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ABSTRACT Additive key performance indicators (KPIs) (such as page view (PV), revenue, and error count)
with multi-dimensional attributes (such as ISP, Province, and DataCenter) are common and important in
monitoring metrics in Internet companies. When an anomaly happens to an overall KPI, it is critical but
challenging to localize the root cause, which is one (or more) combination of attribute values in multiple
dimensions. For example, is the total PV decrease caused by the PV decrease from ‘‘Beijing’’ or ‘‘China
Mobile in Beijing’’, or ‘‘Beijing and Shanghai’’? However, this task is very challenging for two major
reasons. First, the PVs of different combinations are interdependent; thus, the PV anomalies at the root
cause can cause the changes of many other PVs at different aggregation levels. Second, there could be tens
of thousands of combinations to investigate in multi-dimensional attribute space. It is a difficulty to find
the root cause from a huge search space. To address the first challenge, our approach HotSpot uses a novel
potential score based on the ripple effect for anomaly propagation that we reveal. To address the second
challenge, HotSpot adopts the Monte Carlo Tree Search algorithm and a hierarchical pruning strategy. Using
the real-world data from a top global search engine, we show that HotSpot achieves a great improvement
on effectiveness and robustness, i.e., 95% of all types of root cause cases using HotSpot (compared with
only 15% using existing approaches) achieves an F-score over 90%. Operational experiences show that
HotSpot can reduce the localization time from more than 1 h in manual efforts to less than 20 s.

INDEX TERMS Anomaly localization, multi-dimensional attributes, huge search space, potential score,
Monte Carlo Tree Search (MTCS), hierarchical pruning.

I. INTRODUCTION
To provide good quality of service, Internet companies all
monitor a collection of key performance indicators (KPIs),
among which additive KPIs (such as page view, revenue,
traffic volume) with multi-dimensional attributes are com-
mon and important ones. For example, page view (PV) of
a website (the number of user accesses per time interval)
is closely related to the website’s revenue, thus should be
closely monitored

The KPI records can have several attributes, such as
Province (the geo-region mapped from the user’s IP),
ISP (user’s access ISP), DC (the data center where the request
is served). Each attribute has a range of distinct values.

Generally, we record the KPI values in every time inter-
val (e.g., every minute) for each distinct combination of
the attribute values, e.g., (Beijing,ChinaTelecom,DC1).
These most fine-grained KPI records, thanks to the KPI’s
additive nature, can be naturally summed up into more
coarse-grained KPIs. For example, all the KPI records
with Province = Beijing and ISP = ChinaTelecom
regardless of DataCenter can be summed up into
(Beijing,ChinaTelecom, ∗), where ∗ is a wildcard.

When an anomaly, e.g., a sudden increase or decrease,
happens to a total KPI (i.e., for (*,*,*)), it is critical but
challenging to quickly localize the root cause, i.e., the ele-
ments which have the most potential to have caused the total
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TABLE 1. Terms.

KPI anomaly, so that operators can take actions to mitigate
the problem. Note that in this paper we only deal with the
case where the total KPI value is anomalous.

The root cause can be one (or more) combination of
attribute values in multiple dimensions. Thus, the major
challenge for root cause localization is the huge search
space for potential root causes. First, the changes in the
root cause, e.g., (Beijing,ChinaTelecom, ∗), can propagate
to more coarse-grained combinations, e.g., (Beijing, ∗, ∗),
(∗, ChinaTelecom, ∗), more fine-grained combinations, e.g.,
(Beijing,ChinaTelecom,DC1), through which other related
combinations, e.g., (∗, ∗,DC1) are also impacted. Second,
the root cause can be a set of multiple values of the same
attribute e.g., (Beijing and Tianjin and Hebei, ∗, ∗) (where
these three geographically adjacent provinces are impacted
by a same failure). The number of such combinations is huge,
e.g., the number of combinations of various province values
in China is 236 − 1.

While the attribute combinations of real-world root cause
cases can be very complex, existing works such as Adtributor
[1] and iDice [2] can only deal with simple cases with much
smaller search space (see §V-F for more details). This paper
proposes an approach, called HotSpot, to automatically
localize the root cause, one (or more) combination of
attribute values, that has made the total value anomalous
for an additive KPI with multi-dimensional attributes.
The main contributions of this paper are summarized as
bellow:
• To deal with the huge search space of root causes,
HotSpot adopts the MCTS approach (the first time in
anomaly localization literature).

• The action value in adopting MCTS is our novel poten-
tial score based on the ‘‘ripple effect’’, which captures
how the change of the KPI value for one attribute
combination (as a cause) can cause other attribute
combinations’ KPI values change (as effects) for
multi-dimensional additive KPIs.

• We propose a hierarchical pruning approach (similar
to the Apriori Principle in spirit) to further reduce the
search space.

• Using the real-world data from a top global search
engine, we show that HotSpot achieves a great improve-
ment when compared with two existing approaches both
on effectiveness and robustness, i.e., HotSpot achieves

F-score over 90% for 95% of all types of cases, while
for existing approaches only less than 15% of all types
of cases have a F-score over 90%.

• Our operational experiences show that HotSpot can
reduce the localization time from more than 1 hour in
manual efforts to less than 20 seconds.

The rest of this paper is organized as follows. In Section 2,
we present the problem statement of anomaly localization.
We show the core idea and the overview of HotSpot in
Section 3, and then present the design of HotSpot in
Section 4. In Section 5, we evaluate the performance
of HotSpot using experiments driven by real-world data.
In Section 6, we present the operational experience of
HotSpot. Discussion, related work and conclusions are pre-
sented in Sections 7, 8 and 9, respectively.

II. PROBLEM DEFINITION
We first introduce some terminologies (summarized
in Table 1) in our paper, and then present the problem
statement of anomaly localization and its challenges.Without
loss of generality, throughout the paper, we will use PV as
our primary example of additive KPI, and Province, ISP,
Data Center, Ad Channel (An ad attribute that reflecting
the positions), including cardinalities, as example attributes.
Note that these are examples for better presentation clarity.

A. IMPORTANT TERMS
A PV record at the website can have several attributes. For
example, ‘‘10:00:01 (Timestamp); Beijing, Mobile, DC1,

Channel1’’ is a record, and Beijing, Mobile, DC1 and
Channel1 are the candidate values according to four attributes
respectively, i.e., Province (P), ISP (I), Data Center (D) and
Channel (C), where P = {p}, I = {i}, D = {d}, C = {c}
are the set of 36, 10, 6, 10 distinct values of province,
ISP, data center, and ads channel, respectively. The values
of P and I are based on the client IP and resolved by using a
IP-to-geolocation database and BGP table, respectively. Each
ISP at each province is a standalone company, thus the same
ISP names at different provinces often behave differently.
Channels are the labels for different ad markets, e.g., medi-
cal or education. Table 2 shows some examples of PV records.

A vector of the distinct attribute value combination is
called an element in this paper, denoted as e = (p, i, d, c),
where (p ∈ P or p = ∗), (i ∈ I or i = ∗), (d ∈ D
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TABLE 2. PV records.

TABLE 3. Elements and PV values.

or d = ∗), and (c ∈ C or c = ∗), ∗ is the wildcard.
When e = (p, i, d, c), (p 6= ∗, i 6= ∗, d 6= ∗, c 6= ∗),
we count the number of the PV records according to an ele-
ment e in every time scale (e.g., the scale is eachminute in this
paper), and call this numberPV value of the element, denoted
by v(e), i.e., v(e) = # records for e at a specific time scale.
Table 3 shows the PV values corresponding to the PV records
in Table 2.

The collection of all these most fine-grained elements,
like the ones in Table 3, are denoted by LEAF= {e|e =
(p, i, d, c), p 6= ∗, i 6= ∗, d 6= ∗ c 6= ∗}. The other elements,
when one or more attribute value is ∗, can all be summed up
based on the elements in LEAF . For instance, for the three
elements at 10:00 (from 10:00:00 to 10:00:59) as in Table 3,
we can obtain the values of more coarse-grained elements,
e.g.,

v(Beijing,Mobile,DC1, ∗) = 2+ 1 = 3,

v(Beijing, ∗, ∗, ∗) = 2+ 1+ 3 = 6.

Based on the different degree of aggregation, we categorize
the elements into different sets, and each set corresponds to
a cuboid. A cuboid is a sub-cube of a data cube which is
a data structure that allows data to be modeled and viewed
in multiple dimensions [3], e.g., the elements of LEAF con-
stitute a 4-d data cube, as shown in Fig. 1. The cuboid is
denoted as Bi (i can be an arbitrary combination of P, I , D
and C), e.g., BP is a 1-d cuboid and BP,I ,D is a 3-d cuboid.
The element set of a cuboid Bi is denoted as E(Bi), e.g.,
E(BP) = {e|e = (p, ∗, ∗, ∗), p 6= ∗}, E(BP,I ,D) = {e|e =
(p, i, d, ∗), p 6= ∗, i 6= ∗, d 6= ∗}, LEAF = E(BP,I ,D,C ).
Moreover, we structure the cuboids and label layer IDs

for them, as shown in Fig. 2. In addition, we say BP or BI
is a father cuboid of BP,I , and BP,I is a child cuboid of
BP or BI . Accordingly, the elements of the cuboids, such as

FIGURE 1. A PV system of a 4-d data cube, represented as a series of 3-d
data cubes.

FIGURE 2. Cuboids in a 4-d data.

TABLE 4. A simple PV structure.

(p, ∗, ∗, ∗)(∈ E(BP)) and (p, i, ∗, ∗)(∈ E(BP,I )), also have the
father-and-child relationships.

We denote e′ = (p′, i′, d ′, c′) as a descendant of
e = (p, i, d, c) iff (e 6= e′) and (p′ = p or p = ∗) and
(i′ = i or i = ∗) and (d ′ = d or d = ∗) and (c′ = c or c = ∗).
Desc(e) = {e′|e′ is a descendant of e}. Desc′(e) = {e′|e′ =
(p′, i′, d ′, c′) ∈ LEAF, e′ ∈ Desc(e)}. If e ∈ LEAF , then
PV value v(e) is directly measured. Otherwise,

v(e) =
∑

e′∈Desc′(e)

v(e′) (1)

e.g.,

v(Beijing, ∗, ∗, ∗) =
∑
j,k,h

v(Beijing, ij, dk , ch), (2)

Total PV = v(∗, ∗, ∗, ∗)=
∑
i,j,k,h

v(pi, ij, dk , ch). (3)

B. PROBLEM STATEMENT
The additive KPI (with multi-dimensional attributes)
anomaly localization problem is to identify the cuboid and
its elements that most potentially have caused the anomalous
change of the total KPI value.
To clarify the problem, we take a simple example in Table 4

and Table 5. Table 4 shows a 2-d attributes PV structure.
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TABLE 5. Example for problem statement.

There exist two 1-d cuboids, BP and BI , and one 2-d
cuboid BP,I . Each cuboid contains a set of elements, i.e.,
E(BP) = {(Beijing, ∗), (Shanghai, ∗), (Guangdong, ∗)},
E(BI ) = {(∗,Mobile), (∗,Unicom)}, LEAF = E(BP,I ) =
{(Beijing,Mobile), (Shanghai,Mobile), (Guangdong,Mobile),
(Beijing,Unicom), (Shanghai,Unicom), (Guangdong,
Unicom)}. v(p, i) are shown in the cells of the table, e.g.,
v(Beijing,Mobile) = 20, v(Beijing, ∗) = 30.
When the total PV is anomalous, the PV changes are shown

in Table 5. In each cell, the first number is the forecast PV
value f (p, i), and the second is the actual PV value v(p, i)
(how to detect the total PV and calculate the elements’
forecast values will be introduced in §IV-A). The forecast
value of total PV is 100, while its actual PV value is only
75 (the bottom right corner of Table 5). Hence an alert is
generated because of the anomalous change of the total PV
(v(∗, ∗)=75 is much smaller than f (∗, ∗) = 100) that triggers
anomaly localization.

Regarding the three cuboids, BP, BI and BP,I , they can
express the PV KPI from different perspectives. When the
total PV is changed anomalously, each of these three cuboids
is impacted. As shown in Table 5, there are some anomaly
elements in each cuboid (the shaded cells). In reality, opera-
tors need to determine which cuboid and which elements of
this cuboid are the most potential root cause for this anomaly.
Then they can initiate the attempt to fix the anomaly and
mitigate loss. Therefore, the problem of anomaly localization
for additive KPIs can be restated as follows:
Effectively and efficiently identify the most potential root

cause, i.e., a subset of elements of one specific cuboid Bi, for
a total KPI value anomaly. The root cause set RSet ⊆ E(Bi).
Note that this definition allows the multiple elements

within the same cuboid as the root cause set. For
instance, the root cause set of the example in Table 5 is
RSet = {(Beijing, ∗), (Shanghai, ∗)}. However, this defini-
tion excludes the cases where there are simultaneous root
causes in multiple cuboids, which is extremely rare in real-
ity. Also note that we only deal with the case where total
KPI value is anomalous.

C. CHALLENGES
There are mainly two challenges for our anomaly localization
problem.

How to measure the potential of an element set to be
the root cause is not easy. To localize the most potential set
to be the root cause, we have to define a value function to
measure the potential of each set. However, some intuitive
metrics, e.g., change or change proportion, do not work

well. We denote the change of the PV value of an element
by h(e), and it can be calculated by h(e) = f (e) − v(e).
The change of a set S of elements is h(S) =

∑
h(e),

e ∈ S. Now consider the example in Table 5. The total PV is
changed by h(total) = f (total)−v(total) = 100 − 75 = 25.
The shaded cells are the changed elements. Consider the
two sets, S1 = {(Beijing, ∗), (Shanghai, ∗)} and S2 =
{(∗,Mobile), (∗,Unicom)}, in cuboids BP and BI respec-
tively. We find that the changes of the two sets are equal,
i.e., h(S1) = h(S2) = 25, and this change can cover the
total PV change 100%. So the change or change proportion
(change proportion, denoted as r , i.e., r(e) = h(e)

h(total) , here
means 100%) cannot distinguish which set is more potential
to be the root cause, but in reality S1 is the true root cause that
should be more ‘‘potential’’ than S2. Hence, it is not easy to
find an appropriate approach to measure the potential of an
element set. For this reason, we need to define a potential
score (ps) that canmeasure the potential degree of a set, which
will be elaborated in Section III and IV.

There are too many sets that need be compared.
As mentioned above, we will define a potential score to
measure how potential an element set is to be the root
cause. We aim to find the subset of each cuboid with
the largest potential score. In addition, we can tell that in
advance, the potential score of elements are non-additive,
i.e., ps({e1, e2}) 6= ps({e1}) + ps({e2}). Thus we need to
calculate and compare all subsets for each cuboid in principle.
That is, for each cuboid, we need to list all the subsets
exhaustively and calculate their potential scores. Here ‘‘to
list all the subsets exhaustively’’ is rather complicated. E.g.,
in Table 5 the cuboid BI has two elements, i.e., E(BI ) =
{(∗,Mobile)}, {(∗,Unicom)}, so three sets can be listed,
{(∗,Mobile)}, {(∗,Unicom)} and {(∗,Mobile), (∗,Unicom)}.
Actually, if a cuboid has n elements, the number of all pos-
sible subsets will be 2n − 1, except ∅. In practice, n can be
very large, even more than tens of thousands. For instance,
let n be 100, then the set number will be 2100 − 1. Thus it is
too large of a set space to be able to search and calculate each
potential score.

III. CORE IDEA AND OVERVIEW
To tackle the two challenges mentioned in Section II-C,
we need to do: 1) Propose an function tomeasure the potential
of element sets to be the root cause; 2) Find an efficient
method to search all possible sets (to be the root cause). In this
paper, we propose Potential Score as the metrical function,
and apply Monte Carlo Tree Search (MCTS) algorithm and
hierarchical pruning strategy to overcome the huge search
space problem. We briefly introduce them next.

A. POTENTIAL SCORE FOR MEASURING THE
POTENTIAL OF SETS
In our anomaly localization problem, ametric that can be used
to ‘‘globally’’ compare the root cause ‘‘potential’’ of different
element sets. However, as shown in the first challenge, such a
metric is not easy to develop and naive metrics do not work.
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Our idea for this Potential Score is based on the following
intuition: when the KPI value at a root cause element changes,
all its descendant LEAF elements’ KPI values also change
accordingly. Thus the ‘‘potential score’’ of a candidate root
cause element is then to gauge the difference between the
expected and actual changes of this element’s descendant
LEAF elements. See more details in §IV-B.2. In addition,
MCTS needs Potential Score as a value function to guide the
searching.

B. MCTS AND HIERARCHICAL PRUNING FOR
EFFICIENTLY SEARCHING
The huge search space in our problem requires an effec-
tive and efficient searching algorithm. Our intuition in this
paper is to adopt some advanced algorithm that are known
to be good at searching in huge space, instead of developing
organic heuristic algorithm as previous works did with their
simpler anomaly localization within much smaller search
space [1], [2]. Inspired by AlphaGo’s successful adoption of
MCTS in Go game [4], [5], the core idea of this paper is
thus to adopt MCTS as the base algorithm in our anomaly
localization solution. However, there are still a remaining
challenge in adoptingMCTS andwe now summarize our core
ideas to address them.

From Fig. 2 we can see that as we go from lower layer to
higher layer, the number of elements n in a cuboid becomes
larger and larger. For example, there are 36 elements in BP,
36*10 in BP,I , and 36*10*6*10 for BP,I ,D,C . Recall that the
root cause set is one of the (2n − 1) subsets of a cuboid.
Searching such a huge space is no easy task even for MCTS.

To future reduce the search space, HotSpot applies a
hierarchical pruning strategy. The basic idea is that, after
searching lower layers, HotSpot prunes some elements
(in higher layers) that is unlikely to be root cause elements.
The intuition is that if a father element has a very low potential
score, each of the children elements is unlikely to be a root
cause element , and, thus can be pruned. This approach in
spirit is very similar to the Apriori Principle in Association
Rule Mining [3]. We call our pruning approach hierarchical
pruning because its pruning policy utilizes layer hierarchy
information. See more details in §IV-D.

C. OVERALL APPROACH
The core ideas of HotSpot are summarized as follows.
We consider this anomaly localization as a search problem
with a huge space; Adopt MCTS as our base searching
algorithm; Propose a potential score metric (with physical
significance in anomaly localization) as the potential measure
for each set and the value function in MCTS; Apply a hier-
archical pruning approach (similar to the Apriori Principle
in spirit) to future reduce the search space. Searching starts
from layer 1 and is done layer by layer, and MCTS is applied
within each cuboid, as shown in Fig. 3.

FIGURE 3. The overview of HotSpot.

IV. DESIGN OF HotSpot
This section presents the detailed design of HotSpot. HotSpot
searches the sets of cuboids layer by layer, i.e., from layer 1
to layer L (L is the number of layers). For each cuboid
of a given layer, HotSpot applies MCTS to find its subset
with the largest potential score (ps), which is called best set
(abbreviatedBset) of this cuboid. When going from a layer to
the next layer, hierarchical pruning is used. We repeat this
process until layer L is searched, or the root cause set RSet
(ps(RSet) > PT ) is obtained, where PT ( ps Threshold) is
a threshold that we think it is large enough to be regarded
as the root cause set when a set with a ps > PT . The final
output RSet is the BSet with the largest ps among all BSets
generated by the algorithm. Next we describe a method to
detect the total KPI and forecast the elements in this section.
Then we present each component of HotSpot, i.e., potential
score, MCTS and hierarchical pruning.

A. ANOMALY DETECTION AND FORECAST
HotSpot needs an anomaly detection algorithm 1) to
detect anomalies in the total KPI, and 2) to calculate the
forecast values of other elements (see §IV-B for more
details).

We adopt a statistical algorithm which has been widely
used in the industry for anomaly detection [6] on the
total KPI. The mean (µ) and the standard deviation (σ ) are
calculated for each time interval (in our case, each minute)
of the week, where µ is regarded as the forecast value. The
thresholds (Tl and Tu stand for the lower and upper thresh-
olds, respectively) are defined as follows:

Tl = µ− c× σ, Tu = µ+ c× σ (4)

where c is a parameter that determines the degree of the upper
and lower thresholds (usually set as 2.0) [6]. Note that the
thresholds are updated periodically. An anomaly is detected
if the actual value is beyond the thresholds. This algorithm
is suitable in our scenario because 1) it fits very well with
additive KPI data for most of additive KPI data is periodic,
and 2) it is computationally efficient.
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TABLE 6. An anomalous element (Beijing, ∗) for PV.

B. POTENTIAL SCORE
1) RIPPLE EFFECT
We use a new anomaly case in Table 6 to illustrate how the
KPI change at the root cause element is propagated to other
elements according to the ‘‘ripple effect’’ that we summarize.
The PV of (Beijing, ∗) is decreased from 30 (f (Beijing, ∗))
to 12 (v(Beijing, ∗)), and (Beijing, ∗) is the only root cause
element in this case. Since v(Beijing, ∗) is aggregated by
its descendant elements, v(Beijing, Mobile) and v(Beijing,
Unicom), they must have changed correspondingly. Note
the change value of them, h(Beijing, ∗) = 18, h(Beijing,
Mobile) = 12 and h(Beijing, Unicom) = 6. We can get that
the actual value v(Beijing,Mobile) = 8 equals to its propor-
tional share according to the formula f (Beijing,Mobile) −

h(Beijing, ∗) ×
f (Beijing,Mobile)
f (Beijing, ∗)

= 20 − 18 ∗
20
30

.

In addition, h(Beijing,Mobile) in turn contributes to the
change in v(∗, Mobile).
The above example illustrates how a root cause element

affects its descendant elements (in LEAF) and other elements
which share a common descendant element with it. Generally,
when the value of a root cause element increases or decreases,
it obeys the ripple effect property as follows:
Let x denote an element that is not in LEAF, i.e., x /∈ LEAF .

Let x ′i denote the descendant elements of x in LEAF , i.e.,
x ′i ∈ Desc

′(x). When the PV value of x changes by h(x), i.e.,
h(x) = f (x) − v(x), x ′i will get its share of h(x) according to
the proportions of their forecast values, i.e.,

v(x ′i ) = f (x ′i )− h(x)×
f (x ′i )

f (x)
, (f (x) 6= 0). (5)

Then all other elements e who are ancestors of x ′i are updated
using Eq. 1.

The above ripple effect describes the situation that the
root cause contains just one element. When it comes to a set
(two or more elements), we can reuse the property for each
element.

2) POTENTIAL SCORE
The ripple effect reveals how a root cause set affects many
other elements’ values. Therefore, to measure the potential
of a set to be the root cause, we propose to 1) assume that
the set S is the root cause, 2) deduce new PV values of the
descendant elements in LEAF based on the ripple effect, and
3) compare all the actual PV values with the newly deduced
PV values of LEAF elements. The closer the two kinds of
values are, the more potential the set has to be the root cause
set.

If yi ∈ LEAF , we denote the newly deduced PV values
of an assumed root cause set S with a(yi). if yi /∈ Desc′(S),
a(yi) = f (yi). Let Ea be the vector of a(yi), i.e., Ea =
[a(y1), a(y2), a(y3), ..., a(yn)], where n is the element count
of LEAF. Similarly, let Ev = [v(y1), v(y2), v(y3), ..., v(yn)],
Ef = [f (y1), f (y2), f (y3), ..., f (yn)]. Then we define the Poten-
tial Score (ps) of a set S:

Potential Score = max(1−
d(Ev, Ea)

d(Ev, Ef )
, 0) (6)

where d(Eu, Ew) represents the distance of the vectors Eu and Ew.
Here we adopt the Euclidean distance:

d(Eu, Ew) =
√∑

i

(ui − wi)2. (7)

The potential score of a set ranges from 0 to 1, i.e., [0,1]. If a
set has a higher score, it will be considered to have higher
potential to be the root cause.

Above definition of potential score is ‘‘global’’ in the sense
that any two element sets can compare their potential scores
to see which one has more potential. This serves a good value
function necessary in MCTS.

When two element sets have the same potential score,
we follow a ‘‘succinctness’’ principle. i.e., the one with less
number of element wins, either following the Occam’s razor
principle [1] or because the elements of one set are collec-
tively the ancestors (preferred as root cause) of those in the
other.

3) AN ILLUSTRATING EXAMPLE
Now we illustrate how to find the root cause based on
potential score for the case in Table 5. The cuboids are
BP, BI and BP,I . The best set of each cuboid (the sub-
set with the largest potential score of this cuboid) will
be found at first. Next we choose the root cause set
by comparing the best sets. Ey is denoted in this order
[(Beijing,Mobile), (Shanghai,Mobile), (Guangdong,Mobile),
(Beijing,Unicom), (Shanghai, Unicom), (Guangdong,Uni-
com)]. Then Ef = (20, 15, 10, 10, 25, 20), Ev = (14, 9, 10, 7,
15, 20). For the cuboid BP, it contains three elements
(Beijing, ∗), (Shanghai, ∗) and (Guangdong, ∗), so all the
subsets are Sp1 = {(Beijing, ∗)}, Sp2 = {(Shanghai, ∗)},
Sp3 = {(Guangdong, ∗)}, Sp4 = {(Beijing, ∗),
(Shanghai, ∗)}, Sp5 = {(Beijing, ∗), (Guangdong, ∗)}, Sp6 =
{(Shanghai, ∗), (Guangdong, ∗)} and Sp7 = {(Beijing, ∗),
(Shanghai, ∗), (Guangdong, ∗)}. Take the set Sp1 as an
example, using Eq. (5), we can get the deduced PV values,
Ea = (14, 15, 10, 7, 25, 20). Then the ps can be obtained,
ps(Sp1) = 0.13. Actually, we can find that both Sp6 and Sp7
have the largest ps, ps(Sp6) = ps(Sp7) = 1. Considering
the goal of succinctness, Sp6 is the best set in BP. Similarly,
we can obtain two other best sets for BI and BP,I , Si3 =
{(∗,Mobile), (∗,Unicom)} with ps(Si3) = 0.47 and Spi1 =
{(Beijing,Mobile), (Beijing,Unicom), (Shanghai,Mobile),
(Shanghai,Unicom)}with ps(Spi1) = 1. Comparing the three
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best sets, Sp6 is the result set with the largest ps and the most
succinctness.

The example above illustrates our core idea of using poten-
tial score to identify the root cause set. Actually, the elements
are too many so that the number of possible sets is extremely
massive, especially in the cuboids of higher layers. To handle
this problem, we apply MCTS algorithm and hierarchical
pruning strategy which will be introduced next. At the same
time, using the two methods can help in finding the succinct
result.

C. MCTS ALGORITHM
For a given cuboidB, wewant to obtain the best set (the subset
with the largest potential score of this cuboid). Suppose there
are n elements in E(B). The search space within B for the root
cause set is 2n − 1, which apparently can be very large for a
large n. HotSpot adoptsMCTSmainly to tackle this challenge
of search space explosion.

MCTS is a heuristic method for searching optimal deci-
sions in a given domain by taking random samples in the
decision space and building a search tree according to the
results from existing random examples. At the very high-
level, MCTS tries to balance the exploitation along those
promising branches and the exploration along those unex-
plored branches. It has been widely used in the Artificial
Intelligence (AI) field for domains that can be represented as
trees of sequential decisions, particularly games and planning
problems [4], such as AlphaGo [5].

In MCTS, each node represents a state s (the root can be
regarded as ∅). An action space A(s) contains all the legal
actions that can be taken at s. The algorithm can move from
one state s to another by taking a legal action, named a ∈ A(s),
via the edge (s, a). There can be variables associated with an
edge, used by the algorithm to indicate the ‘‘value’’ of taking
action a at state s.

We adopt MCTS to our anomaly localization problem in
a cuboid as follows. We first calculate ps(e) for each e in
this cuboid, and rank all e according to ps(e). Each state
s corresponds to the candidate root cause set S(s) that is
currently being explored. N (s) is the number of times s has
been visited. We setup three variables for each edge (s, a).
N (s, a) is visit count, i.e., the number of times that edge (s, a)
has been visited. ps(S(s)) is the potential score of set S(s).
Suppose s transitions to s′ following (s, a). Then edge (s, a)’s
action value Q(s, a) = maxu∈{s′}∪descendent(s′) ps(S(u)), which
equals the maximum potential score of s′ and its descendant
nodes in the tree.Q(s, a) is initialized to be ps(S(s)) for each s.

Now we illustrate the four steps of a MCTS iteration in our
anomaly localization. Suppose that at the beginning of the
current iteration, the state tree is as shown in Fig. 4(a).

a) Selection. The goal of this step is to select a node from
the current state tree to be expanded. Each time when this
step is executed, the tree traversal always starts with the root
state. Assume that we have advanced to the current state s in
this selection step. If all the actions in A(s) have been visited
in previous iterations, then an action a is selected from the

FIGURE 4. Monte Carlo Tree Search in HotSpot.

set of available actions A(s) by using the Upper Confidence
thresholds (UCB) algorithm [7], shown as Eq. 8.

a = argmax
a∈A(s)

{Q(s, a)+ C

√
lnN (s)
N (s, a)

}. (8)

Q(s, a) is the value of taking the move a. The higher the
value of Q(s, a), the larger the chance of move a is selected
in this selection step, which is the exploitation mechanism
in MCTS. The second part of the equation is just the stan-
dard UCB mechanism for exploration. The balance between
exploitation and exploration can be changed by modifying C .
A commonly used value of C is

√
2 [8], which we choose in

this paper, or it can be chosen empirically in practice.
In case there is an action a ∈ A(s) that has not been

explored at all, Eq. 8 cannot be applied since N (s, a) = 0.
Instead, we assign a probability of taking unvisited
actions to be R = (1 − Q(s, amax)), where amax =
argmaxa∈A(s)∩N (s,a)=0 Q(s, a).

The selection step starts at the root of the tree, and stops
when a leaf state is chosen according to Eq. 8 or an unvisited
action is selected. E.g., in Fig. 4(a) along with the bold
edges, the selection step stops when the leaf state {e1, e3} is
selected.

b) Expansion. After a state s is selected in the selec-
tion step, we then expand the Monte Carlo Tree by adding
a new node s′, where S(s′) = S(s) ∪ {e∗} and e∗ =
argmaxe∈{e1,e2,...,en}−S(s) ps(e). We choose e∗ to have the
largest ps(S) value of the remaining elements rather than
choosing e∗ randomly. For example, in Fig. 4(b), s (where
S(s) = {e1, e3}) is selected, and then e∗ = e4 is added to
get s′ where S(s′) = {e1, e3, e4}.

c) Evaluation. To initialize the new node after expansion
(e.g., {e1, e3, e4} in Fig. 4(c)), we calculate its ps, Q and N .
d) Backup.Action valuesQ and visit count N on all nodes

along path from s′ to the root are updated, as illustrated by
the bold arrows in Fig. 4(d). Recall the definition of Q, along
the path, we update the Q of a father only when the child’s
Q is greater than the father’s.
Localizing the root cause set in a cuboid. We apply

MTCS in each cuboid, for which we iteratively perform the
above four steps until at least one of the following three
conditions occur:

1) A best set is found, i.e., BSet = S if ps(S) > PT ;
2) All the available nodes of the set are expanded;
3) The iteration time is greater than a maximum num-

ber M , which is configured empirically.
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Under both the second and third terminating conditions,
if we have not obtained a set whose ps is greater than PT ,
we will return the BSet with the greatest ps as the RSet .

D. HIERARCHICAL PRUNING
In order to further reduce the search space for the cuboids in
higher layers, HotSpot applies a hierarchical pruning strategy.
The basic idea is that, HotSpot searches the cuboids layer by
layer, i.e., from layer 1 to layer L. After searching a lower
layer, it prunes some elements in the higher layers that is
unlikely to be root cause elements.

For each cuboid B of layer l (1 6 l < L), we can obtain
the best sets (the subset with the largest potential score of
this cuboid) BSetl,B using the MCTS algorithm. Our intuition
is as follows. If an element (p1, i1, ∗, ∗) in layer l + 1 has
a high potential score, its father elements (p1, ∗, ∗, ∗) and
(∗, i1, ∗, ∗) in layer l will also have a relatively high potential
score. Therefore, if a father element has a very low potential
score, each of the children elements is unlikely to be a root
cause element, although there can be rare cases where a
children element a does have a potential score higher than
its father element’s but some other children element b ’s PV
changes cancel off a’s effect on the father’s potential score.
As a result, if an element in layer l is not in BSetl,B, HotSpot
chooses to prune all its children elements. This approach in
spirit is very similar to the Apriori Principle in Association
Rule Mining [3]. We call our pruning approach hierarchical
pruning because its pruning policy utilizes layer hierarchy
information.

TABLE 7. Example for hierarchical pruning.

We take an example in Table 7 and illustrate our hierarchi-
cal pruning approach in Fig. 5. Suppose we are in layer 1,
and the best sets obtained using MCTS are BSet1,BP =
{(Fujian, ∗),(Jiangsu, ∗)} with ps(BSet1,BP ) = 0.50, and
BSet1,BI = {(∗,Mobile), (∗,Unicom)} with ps(BSet1,BI ) =
0.32. When searching cuboids in layer 2, we prune the ele-
ments (Zhejiang, Unicom) and (Zhejiang,Unicom) because
their father element (Zhejiang, ∗) is not in the BSets of
layer 1. Therefore, we only need to search the remaining
four elements for BP,I . This way, the number of potential
sets will be reduced from 63 to 15 (26 − 1 to 24 − 1).
Then using MCTS again in layer 2, we obtain the RSet =
BSet2,BP,I = {(Fujian, Mobile), (Jiangsu, Unicom)}, where
ps(BSet2,BP,I ) = 1.

E. THE OVERALL ALGORITHM
We now summarize our overall HotSpot algorithm, whose
pseudo code is shown in Algorithm 1. HotSpot takes
the PV values of elements, a potential threshold PT and

FIGURE 5. Hierarchical pruning for example in Table 7.

TABLE 8. The cuboids across four layers.

a maximum iteration number M as inputs. It starts with
layer 1. For each cuboid of a given layer, HotSpot applies
MCTS to find its best set. When going from a layer to the
next layer, hierarchical pruning is used. We repeat this pro-
cess until layer L is searched, or the root cause set RSet
(ps(RSet) > PT ) is obtained. The final output RSet is the the
BSet with the greatest ps among all BSet generated by the
algorithm.

V. EVALUATION
In this section, we evaluate the performance of HotSpot using
comparison experiments driven by synthetically injected
anomalies on top of real-world PV data.

A. DATASET
Nowwe introduce the dataset in our evaluation.We collect the
PV records from a top global search engine for nine weeks.
The data has a periodicity of one week. The last week data
is used for injecting anomalies and testing, and the former
eight weeks data is used as historical data for calculating
the mean (µ) and the standard deviation (σ ) (mentioned
in §IV-A). The number of PV records is about 10.8 billion
everyday. As aforementioned, a record can be ‘‘10 : 00 : 01;
Beijing, Mobile, DC1, Channel1’’, and the granularity of a
timestamp is second. Each record has four attributes, which
are P, I, D and Channel C. Recall that we can calculate the
PV values of LEAF elements by counting the corresponding
records for each time interval (the interval is one minute
here). Then the PV values of each cuboid’s elements can be
aggregated using Eq. 1. Table 8 shows all the 15 cuboids in
this dataset and the number of elements in each cuboid (in the
parenthesis).
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Algorithm 1 HotSpot
Input:

All the PV values of elements
PT: Potential Threshold
M: Maximum number of Iteration

Output:
RSet: Root cause set
procedure Anomaly localization:

The total PV is found anomalous.
// The strategy of hierarchical pruning
for layer l in [1,L] do // L is maximum ID of Layer

// Parallel Execution in each cuboid
for each cuboid Bj of current layer l do

Calculate Potential Scores ps(ek ) of each ele-
ment ek

Sort ek in a descending order of ps(ek )
// i is the number of iteration now, and be

initialed 0
i = 0
// E is the list of sorted elements
// BSetl,j is the best set of Bj in layer l
To find BSetl,j of E by MCTS:
while True do

Choose a set use UCB algorithm
if i > M then

break
end if
if ps(set) > PT then

RSet = set
return (RSet)

end if
i = i+ 1

end while
Obtain BSetl,j
Prune ec in layer l + 1 whose father ef are not
in BSetl,j
if All the ec in layer l + 1 are pruned then

break
end if

end for
end for
// Choose RSet form BSetl,j with the largest ps
ps(RSet) = Max{ps(BSetl,j)}
return (RSet)

end procedure

B. INJECTING SYNTHETIC ANOMALIES
To thoroughly evaluate HotSpot and compare it with other
approaches, ideally we would like to use the set of anoma-
lies that cover the entire parameter space. For this purpose,
the anomalies in the real data set is often too few and the
root causes of them are often not comprehensive (coverage
of various layer IDs and the number of elements in the root
cause set). Instead, similar to many previous works (e.g., [9]),

FIGURE 6. The original and smoothed values of an element.

FIGURE 7. Smoothed values with synthetic anomalies and noises.

we smooth the data to get ride of the major fluctuations in
the existing data of the elements, and then inject synthetic
anomalies into the last week’s data. There are four steps in
anomaly injection.

First, for each LEAF element, we smooth the data using
moving average method Second, we add Gaussian noises
onto the smoothed LEAF elements’ data using the following
equation v∗ = v+α∗N (0, σ 2), where σ is the standard devia-
tion value and α is chosen to make the anomalies obvious. All
the other elements can then be calculated using Eq. 1. Fig. 6
shows the original and the smoothed values of an example
element. Third, for an injected anomaly at a specific element
(at the last week), we use the ripple effect to ‘‘distribute’’
the difference between the forecast value and the anomalous
value to its descendant LEAF elements, with Gaussian noises
added. The anomalies injected are spikes of multiple minutes
(considering the monitoring interval is minute), during which
anomalies are detected and the anomaly localization are
conducted.

Fourth, we use Eq. 1 to aggregate the LEAF elements to
obtain all other elements’ PV values. Fig. 7 shows the values
after injecting anomalies and noises.

C. INJECTING ROOT CAUSE CASES
A root cause case, i.e., a root cause set, can be in any
layer, and it usually contains a certain number of elements.
Obviously, the number of elements and the position (i.e., in
which layer) of the anomaly case can significantly impact the
computational cost and the accuracy of the anomaly local-
ization methods. As aforementioned, there are four layers
in our dataset. While HotSpot can handle root cause set of
n elements, in the following evaluation we limit n to be
up to 5, which is sufficient to show the improvement over
previous work. Hence there are 20 different types of cases,
i.e., type 1: ‘‘layer 1 and 1 element in each case’’, type 2:
‘‘layer 2 and 1 element in each case’’, ..., type 20: ‘‘layer 4 and
5 elements in each case’’.
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Then, how many cases should be assigned to each type?
Obviously, the actual case distribution can vary for different
application scenarios. In our scenario, the number of actual
cases is too few to help answer this question. We opt to
equally inject a number of cases for the 20 types (400 cases
for each type), thus the results here show HotSpot’s perfor-
mance under various conditions rather than the performance
under the realistic anomaly distribution (which unfortunately
is hard to get).

D. METRICS AND EXPERIMENTAL HARDWARE
We use Precision, Recall and F-score metrics to evaluate the
accuracy of HotSpot. The F-score is defined as F − score =
2 ∗ Precision ∗ Recall
Precision+ Recall

, where Precision =
TP

TP+ FP
and

Recall =
TP

TP+ FN
. TP (true positive) is the number of

root cause elements correctly reported. FP (false positive) is
the number of the root cause elements wrongly reported. FN
(false negative) is the number of anomaly elements that is
not reported. The higher the metric is (Precision, Recall or F-
score), the better the approach performs.

The experiments were run on a server with (24-core
Intel(R) Xeon(R) CPU E5-2620 v3 @ 2.40GHz with
64GB RAM).

E. PARAMETER DETERMINATION
There are two parameters that need to be pre-configured in
HotSpot, i.e., the potential threshold PT and the maximum
iteration number M of MCTS. PT is a stopping condition of
the HotSpot procedure. It can be tuned by operators according
to the specific requirement in practice. Specifically, the closer
a PT value is to 1, the more precise the algorithm is. The
operators we worked with would like to have very accurate
results if possible, we thus set PT as 0.99, which means that
if we find a set with ps > 0.99, we will stop searching and
regard it as the root cause.

The maximum iteration number M of MCTS can greatly
affect the effectiveness and efficiency of HotSpot. To improve
computational efficiency, MCTS conducts a technically local
search instead of traversing the entire search space. Qualita-
tively speaking, the more times the MCTS iterates, the more
accurate the result will be, but the cost time will be longer.
However, M cannot be set by operators due to the lack of
physical significance to them, and we run HotSpot using
various M values, i.e., from 5 to 15, and empirically select
a rather reasonable M value by balancing effectiveness and
efficiency.

For each of the 20 case types, we injected 400 cases. M is
ranged from 5 to 15. Hence for eachM value, we can calculate
the average F-score for each case type. In Fig. 8(a) and 8(b),
we show the box-plots of F-scores and those of the running
time for the 20 anomaly case types under different M val-
ues. Fig. 8(a) shows that the F-score of HotSpot increases
withM . We observe that whenM > 10, the F-score becomes
stable and the first quantile is larger than 90%, which

FIGURE 8. The performance of HotSpot under various maximum iteration
numbers (M). The bottom and top of the box are the first and third
quartiles (Q1 and Q3), and the band inside the box is the median (Q2).
The lower whisker is the minimum value within Q1− 1.5 ∗ IQR, and the
upper whisker is the maximum value within Q3+ 1.5 ∗ IQR, where
IQR = Q3−Q1. (a) The box-plots of F-scores of various M values.
(b) The box-plots of running time of various M values.

empirically meet our demand. Fig. 8(b) shows that the run-
ning time linearly increases withM . WhenM = 10, the third
quantile is about 54s, which is acceptable by operators based
on real-world investigation. Consequently, we set M = 10
for HotSpot in the studied company.

F. THE EFFECTIVENESS OF HotSpot
To evaluate the accuracy of HotSpot, we injected anomaly
cases using the methods in §V-C, we set M = 10 as afore-
mentioned. We compare it with two previously proposed
approaches, i.e., Adtributor [1] and iDice [2].

Adtributor focuses on the revenue debugging problem,
which is similar to HotSpot. However, it only deals with the
root cause set in the layer 1 cuboids, while HotSpot takes
all the cuboids (especially the multiple dimensional cuboids)
into account.

iDice identifies the effective attribute combinations of an
emerging issue for a large-scale software system. The multi-
dimensional attribute space in iDice is very similar with that
of HotSpot. In addition, an attribute combination is similar
to an element in our system. However, iDice is tailored to
the simpler cases where there are fewer ‘‘elements’’ in a
‘‘root cause set’’ in iDice (usually there are only one or two
‘‘elements’’ in a ‘‘root cause set’’). Three parameters should
be pre-configured in iDice. The default parameters in the
original iDice paper [2] performed poorly in our experiments.
As such, we swept iDice’s parameter space, and eventually
settled with the combination of iDice’s parameters which
achieved the best accuracy.

Fig. 9 shows the comparison of the F-scores of the
three algorithms. Compared with iDice and Adtributor,
HotSpot achieved higher F-scores across all the 20 types of
cases (differentiated by layer ID and the number of elements
in each case). The F-score of iDice decreased sharply as the
number of elements increases. Although Adtributor achieved
excellent accuracy in layer one anomaly cases, its accuracy
dropped to zero when the cases were in higher layers. In
contrast, HotSpot performed quite robust across different
number of elements in each case, and different layers.

The average precision and recall (over 400 cases) of each
of 20 case types for three algorithms are shown in Table 9.
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TABLE 9. The comparison of three algorithms’ precision and recall.

FIGURE 9. The F-score comparison of the three algorithms.

FIGURE 10. The precision-recalls of three algorithms (Note that we add
jitters to the overlap points for clearer display.)

Fig. 10 shows the distribution of the precision-recalls of
the three algorithms across the 20 case types. In this fig-
ure, the precision-recall points of HotSpot are centralized in
the upper right corner, demonstrating HotSpot’s robustness
in accuracy. However, the precision-recall points of iDice
in Fig. 10 are muchmore scattered than HotSpot, demonstrat-
ing that the accuracy of iDice are not robust against different
types of anomaly cases. Most of the precision-recall points
of Adtributor are centralized in the bottom left corner except
for the five precision-recall points of anomaly cases in layer
one. In short, Fig. 9 and 10 both show that HotSpot is more
accurate and robust than iDice and Adtributor.

Now we try to give some qualitative analyses on the above
results. HotSpot missed the root causes of some anomaly
cases (see the precision-recall points of HotSpot in Fig. 10)

because: a) HotSpot can not calculate the forecast values
absolutely accurate due to the inherent limitations of the
forecast algorithms and the noises in the dataset; b) we set
the potential threshold to control the exit of HotSpot to
balance accuracy and computational cost, which may cause
the method to miss some real root causes, especially when
the anomaly cases are in higher layers or they contain more
elements. In addition, the reasons why iDice’s performance
decreases with the increase of the number of anomaly ele-
ments is that: a) the first step of iDice, i.e., Impact-based
pruning may mistakenly prune some elements; b) the isola-
tion power in iDicemay not workwell for anomaly cases with
more elements. While Adtributor is designed for exploring
root causes for anomaly cases in layer one, it did not find root
causes for anomaly cases in higher layers in our scenario.

1) SUMMARY OF EFFECTIVENESS COMPARISON
In summary, Adtributor can only handle anomaly cases in
layer one (with a run time of 10 seconds) and iDice can
only handle the anomaly cases which have 1 or 2 elements
(with a run time of 20 seconds), while HotSpot can handle
higher layers and larger number of root cause elements (with
a run time of 50 seconds). In reality, the number of elements
and the layer of anomaly cases are almost always unpre-
dictable, thus HotSpot is a much better choice than Adtributor
and iDice.

G. THE EFFICIENCY OF HotSpot
In this section, we evaluate the benefits of MCTS and
hierarchical pruning in HotSpot in terms of reducing the
computational complexity when facing the huge search
space. We compare HotSpot versus ‘‘HotSpot minus MCTS’’
and ‘‘HotSpot minus hierarchical pruning’’ methods. The
‘‘HotSpot minus MCTS’’ method means that we employ the
hierarchical pruning strategy to search the cuboids layer by
layer (from layer one to layer four) and conduct hierarchical
pruning. For each cuboid, the method employs the full search
method other than MCTS. The ‘‘HotSpot minus hierarchical
pruning’’ method employs MCTS for each cuboid to obtain
the BSets, and selects the one with the largest ps as RSet . We
do not consider the ‘‘full search method’’ (use neither MCTS
nor hierarchical pruning) for it takes too long to run.

Because of the low computational efficiency of ‘‘HotSpot
minus MCTS’’ and ‘‘HotSpot minus hierarchical pruning’’
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TABLE 10. The number of elements for each cuboid when n = 2, where n
is the number of distinct values in each dimension.

methods, it is prohibitive to evaluate either of the above
methods based on the large-scale dataset described in §V-A
(hereafter, we collectively refer to this dataset as original
dataset). Therefore, we sample the original dataset to obtain
new datasets with smaller scale (hereafter, we collectively
refer to this dataset as new dataset). Specifically, the new
datasets have four dimensions, and for each dimension, there
are n distinct values (e.g., Beijing, Shanghai, ..., of BP)
sampled from the original dataset. n can be 1, 2, ..., 8. E.g.,
if n = 2, the number of elements for each cuboid is shown
in Table 10.

We injected 20 types of anomaly cases to the new
dataset following §V-C. Note that not all the 20 types of
anomaly cases exist for every new dataset. For example, when
n = 2, the anomaly case type ‘‘layer one and three ele-
ments in each case’’ does not exist since there are only two
elements in each cuboid of layer one. For a new dataset,
we injected 400 anomaly cases for each type of anomaly
cases, and applied the above threemethods to localize anoma-
lies, respectively. We calculated the average running time for
each method, and each type of anomaly case. Each method
achieved an averaged F-score over 90% in this experiment.
Similarly, all the three methods are running on the same
server as mentioned in §V-D.

Fig.11 compares the CDFs of the running time of the three
methods under different values of n. A point in Fig.11 is the
average running time for a specific anomaly case type and a
specific value of n. Please note that the x-axis scale is log(2)
scale. For each value of n, the running time in Fig. 11 (a) is
much smaller than that in Fig. 11 (b) and Fig. 11 (c), which
demonstrates that HotSpot is much more computationally
efficient than other two methods. Additionally, the running
time for different values of n in Fig. 11 (a) is more centralized
than that for different values of n in Fig. 11 (b) and Fig. 11 (c),
demonstrating HotSpot’s good robustness in computational
efficiency.

VI. OPERATIONAL EXPERIENCE
We have implemented and deployed HotSpot in a top global
search engine company. We applied HotSpot on various addi-
tive KPIs, such as PV, traffic volume, number of online users,
and ads revenue. HotSpot has demonstrated its ability to
quickly localize the root cause for additive KPIs.

Due to space limitation, we present two operational
cases. The data set has four dimensions: DC (11 values),

FIGURE 11. Comparison of running time of HotSpot, ‘‘HotSpot minus
MCTS’’ and ‘‘HotSpotminus hierarchical pruning’’.

FIGURE 12. Case 1: Page View. (a) Total. (b) Root cause elements.

Product (182 values), ISP (7 values) and Server Cluster
Name (480 values), and the additive KPIs are Page View and
Error Count, respectively. HotSpot spent 10 to 20 seconds in
anomaly localization for both cases. For comparison purpose,
we asked the operators to manually localize the root causes,
and it took operators 1 to 2 hours to do so. That is, HotSpot is
about 300 times faster than manual localization, which is
typical in our HotSpot vs. manual comparisons. Please note
that we anonymously the magnitude of the data for privacy,
so the value of the data in the following figures are not
real.

Case 1: The KPI in this case is the volume of traffic flow
of the search engine from the clients. Fig. 12(a) shows the
actual total traffic values and the forecast ones within some
day (the real magnitude is normalized for confidentiality, and
case 2 is the same). The measurement interval is one minute,
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FIGURE 13. Case 2: HTTP Error 4xx Count. (a) Total. (b) Root cause
elements.

and, thus, there are 1440 intervals for one day. An anomalous
sudden increase occurred at the 1223th interval. Fig. 12(b)
shows the root cause set which was localized by HotSpot,
i.e., {(tc,map, ∗, ∗); (nj02,map, ∗, ∗); (gz,map, ∗, ∗)}. This
result is correct that have been confirmed by operators. The
truth of this case is that a faulty configuration of map is
updated on the three DCs (tc, nj02, gz). This case further
confirms that a root cause set can includemultiple elements in
the same cuboid. As shown in §V, [1] cannot deal with such
cases, and [2] is not as accurate as HotSpot when tackling
such cases.

Case 2: The measure in case 2 is the number of ‘‘HTTP
4xx’’ errors, e.g., ‘‘HTTP 403’’ and ‘‘HTTP 404’’, and
more details about HTTP status codes can be found in [10].
Fig. 13(a) shows an anomaly of the total number of ‘‘HTTP
4xx’’ occurs at the 1220th point on a day different from case 1.

HotSpot localizes the root cause set to be {(hz,map, other,
cluster_map03)}, shown in Fig. 13(b). We can see that
the element (hz,map, other, cluster_map03) usually has few
‘‘HTTP 4xx’’ errors, but the error count suddenly increased at
the 1220th point that caused the total error count to increase as
well. Operators have confirmed that a new application version
with a wrong configuration was deployed at the 1220th point,
which led to this anomaly.

VII. DISCUSSION
Anomaly localization of multi-dimensional indicator systems
is complicated in practice. In this section, we discuss some
issues regarding anomaly localization and clarify the scope
of HotSpot.

Anomaly detection. As in previous work [1], in HotSpot
we assume that anomaly localization is triggered by anomaly
detection, and the forecast values output by the anomaly
detection is used as input. The selection of anomaly detection
algorithms is a problem by itself and is beyond our scope.
Ripple effect has limitations. We propose the potential

score based on Ripple effect, but there exist some rare cases
that cannot be handled by ripple effect, e.g., if f (x) = 0 in
Eq. (5). If so, we can extract these elements and analyze them
manually, and the remaining ones can still use HotSpot.

HotSpot does not guarantee optimal results. Since both
MCTS and hierarchical pruning are heuristic algorithms,
HotSpot does not guarantee that it can always find the global
optimal result. Even so, it can greatly narrow down the

root cause scope and give operators timely advices. Note
that, instead of providing just one candidate root cause,
HotSpot can provide a ranked list of n candidate root causes
to increase the chance that the true root cause is included in
the list.

VIII. RELATED WORK
There are many previous works in root cause localiza-
tion in various contexts. Pinpoint [11] diagnoses the root
causes of large, dynamic Internet services (e.g., TCP and
HTTP failures) employing clustering analysis. SCORE [12],
Shrink [13], and [14] focus on localizing IP network failures
in an IP-over-optical tier-1 backbone using a Shared Risk
Link Group (SRLG) model. They try to identify a smallest
set of risk groups that can explain the failures, which actu-
ally used the succinctness concept. Sherlock [15] focuses on
localizing the root causes of performance problems among
numerous dependencies of network elements in large enter-
prise networks, using packet traces, traceroutemeasurements,
and network configuration files. Argus [16] detects services
anomalies from an ISP’s perspective, aiming to localize the
users with bad performance. It uses a hierarchical data struc-
ture to aggregate users with common attributes and localize
each user groups’ performance. ABSENCE [17] detects ser-
vice disruptions in mobile networks using aggregated cus-
tomer usage data. Its hierarchization is also a tree struc-
ture, which is different from our work. FOCUS [18] is an
approach on determining the long-term bottlenecks in multi-
dimensional logs.

Our work is different from all the above studies in terms
of both the problem definition and the solution being used.
On the one hand, our problem is focused on fine-grained
anomaly localization onmulti-dimensional systems. The data
values of the system are additive and the demand of the result
is succinctness. None of the above studies is similar with this.
On the other hand, most of previous works apply intuitive
experienced empirical methods to simplify the complex prob-
lems, while in our paper, we propose an innovative fundamen-
tal idea (with a very high complexity) at first, then we employ
MCTS and hierarchical pruning strategies to realize the idea
in a very reasonable time, and this effectively balances the
efficiency and effectiveness.

There are three previous works that are closely related to
our work. iDice [2] and Adtributor [1] tackle a similar prob-
lem. They are compared with our approach and discussed in
detail in Section V-F. [19] tackling the anomaly detection and
localization in a ISP setting, and its concept of E2E instance is
similar to the element. However, the paper is mainly focused
on anomaly detection. For anomaly localization, they only
sketched an idea (applying association rulemining algorithm)
in three short paragraphs without sufficient algorithm details.
Nonetheless, this method requires different set of parameters
(minimum support and minimum confidence) for different
types of cases defined in V-C. However, it is impossible to
know in advance which type the case belongs to. Due to
this shortcoming and lack of algorithm details, we conclude
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that it is infeasible to do a fair comparison with [19] in the
evaluation section.

IX. CONCLUSION
For an additive KPI with multi-dimensional attributes, it is
a hard problem to localize the overall KPI’s anomaly to
the root cause, which is one (or more) combination of
attribute values in multiple dimensions. Firstly, we consider
this anomaly localization as a search problem with a huge
space. To deal with the huge search space, our proposed
framework, HotSpot, adopts the MCTS approach (the first
time in anomaly localization literature) whose action value
is our novel potential score based on the ‘‘ripple effect’’,
which captures how anomalies propagate from the root cause
throughout the aggregation hierarchy. In addition, we propose
a hierarchical pruning approach to further reduce the search
space. Our experiments based on the data from a real-world
search engine show that HotSpot achieves much better accu-
racy than previous approaches. Our operational experiences
show that HotSpot can reduce the localization time from
about more than 1 hour in manual efforts to less than 20 sec-
onds, and that HotSpot is an approach generally applicable to
the anomaly localization for additive KPI metrics.
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