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Abstract—Mobile devices adopt probe requests to discover
nearby Wi-Fi access points (APs) and set up fast Wi-Fi con-
nections. Preferred Network Lists (PNLs) are used to store the
lists of connected Wi-Fi APs in the past. Previous studies have
shown that such mechanism can lead to serious privacy leakage,
for example, attackers can infer users’ identity information and
movement histories. In this paper, we investigate the privacy
issue and propose a data-driven protection strategy. First, we
conduct extensive measurement studies based on 27 million users
associating with 4 million Wi-Fi APs in 4 cities. We show that
probe requests can be used to identify and profile users. Despite
that some actions have been taken to reduce privacy leakage (e.g.,
MAC address randomization), users’ PNLs can still be inferred
by attackers. Second, we propose a novel privacy protection
method, in which users’ PNLs are “blurred” by adding faked
SSIDs generated using a collaborative filtering algorithm, such
that nearby users’ PNLs are similar to each other. Finally, we
evaluate the performance of our design using real-world Wi-Fi
association traces. Our trace-driven simulation shows that the
refined PNLs can effectively protect user privacy and ensure fast
Wi-Fi connection at the same time.

I. INTRODUCTION

In recent years, 802.11 wireless LAN (Wi-Fi) has become a
fundamental infrastructure. To enable fast Wi-Fi connectivity,
mobile devices maintain Preferred Network Lists (PNLs) that
contain Service Set Identifiers (SSIDs) of Wi-Fi hotspots
connected to before. In the active scan mode, these SSIDs
are sent to APs via probe request frames during the Wi-Fi
association. According to [1], mobile devices can send as many
as 50 probe requests per second in which 98% of the packets
contain SSIDs. Attackers can utilize wireless sniffer tools to
intercept the emitted probe requests in Wi-Fi channels, thus
acquire the SSIDs of users’ previous connected APs.

The SSID information in the probe requests can cause
serious privacy leakage. First, SSIDs usually contain semantic
information that can be used to infer the places a user has
been to, e.g., workplaces related SSIDs like “Corp. XXX net”,
and travel destinations like “HK Airport wifi”. Chernyshev
et al. claim that 49% of the SSIDs are identifiable and
potentially provide some information about the owners of
the devices such as past visited locations or even names [2].
Second, previous studies show that user preference [3], user
identification [4] and mobility trajectories [5] can be inferred
from the combination of SSIDs in their PNLs. In our study,
we analyze two large Wi-Fi association record datasets and

Fig. 1: Illustration of protection strategy.

discover that for 54.03% of the users, up to 50% of SSIDs in
their PNLs reveal potential important semantic information.

To protect user privacy in Wi-Fi networks, two types of
protection strategies have been commonly adopted. First,
reducing the SSIDs sent in probe requests. Bonné et al. [6]
designed a strategy to limit the amount of SSIDs emitted from
mobile devices. Such approaches usually require modification
to the current Wi-Fi protocols [7]. Second, using randomized
MAC addresses. For example, iOS 8 uses MAC address
randomization in the scan phase such that attachers cannot
find the real MAC addresses of the users [8].

The limitation of the previous studies is that users always
send real SSIDs in their PNLs via the probe requests (as
illustrated in Fig. 1(a)), thus real SSID information can always
be obtained by attackers, more or less. An intuitive idea is to
fake some SSIDs in a user’s PNL and let the mobile device
broadcast both faked SSIDs and real SSIDs in probe requests
(as illustrated in Fig. 1(b)), such that an attacker will not be
able to differentiate these SSIDs.

Though the idea seems simple, the challenges for its design
and practical implementation are as follows. i) How do we
generate the new SSIDs to refine one’s PNL, from the large
space of millions of valid SSIDs? ii) How do we refine PNLs
for users who move across different locations?

Our answers to these questions are a set of strategies
designed to refine users’ PNLs. Our contributions can be
summarized as follows.

• We carry out large-scale measurements to study the pri-
vacy issue caused by probe requests and semantic SSID
information. Our measurement insights are as follows.
(1) As many as 90% of the users have unique SSID sets



leaked from their probe requests, indicating that a large
fraction of Wi-Fi users can be “identified” by attackers.
(2) Users whose PNLs are similar to nearby users’ are
less likely to be identified. (3) Users whose PNLs are
similar are usually located close to each other, indicating
that referring SSIDs from such nearby users to refine the
PNL in our design is promising.

• Based on our measurement insights, we propose to
add faked SSIDs to users’ PNLs according to users’
behavioral similarity of Wi-Fi association to maximize
the PNL similarity between a user and nearby users.
Mobile devices send out both real and faked SSIDs,
which disguises users’ profiles and protects user privacy.

• We propose to use a collaborative filtering (CF) based
algorithm, by “recommending” unconnected SSIDs to be
added from different locations over time, in a sense that
the PNLs of users who are similar to the user will be
referred. Our experiments show that the refined PNLs
protect user privacy.

The rest of the paper is organized as follows. We review
related works in Section II. In Section III we show the
measurement results on privacy leakage in probe requests
and the feasibility of our design. Section IV describes our
behavioral similarity based PNL refinement design. We verify
its effectiveness in Section V. Section VI concludes the paper.

II. RELATED WORK

A. SSID Information Leakage
In recent years numerous researches have been conducted to

analyze multiple aspects of SSID information leakage, such as
privacy, social networks, human behaviors, etc. The usage of
information extracted from SSIDs includes identifying user de-
vices [4], [9], inferring social relationships [5], [10], profiling
user preferences [3], etc. Although these studies shed some
light on the applications and analysis of SSID information,
they fail to propose any protection strategies. Sniffing SSIDs
can still be used to launch several attacks against users.

B. Current Protection Strategy
Regular privacy protection solutions are not suitable for

this problem, for example, k-anonymity [11], in which SSIDs
as attributes cannot be deleted or generalized. To solve this
specific privacy leakage problem, several previous efforts
have been devoted to study Wi-Fi probe requests and the
protection. Bram Bonné et al. [6] design a system to prevent
smartphones from sending out SSIDs that are out of range
when smartphones are in deep sleep mode. Lindqvist et
al. [7] propose a new AP discovery protocol by adopting
cryptographic challenge-responses on top of probe requests,
which however incurs significant cost.

Besides, several vendors have implemented MAC address
randomization. iOS 9 adds MAC address randomization to
its devices during the scan phase [12]. Android 6.0 uses
randomization for background scans if the driver and hardware
support it [13]. Microsoft and Linux also support randomiza-
tion [8]. However, they all implement their own variants of

MAC address randomization since a specification on MAC
address randomization does not yet exist, which raises the
question whether their implementations actually guarantee
privacy. Meanwhile, even with MAC address randomization,
mobile phones still emit probe request frames with real SSIDs
and real MAC addresses under some specific situations [8].

III. MEASUREMENT STUDIES

A. Dataset
We base our measurement studies on two datasets, a Wi-Fi

connection record dataset and a point of interest (PoI) dataset,
collected by Tencent Wi-Fi Manager, a crowdsourced Wi-Fi
association App, in 4 metropolises of China in one month. The
App is used to help users to associate to nearby Wi-Fi hotspots
and record the detailed information of each association session,
including anonymous user ID, SSID, BSSID, etc. Since PNLs
are simply the lists of previously connected Wi-Fi, they can
be represented using the SSIDs collected by the App. In this
paper, we use the records of connected Wi-Fi in one month as
users’ PNLs. We use the records of one day as the SSID sets
that attackers may obtain, since the size of these SSID sets
matches that of real-world SSID sets collected from probe
requests [2], [10]. It is possible to collect the real SSID set,
but it is hard to get the entire PNL list, which is needed in
the paper. Thus SSID sets are generated from real PNL lists
instead. In our study, the length of PNLs is within 20 and the
size of SSID sets is within 4 for over 97% users.

The Wi-Fi connection dataset contains 250 million Wi-Fi
association session records of 27 million users. The PoI dataset
contains the location information of 4 million APs, including
the longitude, latitude, specific street address and location type.
There are totally 16 location types in our dataset, such as
hospitals, shopping districts, hotels, etc. In this paper, we use
the number of SSID location types in PNLs to represent the
profiling degree of users [3].

B. Motivation
Users can be profiled and identified by probed SSIDs, which

is verified by previous studies. Based on the measurements,
we find that over 90% users contain no more than 6 location
types in their PNLs, and 54.90% users only contain one or
two location types, which indicates that users’ profiles are
lack of diversity and these locations in their PNLs usually
correspond to home and work locations [14], thus causing
some unexpected dangerous privacy leakage. However if we
add more SSIDs with different location types, for example,
adding the SSID GolfClub to a PNL that contains Campus,
zoo-wifi, the PNL becomes more diversified and is less likely
to infer the user’s real preference and identity information.
Thus the idea of adding faked SSIDs to users’ PNLs is
effective to disguise users’ profiles.

We analyze the two datasets and try to estimate the privacy
leakage caused by the identifier. Since an attacker can only
collect probe request frames in a limited area, a user can be
“identified” if it has a unique SSID set compared with others
in the area. We find that 54.60% of users can be identified
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Fig. 2: Similarity between
users and their siblings vs.
probability that users are iden-
tified by probed SSIDs.

Fig. 3: Relation between dis-
tance and similarity between
users and their siblings.

only based on the SSID sets that attackers obtain. People leak
more SSIDs as time span increases, causing the percentage of
identified users to increase to 90.58%.

C. Feasibility Analysis

The leakage of user personal information (e.g. user identifi-
cation and preference) is due to the differentiation of their
PNLs. An intuitive idea is making PNLs on every mobile
device identical via adding enough faked SSIDs, thus probing
can not leak individuals’ preferences or tracks. Nevertheless
the number of different APs that can be stored in mobile de-
vices’ PNLs is limited and the entries are updated dynamically
[15]. Hence the idea above is impractical.

However, we can reduce the difference of users’ PNLs
instead of eliminating it, which will reduce the possibility
of being identified by SSID sets that attackers may obtain.
To verify this, we analyze the relation between probability of
being identified and similarity of PNLs in Fig. 2. We define
an index, Cosine-idf similarity [5], to measure the similarity
between PNLs of users, which takes into account both the
intersection of PNLs and the popularity of SSIDs. The Cosine-
idf similarity is defined as follows:

C(Su, Sv) =

∑
s∈Su∩Sv

(log( 1
fs
))2

√∑
s∈Su

(log( 1
fs
))2

√∑
s∈Sv

(log( 1
fs
))2

, (1)

fs =
|Us|
|U | , (2)

where Su is the SSID set (i.e. PNL) of user u, fs is the
popularity of SSID s, |U | is the number of users U in the
current area, and |Us| is the number of users who connected
to Wi-Fi with SSID s before. If a user shares common SSIDs
with another one, which indicates their similarity is greater
than 0, we call them “neighbors”. And the neighbor with the
highest Cosine-idf similarity is called a “sibling”.

In Fig. 2 we focus on the similarity of PNLs between
users and their siblings. Users are divided into 10 groups
by the similarity of PNLs between them and their siblings,
from [0, 0.1] to (0.9, 1]. We observe that the relation between
probability and similarity is strong since users with high
similarity to others are less likely to be identified by probed
SSIDs. When the similarity is over 60%, 21.75% of users can
be identified. In contrast, when the similarity is below 30%, the

probability is 73.48%, i.e., over 3 times higher, which suggests
that it is promising to increase the similarity between users’
PNLs to reduce the possibility of being identified.

Note that even if two PNLs are the same, the corresponding
SSID sets might still be different, since the SSID sets obtained
by attackers are only a fraction of the PNLs and may be
different each time. Thus it is difficult to measure the extent
of information leakage directly. In the following paper, we
provide an alternative approach, i.e., use the PNL similarity to
represent the extent of privacy leakage. Since the more similar
two users’ PNLs are, the more likely these two users send out
similar SSID sets in the same wireless network environment,
and attackers are less likely to distinguish between these two
users, i.e., less privacy information are leaked.

Due to the real-world constraint that attackers can only
acquire limited SSIDs in real time in a certain location, we
utilize the PNL information of users in the current location to
refine users’ PNLs. In Fig. 3, we present the density plot of
the distance and similarity between users and their siblings.
When the similarity is larger than 0.6, the distance is within 2
kilometers for over 75% users. We observe that most users who
are similar to each other are spatially close, which confirms
it is promising to refer faked SSIDs from PNLs of nearby
similar users.

Additionally, previous studies claim that the dense-AP cov-
erage and hidden APs are the main reasons for the delay in
the active scan, not the length of the PNL [16]. Thus adding
faked SSIDs to the PNLs will not affect user experience in
Wi-Fi association.

To sum up, most users can be identified using part of their
PNLs. The users who have high-similarity PNLs with their
neighbors are less likely to be identified and are spatially close
to their neighbors. Therefore it is promising to blur a user’s
PNL using nearby users’ PNLs and make them more similar
and thus protect their privacy.

IV. WIRELESS PRIVACY PROTECTION STRATEGY

In this section, we first describe the problem of selecting
faked SSIDs. Then we propose a CF-based protection algo-
rithm to “recommend” faked SSIDs to be added to a user’s
PNL based on the relationship among users. The protection
strategy is designed to operate on our Wi-Fi association App.

A. The Faked SSID Selection Problem
Our task is to find a set of SSIDs that can be added to a

user’s PNL and maximize the similarity between this user and
its nearby users. The objective can be formulated as follows:

maximize
A⊂S ∑

u∈U

∑

v∈U\u

Sim(Su +Au, Sv +Av), (3)

subject to

A =
⋃

u∈U

Au (4)

|Au| ≤ k, ∀u ∈ U (5)



where Au is the faked SSID set added to the PNL of user u.
A is the set of all faked SSID sets and S is the set containing
the SSIDs of all the users U . The number of SSIDs that are
added to a user’s PNL is limited to k to avoid causing too
much operation cost and affecting user experience.

To describe the relation between users, we propose to model
this problem as a social network. Two users are neighbors
and connected if they share at least one common SSID. The
neighborhood of a user u can be denoted as Nh

u and includes
its neighbors up to h hops in the social network. For example,
the 1-hop neighborhood N1

u of user u is composed of the
users that share at least one common SSID with u, which
is hereinafter referred to as “neighbors” if not specifically
pointed out. In this paper, the average number of users in N1

u

is 24.13. And the 2-hop neighborhood is composed of N1
u and

the users that share common SSIDs with N1
u .

To measure the similarity between user u and users in its
neighborhood, we define Sim(Su, Sv) as follows:

Sim(Su, Sv) =

{
C(Su, Sv), if v ∈ N1

u

Ave(Sim(Su, St)× C(St, Sv)), otherwise
(6)

where t, belonging to N1
v , is the user who connects user u

and user v. If two users are connected directly, the similarity
between them is defined as the Cosine-idf similarity, otherwise
defined as the average value of the products of similarity
between users and user t. To measure the relevance between
users and SSIDs, we define the weight wu,s as the importance
of SSID s to user u. Based on the tf-idf scheme, wu,s is
calculated as follows:

wu,s = fu,s × log(
|U |
|Us|

), (7)

where fu,s is the frequency that user u connected to Wi-Fi
with SSID s. Since SSIDs that are connected frequently are
usually important to users, the relevance between a user and
a SSID is strong if the user connected to this SSID frequently
and the number of users who connected to Wi-Fi with this
SSID is small (e.g., the SSID of your home’s AP).

B. Faked SSID Selection Based on Collaborative Filtering
Based on the definitions above, we propose a CF-based

algorithm to select faked SSIDs from PNLs of nearby similar
users. Inspired by the user-based CF, we can increase the
similarity between users by “recommending” SSIDs from
similar users. We calculate the relevance between users and
SSIDs using the tf-idf scheme, and define a user’s “rate” to a
SSID as the tf-idf weight. A user can rate a new SSID that
he/she has not connected to before, as follows:

Ru,s = wu +

∑
v∈U (wv,s − wv) ∗ Sim(Su, Sv)∑

v∈U Sim(Su, Sv)
, (8)

where Ru,s is the score that user u rates a faked SSID s, and
wu is the average score that user u rates its original SSIDs.
We take into account both the similarity between users and the
importance of SSIDs to users. Important SSIDs, i.e., SSIDs

Algorithm 1: PNL Refinement Algorithm
Input: U , Su foreach u ∈ U
Output: A

1 for each u ∈ U do
2 Calculate wu,s foreach s ∈ Su;
3 Calculate Sim(Su, Sv) foreach v ∈ Nu;
4 Lu = φ, Au = φ;
5 Q.enqueue(u), Γ.append(u) // BFS;
6 while Q is not empty do
7 cur = Q.dequeue();
8 for each v ∈ N1

cur & v /∈ Γ do
9 for each s ∈ Sv & s /∈ Su do

10 Calculate Ru,s with Equation(8);
11 Lu.append(Ru,s);

12 Q.enqueue(v);

13 if |Lu| ≥ k then
14 break;

15 if |Lu| == 0 then
16 Au ← the most popular k SSIDs in S;

17 else
18 Sort Lu in descending order;
19 Au ← top-k SSIDs;

20 PT
u ← ST−1

u +Au;

21 A =
⋃

u∈U Au;
22 return A

with high wv,s values, are connected by user v frequently
recently. These SSIDs are more likely to be sent out by user
v, thus they can be added to the PNL of the target user u to
increase their similarity. And SSIDs that are less important,
are usually replaced by those that are most recently used [15].

The algorithm of refining users’ PNLs is presented in
Algorithm 1. First it calculates the relevance between users
and their SSIDs and the similarity between users. Users rate
new SSIDs that they did not connect to before, sort them by
descending order and add the top-k SSIDs to their PNLs. We
use the breadth-first search to find the top-k faked SSIDs for
each user. Here Lu is the list of scores that users rate the new
SSIDs, and Γ is the set of users who have been “visited” by
the algorithm. We use Q to denote the queue that stores the
users to be searched. If the number of new SSIDs from users’
direct neighbors N1

u is more than k, we will only traverse the
PNLs of N1

u . Otherwise, the PNLs of users’ indirect neighbors
(i.e. Nh

u , h > 1) will be searched until the top-k SSIDs are
found.

Besides, if all SSIDs in Su are unique and not connected
by other users, the PNL will not be refined (i.e., the length
of Lu is 0) since there are not similar PNLs. For this case,
we add the most popular SSIDs in the area to the PNL. The
refined PNL Pu of user u at time T is denoted as PT

u and
updated by the original PNL ST−1

u and the added SSIDs Au.
The procedure above describes a single update process. We

classify the movements of users into two cases. In the one
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Fig. 4: Comparison with the random selection method.
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Fig. 5: Impact of k on the similarity between users and their
neighbors.

case users move from place to place, and in the other case,
users are stationary at a place for a period but the contexts
constantly change. We assume that users would connect to
Wi-Fi initiatively when they arrive at a new place. During the
association process, our system will execute the program above
to refine PNLs. When users stay at a place and the contexts
change, we need to update the PNLs periodically. We do not
remove the real SSIDs from users’ PNLs, only replace the
old faked SSIDs with new faked SSIDs. This process does
not affect the Internet connections even when mobile devices
have connected to a Wi-Fi network.

In the practical implementation, our design can be im-
plemented following a real-time steaming recommendation
architecture [17]. Users’ devices send out their PNLs and
location updates to a centralized management server, which
feeds back the “recommended” faked SSID lists calculated
using our algorithm. The new SSIDs will then be added to the
devices’ PNLs, for example, by editing “/data/misc/wifi/wpa
supplicant.conf” file in Android systems. To ensure scalability,
the centralized server only updates the recommendation lists
periodically.

V. EXPERIMENTS AND EVALUATION

A. Experiment Setup

To verify the effectiveness of Algorithm 1, three different
areas are chosen as test scenarios: one train station, one
university and one shopping mall. We first select the Wi-
Fi APs inside these areas, based on their detailed addresses.
We verify the selection by comparing the distance between
these APs using their latitudes and longitudes and remove the
outliers. Similar to the measurement experiments, we use the
SSIDs collected in one month as users’ PNLs. We randomly
select one day within the month and filter users appeared at
these areas in that day as our test groups. There are 76, 116
and 119 users in the three locations respectively. These users’
PNLs are generated based on the previous records, along with
the corresponding SSID sets in that day. We then verify the
effectiveness of our method on reducing privacy leakage using
these data. We apply Algorithm 1 on the selected data and add
faked SSIDs to users’ PNLs. The results of PNL similarity
improvement are compared to a random selection method. We
analyze the impact of the number of added SSIDs k and the
length of original PNLs n. Finally we verify the effectiveness
of disguising users’ profiles.

B. Experiment Results

We compare Algorithm 1 with the random selection method
in Fig. 4. The x-axis and y-axis represent the similarity when
k = 0 and k = 5 respectively. Note that the x-axis and y-axis
are within different ranges. A higher y-axis value indicates a
better improvement. We randomly select k SSIDs from the
SSID dataset S in a specific location for each user and add
them to PNLs in the random selection method. The Cosine-
idf similarity between users and their direct neighbors is only
improved from 0.11, 0.07, 0.16 to 0.16, 0.11, 0.20 respectively
in the train station, university and mall when k = 5, indicating
the random selection method has little effect on improving the
similarity. In contrast, the similarity is improved to 0.23, 0.15,
0.38 respectively using our method.

In Algorithm 1, the number of SSIDs that can be added
is constrained by k. Fig. 5(a) shows the different similarities
between users and their neighbors over different k values. We
observe that the similarity increases as k increases. When k in-
creases from 0 to 1, the similarity increases most significantly.
The average similarities are improved by 53.86%, 69.39%
and 61.06% respectively in the train station, university and
mall. And the average similarities are improved by 119.21%,
140.52%, 147.35% respectively when k = 7. The reason
why users in the university have the lowest similarity is
because they have more neighbors than others. The number
of neighbors is 59.81 on average in the university, while
16.32 in the train station and 9.13 in the mall. Although users
tend to have a rich number of neighbors in the university,
the connections between users and most of their neighbors
are weak, resulting in a small average similarity. That is also
why the result of Algorithm 1 only has a small improvement
compared to the random selection method. In Fig. 5(b) we
observe that the similarity between users and their siblings is
improved greatly.

Fig. 6 shows the relation between the similarity and the
length of users’ original real PNLs. Users are divided into 3
groups based on the length of their original PNLs n: 0 < n ≤
4, 4 < n ≤ 8, n > 8. The average similarities between users in
the first group originally are 0.19, 0.09, and 0.27 for the three
different locations and are improved by 95.57%, 139.17%, and
103.41% respectively when k = 5. In the last group, they are
improved by 154.86%, 166.75% and 200.97% respectively.

We present the number of location types of SSIDs in users’
PNLs to demonstrate the effectiveness of disguising profiles. In
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Fig. 7, the numbers of location types are improved from 3.03,
2.70, 2.39 to 4.28, 4.02, 3.13 on average respectively when
k = 5, indicating that users’ profiles are more diversified, thus
the original preferences are less likely to be profiled.

In a nutshell, the PNL refinement algorithm succeeds in
improving the similarity between PNLs of users’ devices in
various situations. It is effective to prevent eavesdroppers from
stealing real SSID information and breaching user privacy.

VI. CONCLUSION

During the Wi-Fi association process, user privacy is
breached by active probing. In order to understand the threat,
we present a detailed analysis of the SSID leakage based on
two datasets that contain millions of Wi-Fi association records.
To solve this problem, we propose a CF-based heuristic SSID
protection algorithm to prevent attackers from inferring users’
identification and profiles, according to users’ behavioral sim-
ilarity of Wi-Fi association. The algorithm disguises PNLs
of users’ mobile devices by adding faked SSIDs instead of
limiting the amount of SSIDs or modifying wireless protocols,
which incurs less deployment costs. Moreover, the algorithm
reduces the possibility of users being identified and profiled
by probed SSIDs and thus reduces the extent of privacy
leakage. We evaluate the performance of the algorithm under
different scenarios and the results confirm its effectiveness.
The similarity between users and nearby users is improved by
61.44% even with one faked SSID, which indicates the extent
of privacy leakage is significantly reduced.
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