Latency-Based WiFi Congestion Control in the Air for Dense WiFi Networks

Changhua Pei, Youjian Zhao, Yunxin Liu, Kun Tan,

Jiansong Zhang, Yuan Meng, Dan Pei

IWQOS 2017

•

Motivation Algorithm Implementation Evaluation

Motivation Algorithm Implementation Evaluation

WiFi is indispensable in our daily lives

Source: Cisco VNI Mobile, 2017

Experience of WiFi Network

Mobile Device AP Remote Services

Online Gaming

0.2 billion downloads50 million active users every day

6

WiFi Hop Latency

WiFi Hop Latency

t_e(p₁)

WiFi Hop Latency **Per-frame Latency** AP_2 **q**₂ AP_1 **q**₁ **Busywait Access Point** ACK **Tx Queue p**₁ **p**₁ wAP **Broadcast Queue** t_r(q₁) **PSM Queue Timeline** T_{p1} SIFS^I T_{ack} QUEUING extra time DIFS

t_w(p

Motivation

- Experience of delay sensitive applications depends on the WiFi hop latency.
- 20% of packets' WiFi hop latency is larger than 100ms.
- The latency increases linearly with the number of contenders because of the current DCF mac-layer protocol.

There is urgent need to revisit the mac protocol as the increasing number of contenders.

Motivation Algorithm Implementation Evaluation

End-host QoS Method

End-host QoS Method

End-host QoS Method

IEEE 802.11e

IEEE 802.11e

- Smaller window
 - For dense environment: higher collision
 - Enlarge the smallest window: low utilization
- Cross-layer configuration
- Mixed traffic flows on one IP port, e.g., HTTP traffic on 80

IEEE 802.11e

Number of delay sensitive flows

20

Legacy 802.11 DCF

QAir Algorithm

QAir Algorithm

Why S5's packets do not need to be deferred?

Core idea of QAir:

- Control the number of concurrent contenders to reduce the length of distributed queue.
- Based on assigning different flows fair shares, QAir assigns implicit priority to the delay-sensitive flows.

Motivation Algorithm Implementation Evaluation

QAir Architecture

Rate Regulator

- Input: max delivery rate
- Target: control the delivery rate to the WiFi PHY
- Token bucket

Token bucket

Control Algorithm

- Input: per-frame delay
- Output: calculate a max delivery rate to each flow equally
- Latency based congestion control

Control Algorithm

31

Delay Monitor

- Input: real traffic
- Output: per-frame latency
- Tradeoff:
 - Eliminate the variance
 - Reflect the level of contention

Delay Monitor

Arithmetic average

$$T_i = \frac{1}{N} \sum_{k=1}^{N} t_k$$

Moving average between different slots

$$\hat{T}(new) = \alpha * \hat{T}(old) + (1 - \alpha) * T_i$$

Delay Monitor-Raw Data

Delay Monitor-Arithmetic average

Delay Monitor-Moving average

Motivation Algorithm Implementation Evaluation

38

UDP Traffic

39

TCP Traffic

Personalized Live Streaming

QoE Metrics

 QAir works well for real applications whose traffic demand range from 1Mbps~8Mbps.

	#Buffering	Minimum	Maximum
	events	e2e Delay (s)	e2e Delay (s)
QAir disable	7	2.15	9.76
QAir enable	0	2.15	2.23

TABLE III: QoE of live streaming with/without QAir.

Conclusion

- Propose a practical solution to control the contention level of the WiFi channel
- Assign implicit priority using the traffic volume of different flows.
- Through real experiments, QAir can significantly reduce WiFi latency of delay-sensitive flows without sacrificing the network throughput.

Thank you! Q&A?

changhuapei@gmail.com

Rackun

IWQOS

Differences between wireless and wired

Control Target: number of contenders

- Trade off
 - Higher target: can tolerate more concurrent flows but higher contention
 - Smaller target: may sacrifice the throughput

The optimal point: N=3