize/phyrate.

The rest part is the contention time tcont. It is a random
value from 0 to tmaxcont which can be calculated using the
following equation:

tmaxcont = SLOT ∗ CWmax +

β−1∑
1

framesize

phyrate

where β is the number of contenders.
∑β−1

1
framesize
phyrate is the

maximum waiting time for other β − 1 devices finish their
transmissions.

When we put all the above components together, we can
get Equation 2.

tmax ≈ tconst + SLOT ∗ CWmax + β ∗ avgframesize
avgphyrate

(2)

The above equation shows that the per-frame latency (t ∈
[tconst, t

max]) increases linearly with the number of con-
tenders (β). This is because the more contenders, the longer
the distributed queue and thus the larger the latency.

To study the WiFi latency in the real world, we conducted
an experiment to measure the WiFi-hop latency in a classroom.
We used a WiFi client to ping the associated AP (Access Point)
to exclude the latency of the wired part. We put the client near
the AP to avoid interference (e.g., hidden terminal problem).
We use our rouge AP with only one client associated on it
to exclude the effects of local contention at the AP side. As
shown in Figure 2, 40% of packets had a WiFi hop latency
(one-way) larger than 25ms, which is even worse than a recent
measurement study [1].

Motivated by the large WiFi latency in the real world, we
seek for a practical solution that is easy to deploy in existing
WiFi networks to solve the high-WiFi-latency problem. The
targeted scenario in this paper is the “high density” scenario
where multiple devices compete with each other with mixed
types of traffic. Some devices have large volume traffic that
may not be delay sensitive but may eat all the available
network capacity, while other devices have low-volume but
delay sensitive traffic. Our goal is to reduce the WiFi latency,
particularly for delay sensitive traffic, but without sacrificing
the overall network throughput.

Fig. 3: When there are multiple voice flows, collision probability will be very
high in IEEE 802.11e that significantly hurts overall latency.

It is important to note that “easy-to-deploy” is the primary
goal of our work and it differentiates our approach from the
existing ones. As we will describe below, existing solutions
cannot or are hard to be used in the real world.

B. Related Work

We classify related work into three categories according to
their optimization goal: IEEE 802.11e and central scheduling
aiming to reduce the length of distributed queue, end-host
based QoS (Quality of Service) solutions aiming to do priority
scheduling of host queue, and other work aiming to improve
the throughput by contention control.

IEEE 802.11e: From 802.11e-2005 amendment, the standards
have incorporated four priorities for four traffic categories:
voice, video, best effort and background. By assigning dif-
ferent contention parameters,i.e., inter-frame spacing (IFS)
and contention window (CW), higher priority traffic can
gain earlier access during contention.This approach, called
enhanced distributed channel access (EDCA) in the standards
or wireless multimedia (WMM) as advertised, has been im-
plemented in many WiFi devices. In literatures, there are a
lot of work on performance evaluation [5], [6], [7], [8], [9]
and improvement[10], [11] for EDCA. Moreover, [12], [13],
[14] propose improvements for differentiated services using
EDCA.

However, as has been pointed out before [15], in today’s
dense WiFi network, performance issue will out-weight the
benefit of 11e prioritization. Specifically, 11e assigns very
small contention window to voice traffic which is 1/4 of the
default. When there are multiple voice flows, collision proba-
bility will be very high that significantly hurts overall latency
and throughput [15], which is shown in Figure 3. Compared
to 11e, QAir does not need small contention window therefore
will not suffer from high collision. As more and more traffic
becomes sensitive to latency and desires high priority, e.g.,
instant messaging, live streaming, web browsing, etc, things
will get worse.

Centralized Scheduling: The representative approach is the
Point Coordination Function (PCF) or Soft-TDMAC[4] in the



TABLE II: The comparison of the related works and QAir .

Addressing
distributed

queue

Adapt to
high

density
network

Central
controller

Reduce
latency

PCF,[4] Yes No Yes Yes
IEEE

802.11e Yes No No Yes

End-host
QoS[3] No Yes No Yes

Idle
Sense[25] Yes No No No

QAir Yes Yes No Yes

IEEE 802.11 standard. In PCF, the Access Point (AP) in a
WiFi network coordinates all the communications within the
network and thus there is no collision. Tan et al. proposed
a scheme similar to PCF by placing a regulator above the
MAC layer in an AP to provide equal time shares to client
devices [16]. CENTAUR[17] and DOMINO[18] focus on
building hybrid MAC protocols for central scheduling. All this
kind of central scheduling solutions need a central controller
and stringent time synchronization, making them not practical
in practice. In fact, PCF is rarely implemented in consumer
WiFi products. [19] aims to achieve the performance of
centralized scheduling using a distributed manner. However,
it still needs modifications in IEEE 802.11 PHY layer which
makes it unpractical to be widely deployed in commodity
routes. Today’s commercial APs integrate PHY layer into
wireless chip and normal users have no access to the PHY
layer.

End-host Qos. Work like [3] aims to implement QoS solution
on single end-host and is complementary to QAir because
QAir mainly focuses on queuing in the air, i.e., QoS across
different nodes.

Contention Control. Many work [20], [21], [22], [23], [24]
aims to improve aggregated throughput. These works help
little on per-frame latency which is crucial to delay-sensitive
flows. For example, Idle Sense [25] proposes a scheme to
control contention level of a WiFi network without requiring a
centralized controller. It can reduce collision rate and improve
faireness and overall goodput, but it does not directly apply
to latency reduction for delay sensitive flows.

Table II shows the comparison between existing solutions
and our approach from multiple aspects.

III. QAIR OVERVIEW

Figure 4 shows the architecture of QAir. QAir has three
key components: Delay Monitor, Control Algorithm, and Rate
Regulator. The Delay Monitor keeps measuring the delay of
each frame and sends the measured delay to the Control Al-
gorithm. Based on the received per-frame latency information,
the Control Algorithm computes a maximum delivery rate and
passes the rate to the Rate Regulator. The Rate Regulator

TCP/IP

WiFi	MAC

Rate Regulator Control	
Algorithm

Delay	
MonitorWiFi PHY

Wireless	Channel

Per-frame 
delay

Max 
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Fig. 4: The architecture of QAir.
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Fig. 5: QAir reduces per-frame latency by reducing the number of contention
devices.

works between the 802.11 driver layer (ath9k) and the WiFi
physical layer. Using the maximum delivery rate, it controls
how many packets should be sent to the WiFi physical layer.
If the traffic volume received from the ath9k layer is larger
than the maximum delivery rate, the Rate Regulator buffers the
extra packets instead of sending all the packets to the WiFi
physical layer.

Figure 5 uses an example to illustrate how QAir is able to
reduce WiFi latency. Assume there are four client stations (S1,
S2, S3, and S4) in a WiFi network, each with one packet to
send. In the WiFi DCF, all application packets are directly sent
to the WiFi NIC 2 (i.e., Physical Layer) which has a buffer to
store the packets before they are successfully sent out. Thus,
all the four stations have one frame in their NIC, competing
with each other to access the wireless channel. Equivalently,
they form a distributed queue of four frames. The per-frame
latency is determined by four contention stations according
to Equation 2. In QAir, with the rate regulation, two stations
(S1 and S3) buffer their packet in the QAir layer and only
the other two stations (S2 and S4) have a frame to send in
their NIC. Consequently, the length of the distributed queue
is halved, the number of contention stations is reduced from
4 to 2, and thus the per-frame latency is reduced according to
Equation 2. Note that the packets buffered by QAir will have
an extra queuing delay in the QAir layer. However, with less
contention, the overhead of the backoff mechanism in WiFi is

2Unless the buffer on the NIC is full.



reduced and thus the overall delay of the packets still becomes
smaller.

The example in Figure 5 is extremely simplified for illustra-
tion. In normal cases, QAir may buffer multiple packets and
the WiFI NIC of a station may not always have only one frame.
However, through rate regulation, QAir reduces the equivalent
number of contenders and thus the overall contention level
of the WiFi network is reduced, which not only reduces per-
frame latency but also may improve the aggregated throughput
of the WiFi network, as we will show in §VI.

In QAir, each station runs the control algorithm in a
distributed way but all stations will converge to the same
maximum delivery rate for a fair share of the wireless channel.
If a station has more traffic than its fair share, its packets will
be buffered by QAir and have a longer delay, while the packets
of a station with less traffic than its fair share will be directly
sent to WiFi Physical Layer without such an extra buffering
delay. As a result, a station with a small flow will have a
smaller delay than a station with a large flow 3. In practice,
delay-sensitive applications such as Web browsing and VoIP
usually have small flows than delay-insensitive applications
such as file downloading and video streaming. Therefore, QAir
provides an implicit high priority for those small and delay-
sensitive flows in practice.

By changing the parameters in the control algorithm, QAir
is able to control the number of concurrent contenders for a
flexible trade-off between latency and throughput. In the next
Section, we describe how each of the key components of QAir
works in details.

IV. KEY COMPONENTS OF QAIR

As shown in Figure 4, QAir uses a control loop of three
steps to reduce WiFi latency: 1) measure the contention level
of the channel, 2) decide the maximum delivery rate, and 3)
regulate traffic to control the contention level of the channel.
Next we describe how each step works.

A. Measuring Channel Contention

QAir measures the contention level of a channel by mea-
suring per-frame latency. However, due to the random backoff
mechanism in WiFi MAC and the channel dynamics, latency
of frames may vary in a large range, making it a challenging
task to get a stable measurement on the channel contention.
Moving average is a widely-used technique to smooth out
short-term fluctuations in time-series data [26]. In our case,
the moving average can be expressed using Equation 3. Every
time there is a new frame k sent out, its delay tk will be used
to calculate the new value of the measurement T . The weight
parameter α is used to decide the weight of the old value of
T in calculating the new value of T .

T (new) = α ∗ T (old) + (1− α) ∗ tk (3)

3Here we assume that each station has only one flow but this assumption
can be easily removed by maintaining multiple queues, each for a single flow.

However, the maximum frame delay tk(max) and the min-
imum frame delay tl(min) can have a difference of hundreds
of times. If we directly use the moving average on each frame,
the measured T still has large fluctuations. For example, under
a same extent of contention, tk can vary from 1ms to 100ms.
Even we only give 10% weight (i.e., α = 0.9) to the latest
frame, the final value of T will still have a variance as large as
10ms. To address this issue, we take a two-step approach in
calculating the value of T . First, we group frames into different
time slots. In each time slot i, we calculate Ti as the arithmetic
average of the latency of all the frames (1, 2, ..., N ) in slot i.
Then, we use the moving average of Ti to decide the final
measurement T̂ across different time slots.

Ti =
1

N

N∑
k=1

tk (4)

T̂ (new) = α ∗ T̂ (old) + (1− α) ∗ Ti (5)

The time slot size checkInterval is a critical parameter.
A large time slot cannot reflect the dynamics of the channel
contention while a small time slot cannot eliminate the vari-
ance of Ti effectively. We recommend that checkInterval
should be set with an appropriate value so that a station
can send at least X packets out in a time slot. Here X
should be a comparable value of the minimum value of
contention window, i.e., CWmin. For instance, under the
IEEE 802.11n standard, the maximum throughput is 600Mbps,
CWmin = 15, maximum packet size is 1500 bytes, then
checkInterval = 15∗1500∗8/600 = 0.3ms. However, in the
real world measurement, the achievable throughput is less than
100Mbps, then checkInterval should be larger than 1.8ms.

B. Control Algorithm and Control Target

The pseudo code of our control algorithm is shown in
Algorithm 1. The main functionality of the algorithm is to
convert the input tk into the control metric Rtc. tk is the
measured latency of one frame spent in the WiFi NIC as shown
in Figure 1. tk includes the transmission time ttr and the
backoff time tcont. Rtc is used to as the maximum delivery
rate to control how fast QAir should send packets to WiFi
physical layer.

From line 5 in Algorithm 1 we can see that Rtc is adjusted
every checkInterval. However, the procedure F (tk) is called
every time a wireless frame is successfully transmitted. Lines
2-6 aim to average the per-frame latency tk into the average
metric T̂ to eliminate the delay variance of the frames and
reflect the extent of channel contention. Lines 11-14 are
the control routine which is inspired by existing TCP-based
congestion control algorithms like [27]. Ttarget is the control
target we want the algorithm to converge to.

The control routine is simple but carefully designed. Once
the averaged frame delay T̂ is larger than the control target
Ttarget, it means that the channel is too congested and each
node reduces the Rtc with a factor of Ttarget

T̂
. However, Rtc

cannot be smaller than the lower bound Rmin. If T̂ is smaller



than Ttarget, it means that the channel is not fully utilized
and each node increases the Rtc by a step of δ. Similarly, Rtc
cannot be larger than the upper bound Rmax.

The control algorithm borrows the “Additive Increase and
Multiplicative Decrease” principle from the TCP congestion
control mechanism[28] and makes some modifications accord-
ing to the characteristics of the wireless network. There is
a fundamental difference of converge path between wireless
MAC and wired TCP. In the wired scenario, once congestion
happens, all the wired senders will know the congestion
immediately and thus limit the rate accordingly. Then, the
wired path is free of congestion and each wired sender can
increase their sending rate. This procedure will continue many
times until converging. All the senders keep one same pace in
the wired scenario. In wireless MAC scenario, we use whether
T̂ > Ttarget to judge whether there are higher contention
on the channel than we want. The difference is that not all
stations sense the contention at the same time to reduce their
rate (Rtc in our algorithm) in the wireless scenario. Sometimes
one station A senses T̂ > Ttarget and reduces the Rtc, it may
still get T̂ > Ttarget at the next time window checkInterval
and continues reducing the Rtc. At the same time, another
station B may get T̂ < Ttarget in both these two time windows
because it beats station A.

Algorithm 1 Decide maximum delivery rate.
tk : measured delay of frame k.
Ttarget : the delay constraint.
Rtc : maximum delivery rate.

1: procedure F(tk)
2: sum← sum+ tk
3: ntrans← ntrans+ 1
4:
5: if (now time− last time) > checkInterval then
6: T̂ ← α ∗ T̂ + (1− α) ∗ sum

ntrans
7: last time← now time
8: sum← 0
9: ntrans← 0

10:
11: if T̂ < Ttarget then
12: Rtc ← minimum(Rtc + δ,Rmax)
13: else
14: Rtc ← maximum(

Ttarget

T̂i
∗Rtc, Rmin)

15:
16: return Rtc

To adapt to these wireless characteristics, we use Rmin and
Rmax to bound the control metric Rtc. The lower bound Rmin
is mainly used to prevent the stations Rtc from decreasing to
0. Otherwise no frames will be sent and the procedure F(tk)
will never be called. The Rtc will remain 0 all the time. We
call this the “dead corner” of the algorithm. The upper bound
Rmax is the maximum theoretical throughput one can achieve
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Fig. 6: The measured delay-throughput curves in different numbers of con-
tenders (N) in the wild. The data points on the curve are N=1 to N=9 from
left to right.

under certain IEEE 802.11 protocol. It mainly used to prevent
the control metric from becoming too large, in this case, it
will take more time to converge. For example, assume there
are 2 stations (A and B) contending the channel at the stable
state. Once station B finishes the transmission and leaves the
contention, station A will find T̂ < Ttarget all the time. Then,
station A will keep increasing Rtc towards infinity and it will
take too much time to converge when another station C joins
the contention.

Control target. The control target Ttarget is the targeted per-
frame latency that we want to achieve in a WiFi network.
However, there is a fundamental trade-off between the per-
frame delay and the aggregated throughput in WiFi protocols.
Comprehensive theoretical analysis has been conducted on the
trade-off in prior research and we also conduct measurement
in the wild to decide a proper Ttarget. For example, Figure 6
plots the delay-throughput relation in different numbers of
contenders under the IEEE 802.11n protocol from the mea-
surement in the wild. We can see that if there are too few
stations, e.g., 1 or 2, the delay is very small but the throughput
is also low. Therefore, to avoid sacrificing the throughput,
we cannot set Ttarget to a too small value. Fortunately,
there is a sweat point to balance the delay and throughput
in the curve. For example, in the curve of N = 3, the
point of the highest throughput still provides a small delay.
According to Equation 2, by changing the value of Ttarget,
we can change the number of concurrent contenders and thus
provide a flexible trade-off between the latency and aggregated
throughput.

C. Traffic Regulation

The work of the Traffic Regulator is simple: based on the
given maximum delivery rate Rtc, it controls the speed of
sending packets to the WiFi physical layer. We choose to use
packets/second rather than bytes/second as the unit of Rtc.
That is, we control how many packets rather than how much
traffic volume to send to the physical layer. This is consistent
with the DCF mechanism where each station has the same
opportunity to send one frame, no matter what the frame size
is. Whether a frame can get the chance to be sent out depends
on the value of its random counter rather than the size of the
frame.

Convergence. Our control algorithm is convergent. For each
adjusting time window, we can sort the stations by their
average frame delay T̂ . If all the stations’ T̂ is smaller than



Ttarget, they will all increase their control metric Rtc to
send more frames. In this way, the average frame delay will
certainly increase. If all the stations’ T̂ is larger than Ttarget,
it indicates heavy congestion and each station will reduce its
Rtc by a factor of Ttarget

T̂
. If some stations’ T̂ are larger

than Ttarget while the others’ T̂ are smaller than Ttarget, the
stations whose T̂ is larger than Ttarget will decrease their Rtc
by a factor of Ttarget

T̂
. The others will increase their Rtc by

a fixed step δ. If the channel congestion does not reduce, it
means there are more stations whose T̂ is larger than Ttarget,
i.e., more stations begin decreasing their Rtc with a larger
factor of Ttarget

T̂
. As the overall increasing-speed decreases and

the overall decreasing-speed increases, the decreasing speed of
Rtc will be larger than the increasing speed and the extent of
contention will be mitigated. The closer the T̂ to Ttarget, the
smaller the adjustment. From the above analysis, our control
rule is a closed loop and will eventually converge to a stable
state.

Fairness. The fairness of QAir is based on the fairness
of the DCF where each contender has the same probabilistic
opportunity to send frames.

From Figure 1, we can conclude that all the stations’s
tmax (Equation 2) are the sum of own packets’ transmission
time and all the neighbor packets’ transmission time. As the
IEEE 802.11 DCF protocol ensures the packet level fairness
for different flows, they get the same T̂ in the long run.
Furthermore, they have the same possibility to increase or
decrease the control metric Rtc and will have the same Rtc.

Aggregation/MSDU: If the aggregation is enabled, multiple
packets may be aggregated into one big packet (MSDU). In
our measurement, we can distinguish these packets and regard
all the small packets (MPDU) in the same MSDU as one, thus
the aggregation is transparent to our QAir algorithm. Unless
otherwise mentioned, we enable the aggregation mechanism
in our following experiments.

V. IMPLEMENTATION

We have implemented QAir on OpenWrt-based routers by
modifying an open source wireless driver ath9k that is widely
used on many commodity routers. The modifications rely on
only the basic callback functions of the driver and thus may
be easily applied to other WiFi devices (e.g., Android devices)
if the wireless driver source is available.

The commodity routers we used for both implementation
and evaluation are the NETGEAR WNDR 4300 dual band
routers. They run OpenWrt version 15.05 and are equipped
with 560MHz CPU, 128MB RAM and 128MB Flash. They
may work as an AP or a client and thus we are able to setup
a flexible testbed using only the routers.

Measuring per-frame latency. One challenge in our imple-
mentation is how to accurately measure per-frame latency on
the routers. Similar to many other WiFi devices, the routers
have a queue to buffer multiple frames in their WiFi NIC.
Thus, we cannot directly decide when a frame is moved to
the head of the queue to start trying to access the channel. To

address the challenge, we take the following approach with
three important timestamps for each frame: tw, th and te. tw
is the time when the frame enters the hardware queue and waits
in the queue. th is the time when the frame reaches the head
of the queue and begins the DCF procedure. te is the time
when the packet is successfully acknowledged by the MAC
layer ACK and is removed from the queue. tw can be directly
recorded in the driver. It is also easy to measure te because the
hardware will generate an interrupt to the driver once a frame
is successfully acknowledged and removed from the hardware.
th is hard to measure because due to the unknown waiting time
of the frame in the queue.

Our approach is to infer the th of a frame from the te of
the previous frame [29]. Assume we have two frames p and
p+1 which are continuously added to the hardware queue in
times of tw(p) and tw(p+1), the completion time of DCF for
these two frames are te(p) and te(p + 1). Then, we can get
the accurate th(p+1) using Equation 6. If te(p) < tw(p+1),
it means that when frame p + 1 is added into the hardware
queue, frame p is already removed from the hardware queue,
then frame p+1 will immediately reach the head of the queue
and begin DCF procedure. In this case, th(p+1) = tw(p+1).
Otherwise, frame p+1 has to wait for frame p being sent out
before starting DCF, i.e., th(p+ 1) = te(p).

th(p+ 1) =MAX(te(p), tw(p+ 1)) (6)

Traffic Shaping. We use the token bucket algorithm to shape
the traffic between the QAir layer and the physical layer to a
desirable rate. Depending on whether there are enough tokens
in the bucket or not, we decide whether to buffer a packet in
the QAir layer or send it to the physical layer. The number
of the tokens in the bucket normally represents the number of
frames can be sent now. If one frame is transmitted, one token
is removed. So the traffic will be shaped as the rate how fast
the tokens are added into the bucket. We record the last time
when the token is added. Every time when the Rtc is updated
or when a new packet arrives, we will use the time gap and Rtc
to calculate the tokens to be added. Consequently, the traffic
will be shaped just as the Rtc. In our implementation, we add
our entry function to where the ath tx txqaddbuf() is called
and redirect packets to our token bucket. We use the hrtimer in
the Linux kernel API, which has a precision of micro second
level, to resume sending the packet after a appropriate time.
All the packets will be delivered by ath tx txqaddbuf() for the
next-step processing in the hardware.

VI. EVALUATION

We implemented QAir on commodity routers, and use a
20-node testbed to evaluate QAir’s performance in the wild.

A. Testbed Setup

Our testbed consists of 20 commodity routers (NETGEAR
4300 dual band) with QAir implemented, with a topology
shown in Figure 7. All the nodes are connected via Gigabit
Ethernet switch to one of the two commodity Dell R410
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Fig. 7: Topology of the testbed.

servers equipped with 24 2.4GHz cores, 30 Gigabit memory,
and Linux OS. Half of the routers are configured as Access
points (APs), each of which as a client connected to. We
configure the routing table on the Linux servers to send packets
into the certain wireless links. Therefore, there are in total
10 AP-client links. This topology was intentionally setup as a
dense one: all nodes are running on the same channel (802.11n,
5GHz band, 20MHz width), where there are no other nodes
and contention/interference from the surrounding environment,
and they are physically located close to each other so that all
nodes are within contention range of any other node.

QAir can be turned on or off in user-space via configuration,
and we compare the baseline case (“off”) and QAir case (“on”)
in the following experiments.

It is noteworthy that in the real world, there may be multiple
clients associated with the same AP. However, as QAir is an
algorithm to improve the performance of different senders, it
only care about the actual number of sender (or contenders) on
the channel. It is transparent for QAir whether one sender’s
packets are heading for different nodes or multiple senders
(clients) sending to the same node (AP). The only thing we
need to do is to experiment different numbers of contenders
to get comprehensive measurement results. Without loss of
generality, we use one-to-one WiFi pair to evaluate the per-
formance of QAir in a more intuitive way.

B. Performance Under Controlled Traffic

We first use controlled traffic to evaluate QAir’s perfor-
mance. We use Iperfto generate TCP/UDP traffic. The traffic
is mixed with n background flows and 1 ping flow. ping acts
as the delay sensitive traffic and reports the round trip time.
We vary n to generate different extent of contention. In the
results presented below, we focus on the case where there is
only one delay sensitive flow (ping), as the number of ping
flows does not significantly impact the overall throughput and
per-frame latency according to both our intuition and actual
experiment results.

For each run, the experiment was repeated multiple times
and using average to get stable results. We use two per-
formance metrics: the aggregated throughput and average
RTT measured by ping tool. We also conduct extra exper-
iments where we replace the ping traffic with other delay-
sensitive flows whose traffic demands range from 1Mbps to
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Fig. 8: The performance of QAir under UDP traffic.

7Mbps. As soon as one flow’s traffic demand is smaller
than ChannelCapacity

#equivalent background flows (≈ 70Mbps
10 = 7Mbps in

our testbed), this flow will not be regulated by our Traffic
Regulation part (§ IV-C), thus the per-frame latency show the
same results with ping traffic. The results are ommited from
this part because of the space limitation.

UDP: In the first scenario, all the background traffic are
100Mbps UDP flows, and we varied n, the number of such
UDP flows. The results are shown in Figure 8. From Figure 8b
we can see QAir can greatly reduce the RTT (packet level
latency) compared to the baseline. When n ≤ 4, RTT is
reduced by 50% to 75%. The larger n and the contention,
the better QAir works. On the other hand, Figure 8a shows
that the QAir achieves similar throughput performance as the
baseline.

TCP: In the second scenario, the background traffic are n
persistent TCP flows, which continues to send TCP packets
according to what TCP congestion control allows. Note that
a receiver also contends for the channel because it needs to
send ACKs, thus the total number of contenders are actually
between n and 2×n. The results are shown in Figure 9. From
Figure 9b we can see QAir can greatly reduce the RTT (packet
level latency) compared to the baseline. When n ≤ 5, RTT is
reduced by 50% to 60%. The larger n and the contention, the
better QAir works. Figure 9a shows that the QAir has only
a minor throughput scarifies (at most 15%) compared to the
baseline.

Above results show that QAir ’s congestion control for the
virtual queue in the air can complement TCP’s congestion
control at the transport layer.

C. Performance of Real Applications

The evaluation using Iperf and ping flows shows that QAir
can greatly reduce the RTT of the wireless hop. We now use
live streaming as an example to evaluate how QAir can help
improve the performance of a real world application.

The settings are the same to those in §VI-B except that the
delay-sensitive flow ping is replaced with a live streaming
mobile app. As shown in Figure 10, we broadcast a real-time
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Fig. 9: The performance of QAir under TCP traffic.

TABLE III: QoE of live streaming with/without QAir.
#Buffering

events
Minimum

e2e Delay (s)
Maximum

e2e Delay (s)
QAir disable 7 2.15 9.76
QAir enable 0 2.15 2.23

clock from one phone to another. We measure two important
QoE (quality of experience) metrics for live streaming [30],
[31]: number of buffering events and end to end (e2e) delay.
e2e delay means how much time the “viewer” lags behind
the “broadcaster”, and buffering event means the streaming is
paused to get more data from the network.

The number of buffering events can be easily counted from
the app. By putting the “viewer” and “broadcaster” side by
side, we can get the e2e delay from the clock difference on
the two phones. The experiment was done for 100 seconds
for both baseline and QAir. We summarize the results in
Table III, which shows QAir can greatly improve the QoE
of live streaming: free of buffering (v.s. 7 times in baseline)
and short time delay between “broadcaster” and “viewer” (the
maximum delay is reduced from 9.76s to 2.23s). Note that
although the e2e delay consists of various parts (from the
broadcaster app, to servers and CDNs etc.) [31], QAir has
a very stable e2e delay ranging from 2.15s to 2.23s, which
significantly helps the QoE.

It is noteworthy that the scenario when 9 background flows
may be uncommon in real world. However, it is common that
there are dozens of wireless node in one same place, e.g., the
scenario we measured in Figure 2. Each wireless node may
not have background traffic, but the larger number of nodes
make wireless hop RTT comparable with 9 background flows
(26ms for median RTT in Figure 2 and 35ms for average RTT
in Figure 9b).

VII. DISCUSSIONS

Diverse frame size and rate: In practice, WiFi frames
carry different size of payloads, and use different data rates
depending on link quality. A nice property of QAir is that

Fig. 10: Snapshot of live streaming of a real-time clock.

it is not sensitive to frame size and data rate. As the control
target of QAir is latency, when frame size or data rate changes,
QAir will converge to the same latency, although to a different
number of contenders. The number of contenders may be large
in extreme cases, for example, if every device transmits very
small frames with very high data rate, however, in our tests
we did not observe any noticeable impact from diverse frame
size and data rate.

Hidden terminals: Hidden terminals cause additional frame
losses and enlarged latency,therefore may falsely trigger QAir
to regulate traffic. We suggest to mitigate hidden terminals
using RTS/CTS. Specifically, when a device observes high
frame loss rate which will not be reduced with lower data
rate, the device should enable RTS/CTS exchange before every
frame. According to our experience, similar hidden terminal
mitigation mechanism has already been widely adopted in
today’s WiFi devices.

Legacy nodes: Since QAir nodes will regulate traffic upon
observed high latency but legacy nodes will not, legacy nodes
will gain unfair performance advantage over QAir nodes. For
example, for best effort flows on QAir nodes, the obtained
throughput will be smaller than expected after traffic regulation
if some legacy nodes are transmitting heavily. Therefore, we
suggest to deploy QAir to all the devices in an environment.
For example, administrators can enforce the use of QAir in
AP’s admission control.

VIII. CONCLUSIONS

In this paper, we have designed and implemented QAir,
a practical solution to reduce the latency in dense WiFi
networks. QAir has a control loop of three steps: 1) mea-
suring the contention level of the channel based on per-frame
latency, 2) determining a proper control rate from the channel
measurement and a control target, and 3) using the control rate
to regulate the traffic from the MAC layer to the physical layer.
QAir is thus able to transfer the distributed queue into host
queue. Consequently, the delay-sensitive flows can bypass the
entire queue and their latency can be greatly reduced. QAir
works in a distributed manner with no centralized scheduler.
Through real experiments, we demonstrate that QAir can sig-



nificantly reduce WiFi latency of delay-sensitive flows without
sacrificing the network throughput.
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