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Abstract—Current TCP is very inefficient for web services.
Web transactions are often very short-lived. TCP flow starts
with a conservative initial congestion window (IW), which causes
multiple round-trip times to finish the transmission even if the
end-to-end bandwidth is sufficient for the transaction to be
finished in one round-trip time. Previous research efforts have
been focusing on finding the overall best IW for the entire
Internet or a service company. However, we observe that one-
IW-fits-all is suboptimal after one year of online measurement in
Baidu, one of the top global search engine companies. To reduce
the TCP latency, we propose TCP WISE, which dynamically
assigns suitable IWs for different user cluster at different times
on the server side. The values of users’ IWs are proactively
learned based on the historical experience on the server-side.
Our testbed experiments show that our learning algorithm can
handle the network changes and converge to the best IW. We have
deployed TCP WISE in one of Baidu’s production data center,
and results shows that the 80th percentile latency of the HTTP
responses has been reduced by 10.4% compared with current
TCP with a fixed IW of 10.

Index Terms—TCP, Initial congestion window, Web perfor-
mance

I. INTRODUCTION

Over the past few years, web service has become a major
way for billions of users to access the rich resources on
the Internet. As bandwidth is getting relatively large and
cheap, the latency has become the crucial performance metric
for web services. Even slightly increasing latency leads to
noticeable decrease in revenue and affects users’ experience.
For example, reports suggest that increasing 400ms web search
latency caused a decrease of about 0.74% in Google’s search
frequency [1], and Bing found that a 2s slowdown would
reduce the revenue by 4.3% [2].

Currently, data transmission of most web services (e.g.,
Microsoft [3] and Baidu [4]) are based on TCP. Prior works
have put much effort on reducing the TCP transmission time,
however, it is still far from ideal. One of the major bottlenecks
in achieving a low TCP latency, is caused by the flow startup
problem [5]. Specifically, when flow is just established, current
TCP has no knowledge about the current available bandwidth
As such, for congestion-wise safety, TCP starts from a conser-
vative initial congestion window (IW) and probes the network
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with slow-start mechanism [6]. This procedure incurs long
latency which requires multiple RTTs until getting converged
to the actual available sending rate. This problem has been
highlighted when the available bandwidth is high and RTT is
relatively long in modern Internet.

Although plenty of works (e.g., [7–9]) have improved a lot
on the congestion control, they only help to quickly converge
to the right available bandwidth during the transmission of
flow. However, at the flow startup phase, the TCP sender has
very little (if nothing at all) information on the current network
condition. As such, it is very hard to decide the sending rate
at the flow startup. Due to this inherent challenge, although
several works have tried to improve the speed of probing the
initial sending rate by advanced slow-start algorithm (e.g.,
[10]) or with the help of feedback signal from the network
(e.g., [11]), the flow startup problem is only mitigated but not
directly solved. This has become an open issue of TCP [5].

Revisiting the problem, we ask ourselves: can we directly
assign the flow with the right sending rate at the initial setup
phase? Luckily, after one-year of continuous measurements
and experiments in Baidu, one of the world’s largest web
service providers, we found the answer to be affirmative. Our
intuition is to explore the optimal initial sending rate based
on historical experience. Modern web-service platform has
mature and powerful log system, generating rich data which
can detailedly record each flow’s performance (e.g., flow
completion time). Servers can achieve flexible control of the
sending rate. Based on that, we propose a system called TCP
WISE. It runs on the web-service platform, which explores
the appropriate initial sending rate for different flows before
starting transmission, through periodically learning from the
historical experience.

There are several challenges that TCP WISE needs to
address. First, a flow may only access our web-service for
a few times, and it is challenging to get useful information
from such sparse history data. To address this challenge,
TCP WISE classifies different flows (which may come in at
different time) into clusters. Then we learn and set the same
initial sending rate for such a cluster. Second, how to set the
initial sending rate without interfering the existing well-tuned
congestion control algorithms. To avoid interference, TCP
WISE implements a flexible API to sets the initial sending978-1-5090-6468-7/17/$31.00 ©2017 IEEE



rate only by setting the IW, but without any modification to
the existing congestion control algorithms. Given that, the third
challenge is how to get the best suitable IW from historical
data. On one hand, directly deriving the best initial sending
rate only from historical TCP-level performance metrics (e.g.,
RTT, loss rate) is quite challenging and may be inaccurate.
On the other hand, all the flows in the studied company only
have used one IW before (which is 10, a practice similar to
[12]). As such, TCP WISE leverages a self-evolved close-loop
learning manner to proactively explore the best IW for each
cluster. Specifically, it calculates a set of possible suitable IWs
for each cluster based on their IWs used before, and serves
them with a randomly chosen IW from this set. Later, it will
update the IW set based on the last round of flow performance
under different IWs. With such round-loop learning, TCP
WISE can gradually figure out the suitable initial sending rate
for each flow cluster. Note that TCP WISE is a continuous
process rather than a one-time shot.

To the best of our knowledge, TCP WISE is the first to
provide a systematic approach for directly setting the suitable
initial sending rate for different web transaction flows based
on historical experience1. At last, we both use testbed and
online experiments to prove that our system works well. To
summarize, our main contributions are listed as follows:

• To speed up web transmission, we firstly propose a flexi-
ble system that could use different IWs for different user
clusters in dealing with the complex and heterogenous
network conditions.

• We propose a novel IW learning algorithm. It uses a set of
IWs during the same period. By continuously online A/B
testing, the server learns which IW is better and wisely
performs rate control to converge to the appropriate fair
sending rate.

• TCP WISE can be easily deployed with only server-side
modification. It has been deployed in Baidu, and our
experiments show that TCP WISE can improve the 80th

percentile latency by 10.4% for about 250 million flows.
II. BACKGROUND

A. TCP Latency

For latency-sensitive web service, the web response time
directly affects user experience. Figure 1 shows the general
HTTP request/response timeline between the user and the
web service provider. It is a general architecture for web
services. Usually, the frontend server accepts the user’s request
from the Internet, then proxies the connection to the internal
backend servers which handle complex functionalities of the
web service in the data center. After getting the response data
from those backend servers, the frontend server forwards the
response back to the user.

1It is noteworthy that some previous works also focused on setting ap-
propriate IW for web transaction flows. According to the experience with
network evolution, Google proposed to increase IW from 2∼4 to a fixed
10 in 2010 [12]. However, one initial congestion windows is not enough
for largely diverse bandwidth and bottleneck buffer sizes of different user
networks. While using larger IW for high-speed users can reduce the latency,
for low-speed users, conservative IW is a better choice.

Generally, the web response time consists of two parts,
1) the data transmission time from frontend servers to user
and 2) server processing time and backend intra-datacenter
transmission latency. In this paper, we focus on the first part,
data transmission time from frontend servers to user. We
define this time period as TCP latency, as shown in figure 1.
Specifically, TCP latency can be calculated as (Tend − Tstart).
Tstart is the moment when the frontend server begins to send
data to the user, and Tend is the moment when the frontend
server receives the last ACK of this HTTP response 2.

User Frontend*Server Backend*Server
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Fig. 1. The detail timeline of the HTTP request/response.

B. One Initial Congestion Window is Not Enough

Initial congestion window (IW) determines the initial send-
ing rate of the transmission. It indicates how many bytes
of data can be sent at the beginning. One single small
IW value (2∼4) for all TCP flows has remained unchanged
since 2002 [13], which is not efficient for nowadays complex
network conditions. Improper IW values will result in high
latency. For example, a conservative value will lead to poor
bandwidth utilization in high-bandwidth network environ-
ments, while an aggressive value for low-bandwidth network
will cause congestion loss and suffer expensive retransmission
timeout.
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Fig. 2. The percentage of flows from different wireless accessing network
(including 2G, 3G, 4G and Wi-Fi), and the distribution of their RTT.

Obviously, it is suboptimal to set one single IW for differ-
ent flows which experience various network conditions. For
example, different accessing network has different network
conditions. Taking the wireless network as the example, we
have done a large scale measurement during two months,

2The last ACK’s transmission time is closely approximated to the time of
receiving HTTP request



sampling about 300 million flows in one web service. Fig. 2(a)
and Fig. 2(b) show the percentage of flows and the round-
trip time of different wireless accessing network, including
2G (EDGE), 3G (HSPDA), 4G (LTE) and Wi-Fi. This data
is collected from client side with Baidu App. It indicates
that different flows served by the same web servers may
have hugely different network conditions, and they should
be set with different IW. For example, 2G network’s RTT
is 300∼1000 ms, and 4G network’s RTT is 10∼100 ms. As
such, assuming MSS = 1440B, the suitable IW that exactly
utilize the bandwidth of 2G and 4G network should be 3∼36
and 1∼456, respectively 3.

III. TCP WISE KEY IDEA

TCP WISE learns the suitable IW for each flow using the
following two steps in figure 3:

a) Different*user*clusters*use*different*IWs

b) The*logic*of*choosing*IW
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Fig. 3. The key idea of TCP WISE

1) As figure 3 a) shows, it uses different IWs (IW set)
for different user clusters. One-IW-fits-all is suboptimal. Its
goal is to achieve a fine-grained control and performance
improvement.

2) For each user cluster, TCP WISE continuously performs
A/B testing and adjusts the IW based on the performance ob-
jective (TCP latency). Specifically, the server randomly selects
one IW from the candidate set (IW1, IW2) during one fixed
time interval. After that, it directly measures the TCP latency
T1 and T2 of IW1, IW2. If T1 is smaller (meaning IW1 is
better than IW2), then we keep using IW1 and vice versa.
Besides, a new IW IWnew is added for the next round of A/B
testing. The detailed algorithm is described in section IV. Its
basic procedure is like gradient descent, continuously updating
each user cluster’s IWs based on historical experience to find
the optimal IW.

IV. SYSTEM DETAIL

In this section, we introduce the detailed design of our
system in figure 4, which consists of three components called
Connection Manager, Data Collector and Performance Ori-
ented Learning.

1) Connection Manager is a module implemented in the
web proxy (e.g. Nginx [15]) which is deployed at the frontend

3Calculated using the equation bandwidth = CWND*MSS/RTT. Typically,
4G network’s bandwidth is 1∼50 Mbit/s and 2G network’s bandwidth is
100∼400 Kbit/s [14].
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Fig. 4. System architecture

server. When the server establishes a TCP connection with a
user, it looks up the Cwnd Table to find its appropriate IW,
and then it immediately sets the IW for the TCP session to
accelerate the transmission. Cwnd Table is a configuration file
which describes the user clusters and their IWs.

2) Data Collector collects and stores all the performance
data. It provides historical data for Performance Oriented
Learning.

3) Performance Oriented Learning learns each user cluster’s
IW from the historical performance data and updates the Cwnd
Table for Connection Manager periodically.

In this way, TCP WISE builds a close-loop scheme to
achieve consistent high performance and evolves with network
development.

A. Connection Manager

The jobs of Connection Manager are real-time identifying
the user of the flow and setting IW before the flow transmission
begins. When the frontend server establishes a TCP connection
with a user, it firstly obtains user’s features (e.g., IP) and
queries the Cwnd Table for a set of IW. Then the server
randomly chooses one IW and finishes the IW setting on
this TCP session immediately. All the procedures are quickly
finished before the data transmission. Note that Cwnd Table is
the most important configuration of TCP WISE, it records user
clusters and their IWs. The number of IWs for one user cluster
is more than one. Because of our basic idea is constantly
performing A/B testing to explore the suitable IW.

Figure 5 is a simple example to explain the basic workflow
of Connection Manager. Assuming we treat each IP as a
user cluster. Connection Manager obtains the IP(192.168.1.1)
when TCP connection is established, and then it looks up the
192.168.1.1’s IWs from the Cwnd Table. The Cwnd Table is a
hash map with IP as the key and a set of IWs as the value. The
result is the set [10, 15]. Then TCP WISE randomly chooses
one value from the set with equal probability, assuming it
is 10. It calls a socket API setsocketopt(IW=10) to change
the session’s IW before sending response data to 192.168.1.1.
The socket API setsocketopt(IW) is a new API implemented
in Linux kernel by us. To be a robust and flexible system,
the system kernel’s job is only changing the value of initial
congestion window, and it does not change the TCP congestion



control behavior. Hence, TCP WISE is compatible with any
congestion control algorithm with slow start.
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Fig. 5. A simple example of TCP WISE’s online workflow, including setting
IW and collecting data procedure.

B. Data Collector

Our IW learning algorithm is based the TCP performance.
For each HTTP response, we obtain the TCP data including
user’s IP, data size, TCP latency, round-trip time (RTT),
TCP retransmission rate, TCP timeout event and etc. Here
we mainly introduce TCP latency. It is the response time
described in figure 1 and is the key performance indicator
of the web system. Generally, till now there is no method to
obtain TCP latency at server side. Here we use a sophisticate
method to record the latency with only server modification.
The key point is collecting the timestamp of Tstart and Tend

(see Fig. 5). When the web proxy begins to send data to the
user or terminate the connection, it calls a socket API called
getsockopt(tcp data) implemented by us, and it is similar to
the API to obtain the tcp info data structure; besides, it labels
the Tstart of this response, and it also records the Tend of
previous response. When it is called, the previous response
should have been delivered and Tend is the timestamp of last
TCP ACK from the user.

After the TCP session finishes, the web proxy outputs
the performance data for each response. At last, all the
performance data will be gathered to a centralized data storage
platform. Performance Oriented Learning takes the data as the
basic input.

C. Performance Oriented Learning

In this section, we mainly introduce how to learn the Cwnd
Table used in Connection Manager.

1) User Clustering: Ideally, TCP WISE would be able
to group user at the granularity of an IP address. However,
this does not scales because too fine-grained clustering will
suffer dimensionality and it also would be lack of samples.
The choice of user cluster size must maintain the balance
between scale and accuracy. In our paper, we adopt the prefix
(24/ IP prefix) as the user clustering method. The users in
the same 24/ IP prefix generally belong to the same ISP and
region. Conceptually, this is the simple way that the network
operators build the network. A /24 IP prefix is also the longest

prefix advertised in global BGP routing tables. Clients from
same /24 IP prefix will have similar web load time [16].
We acknowledge /24 IP prefix is not the best user clustering
scheme. Although users from the same /24 IP prefix could
still have different end-to-end performance, it may sacrifice
the accuracy. Compared with one IW for all the users, /24 IP
prefix could achieve better accuracy. Our learning algorithm is
maximize the performance for overall cluster, not single flow.

2) Performance Objective: Our goal is to find the best IW
for each user cluster, so what is the “best” IW. In our scenario,
we use 80th percentile latency as the performance objective.
The 80th percentile is a standard metric used for network-
related performance across many Baidu teams. Here we define
the “best” IW is the smallest IW which could minimize
the 80th percentile TCP latency. The best IW should fully
utilize the bandwidth without overfilling the pipe.

3) Learning Algorithm: Figure 3 shows the basic idea of
our learning algorithm. Recall that small IW leads to low
utilization and large IW causes congestion loss. According
to TCP domain-specific knowledge, learning the best IW is
actually similar to find the optimal value in a quadratic func-
tion, as shown in figure 6. The learning algorithm consistently
discovers each user cluster’s IW and updates fresh Cwnd
Table for online optimization. The basic procedure is as the
algorithm 1 shows. For each user cluster, their IWs is a set

IW

P(IW)

5 10 15 20 25 30

Starting-point

Iteration-1

Iteration-2

Iteration-3

Convergence

Best IW

Fig. 6. The basic idea of our learning algorithm, it is similar to gradient
descent. P(IW) is the performance objective.

in the initial state. For example, we use two IWs: basic IW
α and probe IW β, which are the control and variation in the
A/B testing. Here we define ∆ as the minimum window size
for increasing or decreasing IW. In the initial state, α = 10
(as [12] proposed) and β = α+∆. The algorithm is triggered
periodically. Here we define a learning interval (θ), it is a fixed
size of time window. TCP WISE tests α and β’s performance
during a θ in order to collect the evidence for decision making.
After that, TCP WISE enters decision making state. Note that
the size of initial IW set could be more that two for fast
converging, and during the next learning intervals, two IW
is enough.

In the decision making state, per-cluster logic is comparing
the performance of different IWs. TCP WISE figures out
which IW is better and updates the IW set for the next θ. If
the performance of β is better than α, α = α+∆, β = β+∆.
Otherwise, α = α−∆, β = β−∆. Based on the comparison
result, it updates the new IW set in the next θ. TCP WISE
randomly chooses the IW with equal probability, in order
to control other factors (such as access time, response size



Algorithm 1 The algorithm of performance oriented learning.
Input: IW set (α, β), step size ∆, learning interval θ, Smin

Output: Cwnd table (each user cluster’s IWs in the next learning iteration.)
1: function PERFORMANCE ORIENTED LEARNING
2: 1. Startup phase: init each user’s IW set (α, β).
3: 2. Online Testing: testing IW set during a θ online.
4: 3. Decision Making:
5: for each user cluster useri do
6: IW Seti = DecisionMaking(useri, IW Seti)
7: Output useri and IW Seti to Cwnd table
8: end for
9: Go to 2. Online Testing

10: end function
1: function DECISIONMAKING(useri, IW Seti)
2: if useri’s data sample number < Smin then
3: Keep collecting useri’s data in the next θ.
4: return IW Seti
5: else
6: find the IW X with largest P (X)
7: if X is the largest IW in IW Seti then
8: return X , X +∆
9: else

10: return X , X −∆
11: end if
12: end if
13: end function

distribution and etc.) similar, which makes the A/B testing
reliable. Besides, the network condition changes over time,
so we also learn the best IW in 24 hours individually. Here
we define a minimize sample number Smin. Testing with a
sample number may not be statistically significant. In each θ,
for each IW, the user’s responses sample number must large
than the Smin; if not, TCP WISE can not figure out which
IW is better, and it will keep the same IW set in the next θ
in order to collect more data evidence.

The smallest value of ∆ is 1. It is obvious that large ∆
can increase the speed for searching best IW, but it is not
accurate and maybe hard to find the best IW. Small ∆ could
search more accurately but its searching speed is low. In our
experiment, we preliminarily use ∆ = 5 (almost 7KB), and it
is usually the smallest step size that the operators conduct A/B
testing when searching the best IW for entire web service.

In this way, after several learning intervals, different users’
IWs would be different because of their diverse network
conditions. The ideal ending is that all the users reach the
converging point.

V. EVALUATION

In this section, we both use testbed experiment and online
experiment on Mobile Search service of Baidu to show the
following key points. 1) Our testbed experiment shows TCP
WISE can converge to best IW over time and handle the net-
work changes (bandwidth, RTT, loss). 2) Our real experiment
shows TCP WISE could reduce the 80th percentile latency by
10.4% with little impact on TCP retransmission rate.

A. Testbed Experiment
1) Testbed setup: We build a small 1Gbps server-client

testbed in Baidu data center. It consists of two servers located
in the same rack with 10 Intel Xeon 2.30GHz CPU, 128GB
RAM and 10Gbps NIC, both servers run Linux 2.6.32 kernel

with Cubic[7] as the congestion control algorithm. We de-
ployed TCP WISE in one server with web service, which acts
as the frontend server. The other server acts as the user to send
requests to the fronted server. Besides, we use traffic control
tools [17] to emulate different network conditions (Bandwitdh,
RTT, loss rate). The learning interval of TCP WISE is one
minute, user server sends about 100 requests to frontend server
in one minute. To evaluate whether TCP WISE could converge
to best IW and handle the changes, we need the ground truth
(best IW) for each condition. Here we perform the experiments
with 100KB responses and some certain network conditions.
The ground truth is built by brutally searching the best IW
from 1 to 100 in our testbed in advance. The initial IW set
(α, β) is equal to (5, 10), the step size ∆ is 5.

2) Algorithm convergence and network changes: In this
section, we mainly describe TCP WISE’s behavior under these
certain network conditions (Bandwidth = 10Mbps, 20Mbps,
RTT = 10ms, 20ms, loss rate = 0, 10%). We mainly perform
six kinds of network changes to prove that learning algo-
rithm can handle network changes and realize convergence,
including bandwidth decrease and increase, RTT decrease and
increase, loss decrease and increase.

Bandwidth changes: Bandwidth can change without the
path changing, e.g. when a link changes its rate. Figure 7
shows each learning iteration’s IW and TCP latency compared
with the ground truth. From this we can see, during the 1∼20
learning iterations, TCP WISE increases its IWs and converges
to the IW best (ground truth). The TCP latency decreases
from 123ms to 61ms, bringing about 50% improvement. After
decreasing or increasing the bandwidth, TCP WISE can also
sense the changes and converge to the best IW. Note that when
decreasing bandwidth in 21 learning iteration, TCP WISE’s
latency is still equal to ground truth, because the reason is
that TCP WISE’s IWs are larger than the best IW, and it
fully utilizes the bandwidth without resulting bufferbloat, but
its bad effect is high RTT because packets are filling the pipe
and causing long queuing delay [18]. That’s why TCP WISE
decreases its IW.

RTT changes: RTT can change (for example, on a route
change) but still have the same bottleneck bandwidth. Figure 8
shows TCP WISE can also handle the RTT changes (20ms⇒
10ms ⇒ 20ms) and converges to the corresponding best IW.

Loss rate changes: Here we only emulate the random loss
by using netem tools. Congestion loss can be reflected in
bandwidth and RTT changes. Loss rate can change because
of malfunctioning hardware failure, etc. Ideally, random loss
does not affect the size of the best IW. Figure 9 shows TCP
WISE can also handle the changes of random loss.

B. Online Experiment
1) Experiment Setup: We evaluate our system in one

representative production data centers, which are located in
Beijing. Beijing DC mainly serves the Mobile Search service
(one of most popular Chinese search engine in the world),
its users are mainly from the north region in China, and
its daily response number is more than 1 billion. Users’
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network access technology is almost wireless network (Wi-
Fi or cellular network).

The HTTP transactions are randomly load-balanced accord-
ing to users’ IP addresses and ports. The users in the same
subnet are served by the same data center. The frontend servers
run TCP Cubic [7] with default setting.

Typical A/B testing scheme is adopted in our evaluation.
Before being deployed with TCP WISE, the 24-hour mea-
surement results show that different frontend servers in the
same DC is similar in latency distribution (less than 0.5%
difference in each percentiles ). Hence, we choose 4 ∼ 8
of servers in each DC, enable half of them with TCP WISE
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(setting IWs for different user cluster in different hours), and
keep the rest of the servers using TCP-10 (TCP with IW =
10 according to [12]) as the baseline. We conducted this A/B
testing experiment for about one month. The minimal sample
size Smin = 100.

As for TCP WISE’s input parameters, the learning interval
(θ) is one week in our experiments. Because one week data
can reflect the periodicity of network changes. The IW learnt
in last week could be used in next week. We preliminarily
define ∆ = 5 and the minimal IW is 3.

2) Mobile Search: The web services characteristics in-
cluding response size distribution, RTT distribution (frontend
server to user), retransmission rate etc., are the main factors
that influence the web latency. Figure 10 shows the search
query response size and RTT distribution of Mobile Search.
Theoretically, if the bandwidth is unlimited, about 89% re-
sponse need at least two RTTs if the initial cwnd equals to
10. The average and medium RTT are about 500ms, 60ms.
The average retransmission rate (retransmitting data size/total
data size) is about 3%. From these we can see, the latency of
Mobile Search is far from ideal (One RTT), and even reducing
one RTT could help a lot.
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Fig. 10. The CDF of responses’ size and round-trip time in Mobile Search
service. Here the unit of size is MSS (Maximum Segment Size), generally it
is 1440B in our data sets. The size means how many TCP windows size are
needed for transmission

3) IW Learning: The IW learning procedure is as shown
in the algorithm 1. By the time of this submission, we have
performed experiment for about 4 learning iterations (about
one month). Here, in order to quickly converge, a fast startup
scheme is utilized in our experiment. At the first iterations, all
users randomly use 5 IWs (10, 15, 20, 25 ,30) at the same
time. In the following three learning iterations, TCP WISE
consistently updates the IW set for each user cluster.

At last, 3928 user clusters have fulfilled the learning al-
gorithms requirements (response’ sample number > Smin).
About 81.2% of this DC’s flows come from these 3928 user
clusters. For other user cluster without enough samples, we
classify them into a user cluster called “others”. At last, TCP
WISE learns user cluster’s IWs in each hour individually. Here
we firstly take the result in 20th hour as the example, and
figure 11 is the IW distribution of each user cluster.

From this we can see: (1) One initial congestion window
is not enough. IW =10 is not the best choice. (2) Most
user cluster have a larger IW (IW > 10). IW = 30 is the
most popular configuration, which means many users’ IWs



converge to 30 at last. Besides, a small group users’s IWs
(about 2.5%) have decreased bellow 10, which means IW =
10 would hurt their performance. (3) TCP WISE functions
well, after 4 learning iterations, some user clusters increase
their IWs and some user clusters decrease their IWs.

Fig. 11. The distribution of each cluster’s IW. X-axis is the IW and y-axis
presents the percentage of its user clusters.

4) Performance Result: Table I shows the latency over one
week period. TCP WISE outperforms TCP-10 obviously. TCP
WISE has 10.4% in 80th percentile latency. For the the 99th

and 99.9th percentile (the tail) latency, TCP WISE also has a
3.3% and 1.4% latency reduction. It proves that TCP WISE is
fast and cautious. Although most of TCP WISE’s windows is
larger than 10 (see figure 11), it does not cause a long tail.

Figure 12 shows the performance result in 24×hour by eval-
uating one week data. Obviously, TCP WISE consistently has
a better performance than TCP-10. As our learning algorithm’s
performance objective is 80th percentile latency, we mainly
introduce the 80th percentile latency here. In most hours, the
latency reduction ratio is larger than 10%. In 12th hour, TCP
WISE has the best performance (12.3% reduction ratio and
61ms absolute reduction.). In 23th hour, TCP WISE also has
7.9% latency reduction ratio and 36 ms reduction. In fact,
the other percentiles (AVG, 20th, 50th, 90th, 99th) latency also
have the similar result. Figure 13 shows the detailed latency
reduction ratio of the other percentiles in one week.

Compared with previous works [12, 19], our latency
reduction is significant. Google increases IW from 3 to 10
[12], which has a 10% reduction ratio of average latency.
Now we take TCP-10 as the baseline, we improve the average
latency by 7.9%. Reactive [19] improves the average latency
for about 6% by fast loss recovery. TCP WISE only focuses
on setting IW, which is compatible with Reactive [19].

Fig. 12. The 80th percentile latency of TCP WISE compared with TCP 10.
The x-axis presents the hour, and the left y-axis presents the absolute reduction
of latency and the right y-axis presents the reduction ratio of latency.

C. Negative Impact
Table II summarizes TCP WISE’s effect on the average

retransmission rate and timeout ratio (#responses whose trans-

TABLE I
COMPARISON OF TCP LATENCY (MS) BETWEEN TCP WISE AND TCP-10

IN Mobile Search SERVICE.

Percentile TCP WISE TCP-10 Diff [%]
AVG 417 453 36 [7.9]
10th 101 115 14 [12.2]
20th 140 158 18 [11.4]
50th 236 266 30 [11.3]
80th 422 471 49 [10.4]
90th 628 702 74 [10.5]
99th 3617 3736 119 [3.3]
99.9th 15813 16030 217 [1.4]

mission occurred TCP timeout/#responses). Note that TCP
WISE has a slight increase or no increase in retransmission
rate and timeout ratio. If packets loss happens, TCP will suffer
package retransmission or expensive timeout event. Increasing
IW may increase congestion loss, but from the result we can
prove TCP WISE is cautious.

VI. DISCUSSION

Algorithm limitation: In this paper, we mainly introduce
how to discover a appropriate IW for each user cluster (/24 IP
prefix) in 24 × hours. The appropriate IW could be used for a
long term, that is why we choose learning interval as one week.
Figure 13 shows that our IWs could consistently improve the
TCP latency. As we acknowledged, our user clustering (24/ IP
prefix + 24 hour) is not the best scheme. Continually, we will
work on better clustering schemes in the future, and believe
better clustering scheme will bring better performance.

The limitation of client receive window: TCP’s first
sending window is equal to min(IW, client initial rwnd, flow
size). Client initial rwnd is the initial advertised receive win-
dow of the client. Small client initial receive window hinders
the potential performance improved by increasing IW. Our
experiment result shows that most users’ network condition
is good enough to have a much larger IW than current 10.
We have measured the client initial rwnd from the first HTTP
request of the TCP connection in the frontend servers for 24
hours in one DC. About 94.7% IOS, 90% Windows users and
60% Android users have a larger initial rwnd than 40.

VII. RELATED WORK

Reducing the latency of short flow transmission is a hot
topic [12, 19, 20]. These related works fall into several broad
categories: speeding up startup phase, fast loss recovery.

Speeding up startup phase: For short flow, TCP’s slow
start is a relative slow mechanism. Many works have been
proposed to accelerate the slow start of TCP. [20] uses TCP’s
recent parameters for fast start and needs router support.
Google proposed IW to 10 [12] for easy deployment. RC3 [21]

TABLE II
THE AVERAGE RETRANSMISSION RATE AND TIMEOUT RATIO OF Mobile

Search.

Metrics Retransmission Rate (%) Timeout Ratio (%)
TCP WISE 2.53 5.3

TCP-10 1.93 5.0
Diff 0.6 0.3
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Fig. 13. TCP latency reduction ratio compared with TCP-10 in Mobile Search service.

uses a aggressive initial sending rate and requires routers to
support priority queues to eliminate the negative effect.

Fast loss recovery: Loss also plays a big role in the
slowing down of the short flow transmissions. When loss
happens, traditional TCP can only detect it by fast recovery
or by a timeout. There have many works dealing with fast
loss recovery. FACK [22] handles multiple packet loss in
a window. Early retransmit [23] explicitly reduces the fast
retransmit threshold when the congestion window is small,
in order to rapidly recover from single packet losses. [19] has
proposed Reactive, Proactive, and Corrective schemes. These
mechanisms try to reduce package loss and detect loss as early
as possible. S-RTO [24] is an extension of TCP that helps
mitigate timeout retransmission stalls. FUSO [25] leverages
the inherent multi-path diversity for transport loss recovery.

VIII. CONCLUSION

In this paper, we present a system called TCP WISE,
which reduces the web latency by setting different initial
congestion windows (IW) for different user clusters. The IW
for different user clusters is learned from historical experience
with a sophisticated method. Besides, our system can be easily
deployed with only at server-side modification. It does not
change TCP congestion control and is compatible with other
congestion control algorithms with slow start.

Our testbed experiments prove that TCP WISE can handle
network changes and converge to the best IW. Now it has
been deployed in one production data centers in Baidu, one of
top global search engine companies. After one month of real
deployment and evaluation, our result shows TCP WISE can
reduce the 80th latency of the HTTP responses by 10.4%
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