
Continuous Delivery of Personalized Assessment and Feedback
in Agile Software Engineering Projects

Xiaoying Bai
Tsinghua University

baixy@tsinghua.edu.cn

Mingjie Li
Tsinghua University

li-mj14@mails.tsinghua.edu.cn

Dan Pei
Tsinghua University

peidan@tsinghua.edu.cn

Shanshan Li
Tsinghua University

lishanshan@tsinghua.edu.cn

Deming Ye
Tsinghua University

ydm14@mails.tsinghua.edu.cn

ABSTRACT

In recent years, Agile development has been adopted in project
practices of Software Engineering (SE) courses. However,
it is a great challenge to provide timely assessment and
feedback to project teams and individual students with a
frequency that catches up with iterative, incremental, and
cooperative software development with continuous deliver-
ies. Conventional project reviews are mostly dependent up-
on instructors and teaching assistants in a manual review-
ing/mentoring approach, which are simply not scalable.

In this paper, we argue that agile projects warrant a ”con-
tinuous delivery” of personalized assessment and feedback.
To this end, we propose an online-offline combined approach
and built a system upon GitLab. An online platform was
built by integrating DevOps tool chains so that personalized
reports and assessments are delivered automatically to the
teams/students, which serve as the very efficient trigger and
basis for the close and targeted offline interactions between s-
tudents and TAs: daily discussion over instant messaging and
weekly in person meeting. This system has been in operation
since 2014 for an undergraduate SE course, with over 500 s-
tudents participating in over 130 project teams in total. Our
results show that such a continuous assessment/feedback de-
livery system is very effective in educating Agile projects in
SE courses.

KEYWORDS

Software Engineering Course, Project, Agile, DevOps, As-
sessment

ACM Reference Format:
Xiaoying Bai, Mingjie Li, Dan Pei, Shanshan Li, and Deming

Ye. 2018. Continuous Delivery of Personalized Assessment and
Feedback in Agile Software Engineering Projects. In Proceedings
of ACM ICSE conference (ICSE’18). ACM, New York, NY, USA,
10 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

Permission to make digital or hard copies of part or all of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ICSE’18, JUNE 2018, Gothenburg, Sweden

© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

With the rise of Web 2.0 and Software-as-a-Service, software
paradigm has shifted considerably in recent years. The We-
b 2.0 principle, ”forever beta”, has been a normal status of
most Internet-based applications, which means that software
are frequently updated online and released. Accordingly, con-
ventional development style, that has clear well-planned and
staged process of requirements-design-implementation-testing
cycles, is giving way to the Agile style, which values small
and frequent incremental delivery, test-driven developmen-
t, continuous integration, and adaptability to changes. As
a result, this paradigm shift in modern software industry
requires the reform of college courses [2, 4, 6].

While Agile development has been widely adopted in in-
dustry, it remains a great challenge to educate Agile projects
in Software Engineering (SE) courses due to the following
three reasons.

• Students need timely feedback that catches up with
iterative, incremental, and cooperative Agile software
development with continuous deliveries [1, 7, 9]. Tradi-
tional assessment and feedback are in person review/mentoring
approach based on regular meetings, which is too in-
frequent for the students to learn Agile development.

• Personalized feedback and assessment are necessary
for project teams and individual students. However,
it is both time and effort consuming to develop the re-
ports manually. For example, in our course with ∼150
students and ∼10 diverse projects from the real world,
each of the ∼10 teaching assistants (TAs) covers one
project of ∼4 separate teams and ∼16 students. It’s in-
feasible for each TA to manually provide personalized
reports on a daily basis.

• There lack objective and widely-accepted metrics [1]
to evaluate the performance of teams and students
in terms of collaboration and communication, such as
task management, commit management, and branch-
ing management, as opposed to just the final delivered
products. Thus, scoring and ranking are always diffi-
cult for SE team projects, especially for quantitative
process quality measurement and personal assessmen-
t [1].

To address the above challenges, we argue that Agile projects
in SE course warrant an automatic ”continuous delivery” of

1

ICSE’18, JUNE 2018, Gothenburg, Sweden X. Bai et al.

personalized feedback to teams and students. In this paper,
we make an important first step by proposing a combined
online-offline approach: 1) An online system is built upon
GitLab with a customized Scrum process and several open
source plug-in tools. Whenever code updates are commit-
ted to GitLab repository, static code quality review, build,
coverage-based testing, and docker delivery are automatical-
ly triggered immediately. 2) A project team is organized of-
fline with students, TA, and customer representative. TAs
can review the reports and proactively contact the students
for any discovered problems. With the automatic online as-
sessment, both the daily discussion over instant messaging
and weekly in person meeting of TA/customers/students are
very focused and targeted.

The main contributions of the paper can be summarized
as follows:

• We propose an online-offline combined approach for
educating Agile projects in SE course, an important
first step towards continuous delivery of personalized
assessment and feedback.

• We build a project management platform by integrat-
ing the tool chains following DevOps practices, which
strengthens project communication and collaboration
by streamlining the development and delivery process
with automatic tool chain.

• Based on the DevOps repository, we define several ob-
jective metrics for issue management, commit manage-
ment, and branching management, to facilitate quality
analysis from different perspectives.

Our proposed system has been in operation since Fall 2014,
with over 500 students participating in over 130 project team-
s in total. Our preliminary results show that the proposed
approach helps to train students for professional SE skills,
which we believe are applicable to other Agile projects of SE
courses in general.

The rest of the paper is organized as follows. Section 2
briefly introduces course design including projects organiza-
tion and the Scrum process, and presents the DevOps plat-
form. Section 3 demonstrates the metrics and measurements
for assessment. Section 4 reports our operational experiences
and results. Finally, Section 5 concludes paper and discusses
future work.

2 AGILE PROJECT AND PRACTICE
DESIGN

We now briefly introduce our course design including project
organization, the customized Scrum process, the automatic
DevOps platform, and the combined online-offline approach.

2.1 Project Organization

Like SE education in general, to teach and to learn Agile, it
is necessary to strengthen operations to cultivate students’
practical capabilities by hand-on experiences [2, 6]. Team
project is a generally adopted method such that students can
understand SE principles by practices. With projects from

Lecturer

Project 1 Project 2

Student

Team 1

Student

Team 2

Customer

Representative

Teaching Assistant

…… ……

…… ……

Team Leader

……

Quality Controller

Architect

Team Leader

……

Quality Controller

Architect

Figure 1: Project organization structure. Diversified
projects are collected from different customers. Cus-
tomer representatives and student assistants are in-
vited for each project to help hand-on knowledge
transferring. Students are organized into teams with
3-5 members taking various roles.

”real world”, students learn not only practical engineering so-
lutions, but also the context, constraints, and social aspects
of SE. By completing a project, students experience end-to-
end system development, including the design of different
modules and layers from user interface to computation logic
to persistent data storage to network communication, and
the tradeoffs to satisfy functional as well as non-functional
requirements.

When picking project topics, we intentionally add some
complexity from the real world. For example, one project
is a follow-up (or phase 2) of a project from the previous
year, in which case the current project team needs to work
on legacy codebase from the original project team. In anoth-
er case, two sub-projects (e.g., one for frontend and one for
backbend) form a big project, and one project team picks
frontend and another picks backend. In such cases, students
learn to collaborate with other teams to compose and inte-
grate their individual subsystems.

To accomplish the project, students are organized in de-
velopment teams, with 3-5 members in each team. Students
in a team take different roles and responsibilities, such as
leader, architect, and quality controller. They are encour-
aged to work closely with each other and with customers.
They learn to balance the workload among team member-
s to stimulate contribution from each participant. For each
project topic, we invite customer representatives to provide
domain knowledge, and 4th year or graduate students as TAs.
Students, customer representative(s), and a TA form a team
called Win-Win team in order to advocate a culture such
that teammates all hold a stake in the team, and the team
wins or loses as a whole. The structure of project organiza-
tion is shown in Figure 1.

2

Continuous Delivery of Personalized Assessment and Feedback ICSE’18, JUNE 2018, Gothenburg, Sweden

2.2 Agile Process

As a 3rd year undergraduate course, it could be very hard
for students with only basic programming skills to design
a system as a whole from the beginning. In the lecture, s-
tudents learn progressively comprehensive use of various SE
methods and techniques, such as application frameworks, de-
velopment tools, requirements analysis techniques, and team
building skills [8]. A carefully designed process is thus neces-
sary to guide students to build up the system step-by-step.
Through the process, students gain the skills to break down
requirements into manageable small tasks, and to decompose
system into decoupled modules.

A customized Agile Scrum process is adopted in our SE
course project design. The development process is structured
into five iterative Sprint deliveries. Following the Scrum pro-
cess, for each team, customer representatives, TA, and all
students in the development team meet at every Sprint (2
weeks) while the TA meets with the team every week. At
each Sprint, customer representatives direct each develop-
ment team to implement a subset of requirements based on
each team’s individual progress. During the process, students
practice with SE methods, techniques and tools which they
learned in the class. Between the in person meetings, on a
daily basis, students and TAs use instant messaging to dis-
cuss the problems discovered in the automated assessment
and feedback reports generated by the project management
platform.

The above process intends to build good engineering habit-
s though repeated reinforcement, such as eliminating bad
code smells, continuous version control, coverage-based unit
testing, and so on. Systems are finally wrapped up, deployed
on the specified cloud platform or customers’ environment,
and delivered with necessary readme and configuration files.

2.3 The Automatic DevOps Platform

The wide adoption of DevOps is inspired by modern SE
methods and culture in the Internet era. To accommodate
rapid changes, the Agile manifesto advocates early, frequen-
t, and continuous delivery of working software to facilitate
close cooperation between customers and developers through-
out the prototype system. To support Agile practices, De-
vOps aims to provide an infrastructure of automatic tool
chain, which reflects the interaction of development, quality
assurance and operations. The tool chain in general consists
of various tools to automate lifecycle project management,
including source code management tools, build tools, testing
tools, deployment tools, configuration tools, and monitoring
tools [10]. As Gartner Report noted, ”DevOps Philosophy
Shapes a Culture”, which is characterized by continuous de-
livery with continuous quality.

The DevOps platform for course project supervision was
built by integrating various framework and tools, includ-
ing GitLab1 for source code management [5], Jenkins2 for

1https://www.gitlab.com
2https://jenkins.io

Project

Repo-

sitory

Project

Management

GitLab

Build

Testing

Code

Quality

Analysis

Collabo-

ration

Analysis

In-Person Weekly Meeting

Online Assessment

Reports

Teaching

Assistant

Students

Team

O
fflin

e
 A

sse
ssm

e
n

t

1 2

3

4

5

6

7

8

8 8

6 5

9 9

10

9

Figure 2: The DevOps platform which builds the tool
chain for course project supervision.

build management, Codeface3 for Git repository analysis,
and SonarQube4 for code quality management. Build man-
agement framework like Jenkins can further integrate with
plug-in tools, such as Docker5, xUnit6, and Selenium7 to
support automatic deployment and testing. The results from
various tools are collected for assessment and reports from
following three perspectives:

(1) Source code quality analysis, such as cyclomatic com-
plexity, code style, bad smells, and code clone.

(2) Test coverage and bug reports.
(3) Collaboration analysis, such as contributions of each

team member, version branching patterns, commit fre-
quency, and the adequacy of comments.

2.4 Online-Offline Combined Assessment

Ideally, one would hope that these feedback and assessmen-
t are fully automated based on well-defined and objective
metrics for every trackable action of teams and students. In
reality, close TA-student interaction is still a must since the
metrics are still far from perfect at this stage. Therefore, we
apply a combined approach which incorporates both online
automatic evaluation based on the DevOps platform, and the
offline manual work based on regular Sprint meetings and

3https://siemens.github.io/codeface
4https://www.sonarqube.org
5https://www.docker.com
6https://xunit.github.io
7http://www.seleniumhq.org

3

ICSE’18, JUNE 2018, Gothenburg, Sweden X. Bai et al.

in person discussions. Figure 2 shows the combined online-
offline project supervision and assessment process, supported
by the DevOps platform.

(1) TAs set up course projects.
(2) Students form teams and bid for the projects.
(3) TAs allocate projects to development teams.
(4) The code repository is automatically set up at GitLab

for each team.
(5) Throughout the process, students collaborate based on

GitLab source code management.
(6) Tools are configured to be integrated in a streamline,

automatically triggered by predefined events. Code com-
mits to GitLab automatically trigger the build, testing,
and analysis actions.

(7) Whenever code updates are committed to GitLab repos-
itory, static code quality review, build, coverage-based
testing, and docker delivery are automatically triggered
immediately. Issues, commits, and branches are also
tracked and assessed periodically. Assessment, with
objective and well-defined metrics, are then automat-
ically generated based on either existing tools or our
proposed metrics.

(8) Scores and rankings are generated for teams/students
immediately, and reports delivered to teams/students
regularly with a maximal interval of 1 day. Problems
are discovered quickly. Students/teams can either im-
prove by their own or ask TA targeted questions. TAs
can also review the reports and proactively contact the
students for any discovered problems.

(9) TAs still manually grade each team and each studen-
t based on the demos and online/onsite discussions,
with the automatic reports as the important input.

(10) At the end of the semester, TAs combine the weekly
grades to give a final grade, taking into consideration
the feedback from customer representatives on the fi-
nal project demo.

3 ASSESSMENT METRICS

Both team and individual performance are monitored through-
out the project process from various perspectives. Even though
we strongly encourage students to share weal and woe in the
collaboration, there are still individuals who perform espe-
cially well or poorly in the team. Assessment tracks every
student’s performance and contribution in the team. Each
individual student gets bonus or penalty points on top of
team scores. Specifically, assessment metrics are defined from
following 5 perspectives.

• Issue (Task). GitLab issue management is used for task
allocation, scheduling, and tracking. Metrics are de-
fined to evaluate the workload of each Sprint and each
team member, the duration and delay of task comple-
tion time, etc.

• Commit. Code should be committed with proper size
and frequency, and clear message. The metric aims to
encourage students to form good commit habits.

• Branching. The formation of branching in the repos-
itory network reflects collaboration situation. There
are many discussions of well-formed branching pat-
terns, and the principles that developers should fol-
low in collaborative development. Metrics we defined
for branching guidelines include merge your own code,
early branching, and merge often.

• Test Coverage. Using container and xUnit tools, unit
testing is automatically exercised after commits, and
coverage statistics are collected and reported. The ob-
jective is to enhance code quality by enforcing test-
driven development practices.

• Code Quality. Static analysis tools like SonarQube
facilitate code quality analysis based on pre-defined
rules. Reports are provided with identified potential
bugs, vulnerabilities, bad smells, and duplications. Stu-
dents are thus encouraged to follow good coding styles.

For test coverage and code quality, we directly integrate
the reports of third-party tools. The rest of the section fo-
cuses on the first three perspectives, i.e., the assessment of
issue, commit, and branching.

3.1 Issue(Task)

Students are required to use GitLab issue management for
backlog task management in Scrum process. Issues are thus
considered as tasks with various tags annotating task types,
status, and priorities. Issue board is used to facilitate task
planning and organization, and to visualize progress by trac-
ing issues open/close status. Students need to adhere to fol-
lowing task management guidelines.

• Each member should be allocated with appropriate
amount of work. A team should schedule and balance
the workload among team members, to avoid overload-
ing or underloading.

• Each task should be finished within a reasonable amoun-
t of time. A task is marked as started when the cor-
responding issue is opened, and done when the issue
is closed. Each task is defined with an estimated du-
ration time, usually 1 to 2 days in the project Sprint
backlog. A delay may be caused by unrealistic estima-
tion, too-large task granularity, or technical obstacles,
which should be warned for improvements.

Statistics are collected for teams as well as individuals.
Statistics for team evaluation include the load balance of
issues and time among team members. Delayed issues are
reported separately to attract attentions. Similarly, working
and idle time are also reported to facilitate future workload
allocation.

A metric is defined as follows to measure project progress
of each team. Given a team of n team members and project
duration T , PROGmeasures the percentage of effective time
in the duration of all team members. Ineffective time is count-
ed based on two parts:

• Over-slack time (SLACK), that is, the time of the
period without any task assignments that has a length
longer than expected;

4

Continuous Delivery of Personalized Assessment and Feedback ICSE’18, JUNE 2018, Gothenburg, Sweden

• Delay time (DELAY), that is, the extra time of the
tasks whose durations are beyond the scheduled time.

PROG = max{
nT −

∑n
i=1(SLACKi +DELAYi)

nT
, 0} (1)

Suppose T SLACK is the threshold of tolerable slack
time. The over-slack time for a team member i, SLACKi, is
calculated as follows.

SLACKi =

mi∑
j=1

Freei,j × fi,j

where

• {Freei,j |j = 1, ..,mi} is the set of time intervals that
a team member i has no task assignments;

• fi,j is the tolerable factor of the slack time interval
Freei,j , defined as follows:

fi,j =

{
0 Freei,j ≤ T SLACK

1 Freei,j > T SLACK

Suppose {TASKi,k|k = 1, ..., si} is the set of tasks as-
signed to a teammember i in the project duration, TASK Ci,k

is the actual completion time and TASK Si,k is the sched-
uled time of a task TASKi,k, the total delay time for i,
DELAYi, is calculated as follows.

DELAYi =

si∑
k=1

max{TASK Ci,k − TASK Si,k, 0}

3.2 Commit

Observations on student projects showed that size, comments,
and frequency are three kinds of common problems for code
commits. Beginners tend to push large modifications after
finishing a complicated task, and may push libraries together
with their modifications, such as jquery.js with 10 thousand
lines of code. Abnormal commit size is an indicator of such
abnormal operations.

In addition, each commit needs to contain messages with
enough information and be clearly specified, which is often
omitted by students. Most of commit messages are casual
ones such as “update”, “adding a file”, and “fix a bug”. In-
sufficiently documented comments are useless for teammates
to understand the modification. It is necessary to form the
habit of providing concrete and specific commit messages.

Moreover, there are also abnormal commit frequencies and
quantities. For example, a team may make a large number of
commits frequently short before weekly team meeting, and
then very few during the week. Furthermore, the number
of commits among team members may be imbalanced. In
some extreme cases, the team leader may undertake all the
commits for team members.

Taking these problems into consideration, we defined the
metrics to assess the commit quality and enforce good com-
mit style. Suppose {cmi,j |j = 1, ..., ci} is the set of commits

by a team member i, each commit, cmi,j , is evaluated by
three factors.

• modi,j for the reasonable modification size of each com-
mit. To avoid over-commit, a threshold is defined to
control the size of each commit in terms of added/deleted
lines of code. A commit is reasonable only if its size is
within the defined threshold.

• msgi,j for the reasonable message length of each com-
mit. A commit should be adequately described of its
updates in its message. The length threshold is a basic
indicator. If the comment message of a commit is too
short, it could be a potential insufficient description.

• freqi,j for the reasonable frequency of commits. The
intervals between two consecutive commits are restrict-
ed by upper-bound and lower-bound threshold, to dis-
courage excessive frequent commits in short time, or
over scattered commits which could be an indicator of
inactiveness.

The metric is thus calculated as follows.

COMMITi =

ci∑
j=1

modi,j ×msgi,j × freqi,j (2)

Where

modi,j =

{
1 MLNi,j ≤ T MOD

0 MLNi,j > T MOD

where MLNi,j is the size of the jth commit of team mem-
ber i in term of the number of added/deleted lines of code,
and T MOD is the threshold of reasonable size of a commit.

msgi,j =

{
0 MsgLNi,j < T MSG

1 MsgLNi,j ≥ T MSG

where MsgLNi,j is the length of message of the jth com-
mit of team member i, and T MSG is the threshold of rea-
sonable length of a commit message.

freqi,j =

0 INTVi,j < L FQ

1 L FQ ≤ INTVi,j < U FQ
E FQ−INTVi,j

E FQ−U FQ
U FQ ≤ INTVi,j < E FQ

0 INTVi,j ≥ E FQ

where INTVi,j is the time interval of the jth commit of
team member i, L FQ and U FQ are the lower bound and
upper bound of acceptable time respectively, and E FQ is
the extended interval with progressively decreased score.

Furthermore, we also assess the team as a whole in terms
of workload variance among team members using standard
deviation of commits numbers, as shown in Equation (3).
The result is restricted in [0, 1], where the normalized stan-
dard deviation is compared to distribution (1, 0, 0, 0) with
standard deviation 0.5.

5

ICSE’18, JUNE 2018, Gothenburg, Sweden X. Bai et al.

COMMIT TEAM =
0.5− 1

nC

√∑n
i=1 (COMMITi−C)

2

n−1

0.5
(3)

Where

C =
1

n

n∑
i=1

COMMITi

3.3 Branching

Branching is an effective tool for educating collaborative de-
velopment. Students learn by practice how to divide work,
parallelize development, merge code, and deal with conflict-
s. Appleton et al. analyzed various branching patterns for
parallel software development [3]. It pointed out that even
though branching is widely used in version control systems,
the policies and guidelines may not be well followed, which
could result in misuses of branching and merging mechanism-
s that break parallel development. This is usually a serious
problem for educating version control to junior students. In
this course, we define measurement to assess if a project’s
branching style conforms to guidelines from three perspec-
tives.

• Merge Your Own Code (MYOC). One can only merge
his or her own code with another branch to guarantee
the familiarity with what to be done, which is named
as Merge Your Own Code (MYOC). In a course of
2016 semester, 22 teams out of all 42 teams were de-
tected MYOC violations on 63 merges. Among these
violations, 36 merges were executed by team members
that did not show up in recent commits, while 26 by
members that never committed in the merged branch-
es.

• Early branching. We encourage students to place each
task in one branch, and each branch is dedicated to
one task. In case a branch has multiple independent
tasks, it is suggested to divide the branch (and tasks)
and parallelize the development. This also helps to de-
compose a large task into multiple subtasks which are
distributed to multiple development branches.

• Merge often. This is to enforce staged delivery to have
at least one release in each Sprint iteration. Merge with
conflicts is one of challenges to learn in collaborative
development, and it is necessary to train students with
efficient merge and conflict resolution capabilities.

3.3.1 MYOC. MYOC metric is defined to evaluate the
activeness of a student’s collaboration by counting how often
he/she initiates the merge. For team member i in a team,
suppose TMi is the total merges of his/her branches, and
Mi is the number of merges by him/her on his/her branches,

then the ratio between the two numbers, MYOCIi =
Mi
TMi

,

indicates the activeness of i in the collaborative development.

3.3.2 Early Branching. To provide advices of early branch-
ing, we evaluate the correlations among the commits in a

C1

C2

.

.

.

Cn

C1

C2

C3

C4 C5

C6

· · · Cn

Figure 3: An example of early branching analysis.
The set of commits {C1, C2, ..., Cn} are in one branch.
Analysis shows that {C1, C2} and {C3, C4, C5, C6} are
two separated sets of correlated commits, which are
candidates for dividing into two branches.

branch. For two commits ci and cj , if the files they up-
date overlap, these two commits are considered correlated,
R(ci, cj). Commits that are not correlated in any sense are
recommended to be divided into different branches as they
may address different tasks.

More specifically, a graph is built to analyze the corre-
lations among commits, which is defined as G =< C,R >
where C is set of nodes and R = C × C is the set of edges.
Each commit is represented as a node in the graph. Two
nodes of commits are linked by an edge if they are correlat-
ed, which is measured by the percentage of overlapped files
they update. The linked nodes of commits form a connect-
ed subgraph. In case there exists multiple subgraphs, each
subgraph is a candidate for a new branch.

Figure 3 shows an example of early branching analysis.
Suppose that a branch contains a set of commits {Ci|i =
1, 2, ..., n}. By analyzing the updates of these commits, it de-
tects the following correlations between commits, {R(C1, C2),
R(C3, C4),R(C3, C5),R(C4, C5),R(C4, C6)}. Using the graph
tool, it identifies two independent subgraphsG1=< {C1, C2},
{R(C1, C2)} >, and G2=< {C3, C4, C5, C6}, {R(C3, C4),
R(C3, C5), R(C4, C5), R(C4, C6)} >. The commits in G1 and
G2 respectively are potential updates for different tasks, and
thus the candidates for different branches. It thus suggests
to divide the large task branch into smaller ones.

Given a Sprint period, suppose that the number of all
branches is BR and the number of well-formed branches is
BR W which conform to the Early Branching guideline, the
goodness of branching is measured by the percentage of well-
formed branches over all branches as follows.

EB =
BR W

BR

3.3.3 Merge Often. We take a Sprint iteration as a release
cycle. Hence, it requires that before the Sprint milestone, all
the branches in the iteration need to be merged to the master
branch. Figure 4 shows an example of merge often pattern.
Three branches bifurcate from commit B2, which merge back
to the branch within a Sprint iteration.

6

Continuous Delivery of Personalized Assessment and Feedback ICSE’18, JUNE 2018, Gothenburg, Sweden

B1 B2 B3

C1

D1

B4

C2

D2

B5 B6 B7

C3

D3

Figure 4: An example of merge often pattern. The
branches are encouraged to be merged back in a
Sprint iteration as a release.

Given a project with S Sprint iterations, suppose the num-
ber of Sprints that follow the Merge-Often (MO) guideline
is S MO, the conformation to the guideline is defined as
follows.

MO =
S MO

S

4 OPERATIONAL EXPERIENCES
AND RESULTS

4.1 Implementation

A prototype system was built based on GitLab. Our plat-
form so far has focused on Java and Python projects. For
Java projects, it can support automatic build using Ant8;
code analysis and quality evaluation using Checkstyle9, Find-
bugs10, Pmd11, Simian12, and Sonarqube; unit testing using
JUnit13; and Web application testing using Selenium. For
Python projects, it can support code-based quality evalua-
tion using Pylint14, Pep815, Clonedigger16, and Sloccount17;
unit testing and coverage analysis using Nosetests18.

Various statistics are collected throughout the project pro-
cess. Figure 5 shows some example reports produced by the
system, including the assessment of tasks, commits, Merge
Your Own Code (MYOC), Early Branching (EB), Merge Of-
ten (MO), and overall evaluation. Each assessment is ranked
at 4 levels: wonderful, good, bad, and awful, represented by
4 different colors respectively. The pie charts show the sta-
tistics of all projects in the class from different aspects.

To motivate peer competitions, rankings of individuals
and teams are also reported. Figure 6 shows the Personal
Commits Ranking (PCR) statistics, including total commit-
s, commits by week, and commits by month.

Figure 7 shows the metrics for a project. The radar chart
shows the multi-dimensional quality evaluation, including is-
sues (tasks), commits, MYOC, EB and MO for the whole
team; and individual EB and MYOC for the current user. It

8http://ant.apache.org
9http://checkstyle.sourceforge.net
10http://findbugs.sourceforge.net
11https://pmd.github.io
12http://www.harukizaemon.com/simian
13http://junit.org
14https://www.pylint.org
15https://www.python.org/dev/peps/pep-0008
16http://clonedigger.sourceforge.net
17https://www.dwheeler.com/sloccount
18https://nose.readthedocs.io

Figure 5: Project status statistics of the all projects
in the class. The pie charts show the statistics of
projects at each level for each metric.

Figure 6: Personal commits ranking (PCR), which
lists the top 10 students with the most commits.

Figure 7: Project quality metrics for individual team
and student. The radar chart shows evaluations from
seven perspectives for the current student.

can further show the detailed information of each metric as
well as the explanation and demonstration of the guidelines.

4.2 Students’ Performance

In this paper, we reported the data collected from the De-
vOps platform for 2017 Fall semester during the 64 days of
project development, following a customized Scrum process
with bi-weekly Sprint iterations. There are 141 students en-
rolled in the course, organized into 33 teams participating
11 projects. Altogether 68 code repositories were created in
GitLab, with 3076 issues and 14506 commits throughout the
project lifecycle.

To analyze students’ performance, Table 1 shows the pa-
rameter settings of the metrics.

7

ICSE’18, JUNE 2018, Gothenburg, Sweden X. Bai et al.

Metric Parameter Explanation Setting

Issue(Task) T SLACK The threshold of tolerable slack time. 3 days
Commit T MOD The threshold of the size of updated code in a commit. 200 LOC
Commit T MSG The threshold of the length of a commit message. 20 characters
Commit L FQ The lower bound of commit frequency. 30 minutes
Commit U FQ The upper bound of commit frequency. 1 day
Commit E FQ The extended interval of commit frequency with progressively decreased score. 3 days

Table 1: The Parameter Settings of Metrics

46

29

34

17

11

4

0

10

20

30

40

50

[1,10] [11,20] [21,30] [31,40] [41,50] [51,63]

Number of issues (tasks)

N
u

m
b

e
r

o
f

s
tu

d
e
n

ts

Figure 8: The distribution of workload among stu-
dents. The X-axis is the intervals of number of is-
sues(tasks) and Y-axis identifies the number of stu-
dents at each interval.

4.2.1 Issue(Task). We encouraged students to use issue
management for planning and progress tracing, as discussed
in Section 3.1. At each Sprint during the Scrum process, the
team leader discussed with all members, TA and customer
representatives to identify the set of tasks of the Sprint back-
log, recorded tasks in the system as GitLab issues, and allo-
cated them to each team member. Students were expected
to gradually improve their capabilities of project planning,
workload estimation, and task division of collaborative de-
velopment.

Figure 8 shows the statistics of total issues allocated to
students. About 5% issues were identified but not allocated,
which were mostly discarded features. All students were al-
located tasks with at lest 1 issue. We divided the number of
issues into six intervals, as an approximation of the workload
at different levels from light to heavy. It showed that most of
the students were allocated with less than 30 issues through
the process of 5 iterations/10 weeks, with an average of 1-3
issues per week. We also encouraged the students to trace
the issues to commits, that is, from planned task to code
implementation. However, statistics showed that only about
45% students associated over 50% of their commits to their
issues. Most of the commits were not tagged with issues, and
most of the students were not well accustomed to this guide-
line yet. We intent to improve this in future work, so that
we can have more insights and advices on the granularity of
issues (that is, the workload of tasks) in terms of the size of
code.

Figure 9 shows statistics of the metric PROG in Section 3.1,
the assessment of the percentage of time with well-planned

0.00

0.25

0.50

0.75

1.00

0 20 40 60

Day

P
R
O
G

Figure 9: Assessment of task planning in terms of the
percentage of effective time throughout the project
process, as defined by the metric PROG in Sec-
tion 3.1.

tasks. We are glad to see that the average value increased
throughout the semester, that is, most teams had less slack
time and fewer delayed issues as projects progressed, which
could be a sign of their improved planning and management
abilities.

4.2.2 Commit. We analyzed the number of commits as
well as the quality of commits. Students were expected to
gain good engineering habits from following perspectives: 1)
Adequate code version control, which is evaluated by the
moderate frequency and size of code commits to the GitLab
version control repository. 2) Sufficient documents so that
the update of each commit could be well recorded and com-
municated to teammates.

Figure 10 shows the statistics of total number of commits
by project teams (Figure 10(a)), and by individuals (Fig-
ure 10(b)). We can see that active students/groups commit-
ted as many as ten times of those inactive ones. We could
set up a bottom line (for example, at lest 1 commit per stu-
dent per day during the development period), and pay more
attentions to those most inactive students (for example, s-
tudents with less than 50 commits) in the offline in person
discussions.

Figure 11 shows the statistics of metric COMMIT in Sec-
tion 3.2, a combined quality evaluation of commits. The im-
provements are obvious in general in terms of commit fre-
quency, size, and documents. However, there are still scat-
tered outliers. The process monitoring mechanism could be
improved so that those outliers are warned immediately.

8

Continuous Delivery of Personalized Assessment and Feedback ICSE’18, JUNE 2018, Gothenburg, Sweden

5

12

10

3 3

0

5

10

15

[1,200] [201,400] [401,600] [601,800] [801,1123]

Number of commits

N
u

m
b

e
r
 o

f
te

a
m

s

(a) Commits by team

14

25
23

21

10

16

13

8

11

0

10

20

30

[1,25] [26,50] [51,75] [76,100] [101,125] [126,150] [151,175] [176,200] [201,353]

Number of commits

N
u

m
b

e
r
 o

f
s
tu

d
e
n

ts

(b) Commits by Individual

Figure 10: The number of commits by team and by
individual.

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●● ●●● ●● ●

●

● ●

●

● ●

●

● ●

●

● ●● ●● ●● ●● ●● ● ● ● ● ● ● ● ● ●

●

●● ●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●●

●

●
●

●

●
●

●

●
●

●

●●

●

●●

●

●
●

●

●
●

●

●
●

●

●●

●

●
●

●

●
●

●

●
●

●0.00

0.25

0.50

0.75

1.00

0 20 40 60

Day

C
O
M
M
IT

Figure 11: Assessment of the quality of commits for
each team, in terms of commit frequency, size, and
documents, as defined by the metric COMMIT in
Section 3.2.

4.2.3 Merge Your Own Code. The metric MYOC in Sec-
tion 3.3.1 aims to guide students to be responsible for their
own code and to actively resolve merge conflicts in collab-
orative development. Figure 12 shows that once enforced,
most of students quickly master the skills to follow the guide-
line. In the future, we will further look into the details of
merge conflicts to provide instructions for timely and effec-
tive merge.

4.2.4 Early Branching. Based on our practices of educat-
ing SE projects throughout these years, we observed that
branching is always a difficulty for novices in collaborative

●

●●

●

●

●

●

●●●●●●

●

●●

●

●●

●

●

●

●

●●●●●●

●

●●●

●

●●

●

●

●

●

●●●●●●

●

●●●

●

●●●

●

●

●

●

●

●●●●●●

●

●●●

●

●

●

●●●

●

●

●

●●●●●●

●

●●●●●●

●

●●●●

●

●●●●●●

●

●

●

●

●●●●●●●

●

●●●●●

●

●

●

●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●● ●●●●●●●●●●●●●

●

●●●●●

●

●●●●

●

●

●●●

●

●●●●

●

●●●●

●

●

●●●

●

●●●●

●

●●●●

●

●

●●●●

●

●●●

●

●●●●

●

●

●●●●

●

●●●

●

●●●●

●

●

●●●●

●

●●●

●

●●●●

●

●

●●●

●

●●●

●

●●

●

●

●●

●

●

●

●

●

●●●

●

●●●

●

●●

●

●●

●

●

●

●

●

●●●

●

●

●●●

●

●●

●

●

●●

●

●

●

●

●

●●

●

●

●●●

●

●●

●

●●

●

●

●

●

●

●●

●

●

●●●

●

●●

●

●●

●

●

●

●

●

●●

●

●

●●●

●

●●

●

●●

●

●

●
●

●

●●

●

●

●●●

●

●●

●

●●

●

●

●
●

●

●●

●

●

●●●

●

●●

●

●●

●

●

●●

●●

●

●

●●●

●

●●

●

●●

●

●

●
●

●●

●

●

●●●

●

●●

●

●●

●

●

●
●

●●

●

●

●●●

●

●●

●

●●

●

●

●●

●●

●

●

●●●

●

●●

●

●●

●

●

●
●

●●

●

●

●●●

●

●●

●

●●

●

●

●
●

●●

●

●

●●●

●

●●

●

●●

●

●

●
●

●●

●

●

●●●

●

●●

●

●●

●

●

●
●

●●

●

●

●●●

●

●●

●

●●

●

●

●
●

●●

●

●

●

●●●

●

●●●●

●

●

●
●

●●

●

●●●

●

●●●●

●

●

●
●

●●

●

●●●

●

●●●●

●

●

●
●

●●

●

●●●

●

●●●●

●

●

●
●

●●

●

●●●

●

●●●●

●

●

●
●

●●

●

●●●

●

●●●●

●

●

●
●

●●

●

●●●

●

●●●●

●

●

●
●

●●

●

●●●

●

●●●●

●

●

●
●

●●

●

●●●

●

●●●●

●

●

●
●

●●

●

●●●

●

●●●●

●

●

●
●

●●

●

●●●

●

●●●●

●

●

●
●

●●

●

●●●

●

●●●●

●

●

●
●

●●

●

●●●

●

●●●●

●

●

●
●

●●0.00

0.25

0.50

0.75

1.00

0 20 40 60

Day

M
Y
O
C
I

Figure 12: Assessment of the goodness of merge
habits following the guideline of Merge Your Own
Code, as defined by the metric MYOC in Sec-
tion 3.3.1.

development. Students usually feel confused of when to cre-
ate a branch and then merge back, and are unwilling to man-
age branches. The metric EB as defined in Section 3.3.2 in-
tends to encourage branches by features, and provide advices
on candidates for branches.

Figure 13 shows the statistics of active branches of each
team throughout the weeks. It shows that students gained
the skills of the breakdown of tasks and implementations into
branches for parallel development. Most of the teams can
adequately manage a number of branches at each iteration,
avoiding over-branching at the same time.

●

●

●

● ●●●

●

0

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10

Week

N
u

m
b

e
r
 o

f
b

r
a
n

c
h

e
s

Figure 13: The number of active branches for each
team.

We further analyzed how well the tasks are sufficiently
divided, as measured by the metric EB in Section 3.3.2. To
identify the correlations between commits, we set the thresh-
old of overlapping as 20% such that two commits in a Sprint
are considered correlated if their overlapped files are above
20%, and a link is identified between the two nodes of the
commits in the correlation graph. Figure 14 shows that at
the beginning, most of the students did not use branching
and there were considerable overlaps between team members.
Such chaos during the first two weeks were greatly improved
once the guideline was enforced.

5 DISCUSSION AND FUTURE WORK

Teaching Agile development warrants continuous delivery
of personalized assessment and feedback to project teams

9

ICSE’18, JUNE 2018, Gothenburg, Sweden X. Bai et al.

●●●●● ●●●●● ●●●●● ●●●●● ●●●●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

● ●

●

● ●

●

●
●

● ● ● ●

● ●

● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ● ● ●

●

● ●

● ● ● ● ●

●

●

● ● ●

●
●

0.00

0.25

0.50

0.75

1.00

0 20 40 60

Day

E
B

Figure 14: Assessment of the goodness of branching
habits following the guideline of Early Branching, as
defined by the metric EB in Section 3.3.2.

and individual students, with a frequency that catches up
with iterative, incremental, and cooperative software devel-
opment with continuous deliveries. Towards this direction,
as an important first step, we propose an efficient two-tiered
approach that frees TA from rudimentary and straightfor-
ward problems. 1) Whenever code updates are committed
to GitLab repository, personalized reports, with objective
and well-defined metrics and rankings, are then automati-
cally generated and delivered to the teams and students. In
this way, majority of problems, especially those rudimentary
and straightforward ones, are discovered timely. 2) With the
reports, the discussions between students and TAs are in a
very targeted manner, daily via instant messaging and week-
ly in in-person project meetings, making the best of TAs’
limited time. The system has been in operations since Fal-
l 2014, and our preliminary results indicate this system is
very effective in improving students’ SE skills and reducing
TAs’ workload. We believe that this two-tiered approach is
generally applicable to Agile projects in SE courses.

A key issue in the proposed approach is the properness
of the metrics. Project management and team collaboration
are, to a large extent, based on experiences and personnel
characteristics. In real industry environment, they are great-
ly affected by organizational culture and may differ a lot from
one project/organization to another. It is hard to define u-
nified guidelines and assessment. However, in the education
environment, we need disciplines to systematically train s-
tudents the necessary engineering skills so that they can be
prepared to cope with future large and complex software
development in the real-world.

The paper reported our first attempt to address the needs.
Aware of the differences between industry and education, we
tried to identify the essential guidelines and valuable skills
to train in class. Some of the metrics are suitable for be-
ginners in a controlled course project context, but not for
experienced engineers in an industry-scale project. The met-
rics, though far from perfect yet, are useful tools for process
monitoring and assessment. They provide quantitative views
of the students’ behavior and progress, so that both students
and TA/lectures can get clear understanding of the actual
problems and the directions for improvements. The metrics

can be continually adjusted and improved based on feedback-
s from the class as well as industry.

The research is still in its early stage. It revealed some
interesting problems that we could not know without close
and in-depth progress tracking and data analysis. In the fu-
ture, we plan to continue the efforts from following aspects:
1) To enhance quality assessment by incorporating reports
from various tools such as testing, code analysis, and online
monitoring, and build quality control throughout DevOps
lifecycle; 2) To build more intelligence into our platform for
quality results synthesis, analysis, assessment, and warning.

ACKNOWLEDGMENTS

We would like to thank all the teachers and students who
support the course development. Special thanks to Dr. Wolf-
gang Mauerer and his team for sharing with us Codeface
tools, their knowledge and experiences.

REFERENCES
[1] Lukas Alperowitz, Dora Dzvonyar, and Bernd Bruegge. 2016.

Metrics in Agile project courses. Proceedings of the 38th In-
ternational Conference on Software Engineering Companion -
ICSE ’16 (2016). https://doi.org/10.1145/2889160.2889183

[2] Craig Anslow and Frank Maurer. 2015. An Experi-
ence Report at Teaching a Group Based Agile Software
Development Project Course. In Proceedings of the 46th
ACM Technical Symposium on Computer Science Educa-
tion (SIGCSE ’15). ACM, New York, NY, USA, 500–505.
https://doi.org/10.1145/2676723.2677284

[3] Brad Appleton, Stephen P. Berczuk, Ralph Cabrera, and Robert
Orenstein. 1998. Streamed lines: Branching patterns for parallel
software development. PLoP (1998).

[4] Robert Chatley and Tony Field. 2017. Lean Learning
- Applying Lean Techniques to Improve Software Engineer-
ing Education. 2017 IEEE/ACM 39th International Con-
ference on Software Engineering: Software Engineering E-
ducation and Training Track (ICSE-SEET) (May 2017).
https://doi.org/10.1109/icse-seet.2017.5

[5] Joseph Feliciano, Margaret-Anne Storey, and Alexey Zagalsky.
2016. Student experiences using GitHub in software engineer-
ing courses. Proceedings of the 38th International Confer-
ence on Software Engineering Companion - ICSE ’16 (2016).
https://doi.org/10.1145/2889160.2889195

[6] Phillip A. Laplante. 2006. An Agile, Graduate, Software Studio
Course. IEEE Transactions on Education 49, 4 (Nov 2006),
417–419. https://doi.org/10.1109/te.2006.879790

[7] Máıra Rejane Marques. 2016. Monitoring: An Intervention to Im-
prove Team Results in Software Engineering Education. In Pro-
ceedings of the 47th ACM Technical Symposium on Computing
Science Education (SIGCSE ’16). ACM, New York, NY, USA.
https://doi.org/10.1145/2839509.2851054

[8] Ana M. Moreno, Maŕıa-Isabel Sánchez-Segura, Fuensanta
Medina-Domı́nguez, Lawrence Peters, and Jonathan Araujo.
2016. Enriching traditional software engineering curricula with
software project management knowledge. Proceedings of the 38th
International Conference on Software Engineering Companion
- ICSE ’16 (2016). https://doi.org/10.1145/2889160.2889193

[9] Maria Paasivaara, Jari Vanhanen, Ville T. Heikkila, Casper
Lassenius, Juha Itkonen, and Eero Laukkanen. 2017. Do High
and Low Performing Student Teams Use Scrum Differently
in Capstone Projects? 2017 IEEE/ACM 39th Internation-
al Conference on Software Engineering: Software Engineer-
ing Education and Training Track (ICSE-SEET) (May 2017).
https://doi.org/10.1109/icse-seet.2017.22

[10] Rayene Ben Rayana, Sylvain Killian, Nicolas Trangez, and Ar-
naud Calmettes. 2016. GitWaterFlow: a successful branching
model and tooling, for achieving continuous delivery with mul-
tiple version branches. Proceedings of the 4th International
Workshop on Release Engineering - RELENG 2016 (2016).
https://doi.org/10.1145/2993274.2993277

10

