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Abstract—Anomaly classification, i.e., detecting whether a net-
work device is anomalous and determining its anomaly category
if yes, plays a crucial role in troubleshooting. Compared to KPI
curves, device logs contain too much more valuable information
for anomaly classification. However, the regular expression based
anomaly classification techniques cannot tackle the challenges
lying in log anomaly classification.

We propose LogClass, a data-driven framework to detect
and classify anomalies based on device logs. LogClass combines
a word representation method and the PU learning model to
construct device-agnostic vocabulary with partial labels. We
evaluate LogClass on tens of millions of switch logs collected
from several real-world datacenters owned by a top global search
engine. Our results show that LogClass achieves 99.515% F1
score in anomalous log detection, 95.32% Macro-F1 and 99.74%
Micro-F1 in anomalous log classification in a computationally
efficient manner.

Index Terms—Device Logs, Anomaly Classification, TF-IDF

I. INTRODUCTION

With the explosion of the traffic in datacenter networks,
the number of network devices including switches, routers
and middleboxes (say VPNs, IDPS, and firewalls) [1] have
witnessed a dramatic increase. Since network device anomalies
can significantly impact on the services provided by datacen-
ters [2], operators continuously monitor the status of network
devices carefully, and intervene immediately after an anomaly
occurs. In the literature, many anomaly detection methods
have been proposed to detect anomalies in network devices
by means of analyzing KPI (Key Performance Indicator, e.g.,
CPU utilization, memory utilization) curves [3].

In addition to detecting anomalies, operators also have to
classify anomalies in order to rapidly locate the root cause and
mitigate the damage imposed by anomalies. For example, if
a severe anomaly occurs on a line card of a switch, operators
will replace the line card to mitigate the loss. On the other
hand, operators will reboot the system when a switch suffers
from software crash. Although KPI curves can answer whether
a network device is anomalous, anomaly classification barely
benefits from KPI curves, for the reason that KPI curves
usually contain too little information. Specifically, an anomaly
(say a level sift) in the CPU utilization only indicates that the
CPU utilization increases sharply, and it cannot tells why it
happens. On the contrary, device logs describe a vast range of
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(anomalous) events, which are quite valuable for root cause
analysis and log classification. For instance, when the switch
log of “System is rebooting now” is generated, operators
can determine that the switch is anomalous, and classify the
anomaly into the category of “SYSTEM REBOOT”. Device
logs have been extensively studied in monitoring network
status [4], understanding network events [5], [6], detecting
anomalies [7], [8], and predicting device failures [9].

Due to the fundamental role of device logs in anomaly clas-
sification, operators usually classify device logs into healthy
logs and (multiple types of) anomalous logs using regu-
lar expression. However, the regular expression based log
classification suffers from low generality (i.e., it is device
manufacturer/model specific), labor intensity (i.e., maintaining
the large number of regular expressions is labor intensive) and
computational inefficiency [10], [11].

In this paper, we propose LogClass, a data-driven system
to detect and classify anomalies based on device logs. The
key intuition is that most device logs are semi-structured
texts “printf”-ed by device operating systems, and traditional
methods in natural language processing can be applied to
analyze device logs.

LogClass faces two interesting challenges as follows.
(1) Device-agnostic vocabulary. Since device logs are

manufacture/model-specific, their formats vary among dif-
ferent manufacturers and device models. That is, it is very
difficult, if possible, to train a single classification model for
all device manufacturers/models. None of the existing log
processing techniques can learn device-agnostic vocabulary for
log classification. For example, FT-Tree [9] is only able to
learn log templates one switch manufacturer/model by one.

(2) Partial labels. Due to the huge number of device
logs (tens of millions), operators have detected/classified only
a small portion of anomalous logs, and thus most of the
anomalous logs remains undetected and unclassified. This
poses a great challenge to log detection and classification.

The challenges mentioned above are tackled by LogClass
as follows.

(1) Our preliminary investigation demonstrates that device
logs of the same anomaly category share some common
patterns in terms of word combination. In natural language
processing, the bag-of-words model is a popular and effective

978-1-5386-2542-2/18/$31.00 ©2018 IEEE



word representation method [12]. In this paper, we use bag-
of-words to represent the patterns of word combinations.

(2) LogClass applies PU Learning [13] to handle the partial
labels. Specifically, it inputs anomalous (positive) logs and
unlabeled logs into the PU learning model, which then outputs
which logs are anomalous and which ones are healthy.

The overall design of LogClass is as follows. For all
the devices of different manufacturers/models, in the offline
learning procedure, LogClass pre-processes the device logs
and generates bag-of-words vectors. Then LogClass applies
PU Learning [13] and SVM to train an anomaly detection and
classification model. Similarly, in the online detection proce-
dure, LogClass determines whether a new log is anomalous
and its anomaly category if yes.

We evaluate LogClass on tens of millions of switch logs
collected from several real-world datacenters owned by a top
global search engine. Our results show that LogClass achieves
99.515% F1 score in anomalous log detection, 95.32% Macro-
F1 and 99.74% Micro-F1 in (anomalous) log classification in
an computationally efficient manner.

The rest of the paper is organized as follows: Section II
provides the background of our problem, and the design of
LogClass is elaborated in Section III. The evaluation is shown
in Section IV. Finally, we introduce the related works in
Section V and conclude our work in Section VI.

II. BACKGROUND

At present, datacenter networks compris a variety of net-
work devices, such as switches, routers [14]. Network opera-
tors are required to monitor network by monitoring all devices
and detect even a slight device anomaly.

A. Device Logs

Many devices have similar log fields. In this paper, we take
the switch logs as examples to depict the each field of device
logs. Table I shows several examples of switch logs. As the
table shows, a switch log message usually has a primitive
structure containing several fields. Network operators usually
care about the detailed messages. In this paper, we utilize
detailed messages to classify device logs.

B. Anomalous Devices Logs Classification

We provide the definitions of logs and device anomaly,
which are similar to the definition of device failure in [15].
• Device anomaly. When the service (such as traffic for-

warding) provided by a device deviates from the correct
service, a device anomaly occurs.

• Anomaly category. Each device anomaly belongs to a
specific category, which is the cause of this anomaly.
Typical categories include reboot, packet loss etc.

• Anomalous logs.The anomalous logs are associated with
device anomalies. Each anomalous log belongs to a
specific category (e.g., packet loss).

• Healthy logs. The logs are not associated with device
anomalies. They usually describe the routine status.

Fig. 1: Problem Definition

Fig. 2: The Framework of LogClass

• Unlabeled logs. The logs that network operators do not
know whether they relative to device anomalies.

In parctice, network operators usually use keyworks to
mark anomalous logs, but many words have ambiguities. For
instance, if a network device tries to PING another device, a
loss ratio will be recorded in the syslog message as “packets :
sent = 5, received = 5, lost = 0 (0% loss)”. The popular method
in most companies is the Regular Expression (RE). However,
the Regular Expression approach has several drawbacks for log
classification. First, a RE is rigorous. It cannot match text even
if existing only an additional whitespace or symbol. Besides,
configuring regular expressions need heavy workload. More
especially, when new devices are used, network operators need
to update regular expressions.

Finally, we define the problem of anomalous log classifi-
cation. There are tens of millions of logs. It is infeasible to
ask network operators to identify all anomalous logs. Some
anomalous logs are labeled by network operators, but a few
anomalous logs still mingle in rest logs. We aim to find
the pattern of anomalous logs based on existing device logs
and classify anomalous logs during runtime. Fig 1 shows the
problem definition of anomalous log classification.

III. DESIGN OF LOGCLASS

In this section, we present the LogClass system.



TABLE I: Examples of Switch Logs

Log No. Vendor ID Timestamp Message Type Detailed Message

L1 V1 Jun 12 19:03:27 2017 SIF Interface te-1/1/59, changed state to down
L2 V2 Jun 13 20:22:03 2017 - VlanInterface vlan22, changed state to down
L3 V1 Jun 13 20:22:03 2017 SIF Interface te-1/1/17, changed state to up
L4 V3 Jun 15 13:46:43 2017 OSPF Neighbour vlan23, changed state from Exchange to Loading

TABLE II: Text Words and Parameter Words in Logs

Category Format Example

Text Letters change
Symbols and Letters Vlan-interface

Parameter

Symbols ( @ &
Numbers 1512028952
Numbers and Symbol 192.168.64.107
Numbers and Letters vlan23

A. System Overview

We have three observations for the device logs. First, there
are many parameters in logs, such as IP, interface etc. In
additon, most device logs are semi-structured natural lan-
guages provided by device developers and produced by “print”
program. Finally, network operators cannot label all anomalous
logs. According to above observations, we proposed LogClass,
a data-driven system to detect and classify anomalies based on
device logs. Fig. 2 gives an overview of LogClass. To achieve
our goal, the system first preprocesses logs (Section III-B). It
then calculates log feature vectors (Section III-C). Because of
partial labels, we utlize PU Learning to detect anomalous logs
(Section III-D). Finally, LogClass train a multiclass classifier
(Section III-D). We now give a detailed description for each
component.

B. Log Preprocessing

From Table I, we can see that there are many parameters in
logs, such as IP, interface etc.. Different device manufacturers
and device types have no unified format for log messages.
[9], [16] proposed methods to extract per-device type log
templates. However, their methods need to learn templates for
each device type. It results in that we cannot filter parameters
by templates. Therefore, preprocessing logs’ is necessary.

Intuitively, the text features in the log are mainly nouns,
verbs etc. The parameters with numerical words or specific
symbols, such as IPs, have little effect on log classification.
Although several prior works [9], [16]–[18] have been pro-
posed to extract log template (also known as “log key”), they
all have some drawbacks. For example, [18] utilizes source
code of gengrating logs to extract log templates, but not all
source codes can be acquired.

In this paper, we classify the words into two categories, text
words and parameter words. The text words are similar to the
template words, which are mentioned in [9], [16]. The detailed
definition of classification of words is described in Table II.
Parameter words are usually related to specific devices (e.g.,
an IP belongs to a specific device). We filter parameter words
because of their low utility for log classification. What’s more,

filtering parameter words can reduce vocabulary. After log
preprocessing, we get device-agnostic words from logs.

C. Feature Vectors
After log preprocessing, LogClass attempts to construct a

feature vector for each log. The universal method to construct
a text feature vector is the bag-of-words expression, which is
used in the natural language processing area [19]. Generally,
each vector component is assigned a value related to estimated
importance (also known as weight) of words in logs [20].

TF-IDF is the most popular weighting method used to
describe documents [20]. Regarding bag-of-words representa-
tion, each feature vector component of each document relates
to a word of the vocabulary. The TF-IDF method weights each
vector component on the following basis. First, it involves the
word frequency in the document, which is represented by TF
(the term frequency). The more a word appears in a document,
the more it is estimated to be significant in this document.
Simultaneously, IDF measures how infrequent a word is in the
total collected documents. This IDF value is estimated using
the whole training text collection at hand. If a word appears in
the total collected documents frequently, it is not regarded to
be especially representative of these documents. For instance,
stop words (e.g., a, and, or) nearly appear in all documents,
but they are of little help to classification. In other words, if a
word is infrequent in the total documents, it is believed to be
very relevant for a particular category of documents. In this
scenario, documents are logs.

D. Machine Learning based Training and Classifying
After generating feature vectors, we adopt PU Learning [13]

to handle the partial labels and detect the anomalous logs
from all unlabeled logs. Then, LogClass utilizes a multiclass
classifier to classify the anomalous logs into each specific
category they belong to. We introduce PU Learning method
and classifiers we adopt as follows.

1) PU Learning: Let x be an example and let y ∈ {0, 1}
be a binary label. Let s = 1 if the example x is labeled, and
let s = 0 if x is unlabeled. Only positive examples are labeled.
So y = 1 is certain when s = 1, but when s = 0, then either
y = 1 or y = 0 may be true, which can be stated formally by
the equation

p(s = 1|x, y = 0) = 0 (1)

Device anomalies occur randomly and anomalous logs are
randomly labeled. Stated formally, the assumption is that

p(s = 1|x, y = 1) = p(s = 1|y = 1) (2)

The goal is to learn a function f(x) such that f(x) = p(y =
1|x) as closely as possible, which is a traditional probabilistic



classifier. PU Learning also yields a function g(x) such that
g(x) = p(s = 1|x) approximately, which a nontraditional
classifier. Their core result is the following equation that shows
how to obtain a traditional classifier f(x) from g(x).

f(x) =
g(x)

c
(3)

Where c = p(s = 1|y = 1) is the constant probability that
a positive example is labeled. Let V be such a validation set
that is drawn from the overall distribution p(x, y, s) in the
same manner as the nontraditional training set. Let P be the
subset of examples in V that are labeled. [13] has mentioned
many estimators for the constant c, one estimator of them is
as follows

c =
1

n

∑
x∈P

g(x) (4)

So far, we can transform a traditional binary classifier to
a PU Learning classifier, which is trained by anomalous logs
and unlabeled logs.

2) Binary and Multiclass classifiers: Firstly, we try to
choose algorithm for binary classification. In general, the
number of anomalous logs is smaller than that of unlabeled
logs. We need to choose a binary classification algorithm for
the imbalanced problem. RandomForest (RF) is a well-known
powerful ensemble learning algorithm. The RF constructs a
multitude of decision trees, and learns patterns and makes
decisions based on voting, and thus the imbalance problem
of samples impacts little on RF [2]. Then, the anomalous logs
which are detected by binary classifier need be classified into
their categories. We choose SVM as our multi-classification
algorithm. When the SVM model has been trained, we can
get the coefficients assigned to the features (also known as
weights in the primal problem). The coef , for instance, an
attribute of the scikit-learn package [21] is the coefficient for
trained model. Moreover, the top n important words can be
extracted by sorting these coefficients. Network operators may
comprehend each category by its top n important words.

As shown in Fig.2, in the offline training component, we
train the PU binary classifier and multiclass classifier. In the
online component, when a new device log comes, LogClass
will generate feature vectors for PU classifier. If this log is
considered as anomalous, the multiclass classifier will find the
category it belongs to.

IV. EVALUATION

In this section, we conduct experiments on a real-world
switch logs to demonstrate the effectiveness of LogClass.
Switches forward traffic from servers to higher level routers,
and play a fundamental role in the datacenter networks [9]. All
the experiments were conducted on a Linux server with Intel
Xeon 2.40 GHz CPU and 64G memory. We implemented Log-
Class with Python 2.7. We take traditonal RandomForest and
Labeled-LDA (L-LDA) [22] as our baseline methods. L-LDA
is a typical text classification technique. For Labeled LDA, we
used the open-source implementation MALLET [23].

A. Data sets

In cooperation with network operators, we collected switch
logs over 2 weeks period from 58 types of switches across
more than 10 datacenters owned by a top global search engine.
This data set consists of logs and anomaly labels. These
datacenters use the RE to classify anomalous switch logs.

TABLE III: Detailed information for the switch log dataset

Duration # switch # anomalous # unlabeled # anomaly
types device logs device logs categories

2 weeks 58 1,758,458 16,702,547 12

TABLE IV: Names for Anomaly Categories

FAN RECOVERED OSPF NEIGHBOR CHANGED FAN FAILED
BOARD DISABLE BGP NEIGHBOR CHANGED POWER DOWN
SYSTEM REBOOT INTERFACE DOWN PORT DOWN
PROTOCOL DOWN OSPF DOWN MODEL OUT

Table III shows the detailed information of this data set.
Table IV shows the names of 12 anomaly categories.

B. Evaluation on Anomalous Log Detection

The fisrt step of LogClass is anomaly detection. According
to [13], we define four sets. The anomalous logs labeled by
operators belong to the set of anomalous examples P . The set
of unlabeled examples is U . The actual anomalous examples
inside U are called subset Q. Finally, let N = U − Q.
A classification method’s capability is usually assessed by
three metrics that have intuitive interpretations, i.e., Precision,
Recall, F1 score. For each method, we label its outcome as a
true positive (TP ), true negative (TN ), false positive (FP ),
and false negative (FN ). True positives are the logs belonging
to P that are accurately determined as such by the method.
The true negatives are logs belonging to N that are accurately
determined. If the method determines a log as an anomalous
log, but in fact it belongs to N , we then labeled the outcome as
a false positive. The rest are false negatives. We calculated Pre-
cision, Recall, and F1 score as follows: Precision = TP

TP+FP ,
Recall = TP

TP+FN , F1 score = 2∗Precision∗Recall
Precision+Recall .

First, we use LogClass to do anomaly detection based on
the switch logs. We used a 10-fold cross-validation model to
evaluate these methods [24]. The first experiment in Tabel
V shows 10-fold cross-validation results of anomalous log
detection for whole dataset, from which we can see that the
LogClass can detect the anomalous logs accurately.

To demonstrate LogClass can handle device-agnostic logs,
we assume that 5 types of switches1 are newly added switches.
Then, we use LogClass to detect anomlous logs from these
switches. The second experiment in Tabel V shows the results
anomalous log detection for newly added switches. We observe
that even logs of new-type switches do not appear before,
LogClass can still get great anomaly detection performance.
Table VI shows an actual detection case of LogClass. L2 is

1Ten percent of all logs are generated by these types of switches.



TABLE V: The results of switch logs for anomalous log detection

Experiment No. Training Set Tesing Set Precision Recall F1 score

1 10-fold cross validation for all logs 99.048% 99.988% 99.515%

2 53 types of switches 5 types of switches 99.081% 99.132% 99.106%(90% of all logs) (10% of all logs)

TABLE VI: An actual anomalous log detection case of the LogClass

Log No. Switch Log Historical Label LogClass Result

L1 Interface TenGigabitEthernet 1/0/30 is protocol down. anomalous anomalous
L2 Interface TenGigabitEthernet 1/0/12 is link down. unlabeled anomalous

Fig. 3: Comparison among PU Learning classifier and tradi-
tional classifier for switch logs

an unlabeled log in the historical dataset, and it is detected as
anomalous. We can see that L2 is similar with L1, which is
labeled as anomalous in the historical dataset.

In the real-world datacenter, it is infeasible to ask network
operators to identify all anomalous logs. To illustrate that
LogClass can train a classifier based on logs with partial labels,
we sampled some anomalous logs randomly (cross all switch
types) and assumed they have no labels. Then, we compared
the performance of a PU Learning classifier and a traditional
RF classifier based on this new constructed dataset.

Fig 3 shows the comparison results for the PU Learning
classifier and the traditional RF classifier. We can see that, as
the ratio of anomalous logs mingling in the unlabeled logs
grows, the F1 score of the traditional RF classifier is getting
worse. When 9% of the unlabeled logs are actual anomalous
logs, the traditional RF classifier cannot work entirely. But the
performance of the PU classifier remains stable. The result
shows that PU Learning is necessary for anomalous logs
detection.

C. Evaluation on Anomalous Log Classification

To compare the performance of anomaly classification, we
take Labeled-LDA(L-LDA) [22] and Regular Expression(RE)
as our baseline methods. The Topic Model is a popular
method for text classification, social network etc. L-LDA is a
supervised method of Topic Model and it also uses the “bag-
of-words” approach.

A multiclass classification method’s capability is usually as-
sessed by Micro-F1 and Macro-F1 [25]. The Micro-F1 allows
larger classes to dominate its results, the Macro-F1 assigns
an equal weight to all classes, providing us complementary
information. We also score each method based on training
time and classifying time. While training time and classifying
time are important for the model update and operation.

Table VII shows the comparsion between LogClass, L-LDA
and RE. We observe that the Macro-F1 and Micro-F1 of
LogClass are larger than L-LDA’s, especially for Macro-F1.
The low Macro-F1 means that L-LDA cannot classify logs
accurately for several categories. We also observe that the
training time and classifying time of L-LDA are 17.91 and
5.91 times longer than LogClass obtained respectively. We
used the 150 real-world regular expressions2 to classify logs in
419.47 seconds, which is 86.74 times longer than LogClass’s
classifying time. Therefore, the overheads of L-LDA and RE
are much larger than LogClass.

TABLE VII: The Macro-F1, Micro-F1, Training Time and
Classifying Time for LogClass, L-LDA and RE

Methods Macro-F1 Micro-F1 Training Classifying
Time(s) Time(s)

LogClass 95.32% 99.74% 247.73 4.836
L-LDA 89.68% 93.53% 4436.4 28.59

RE - - - 419.47

Finally, as described in Section III-D2, LogClass can extract
top-n important words for each anomaly category. In Ta-
ble VIII, we shows top 5 important words of several anomaly
categories to dispaly the interpretability of LogClass. These
words were manually confirmed by network operators, and
considered as accurate words.

TABLE VIII: Top 5 important words for INTER-
FACE DOWN category

Logs
Interface TenGigabitEthernet 1/0/30 is down.
Interface te-1/1/56, changed state to down
GigabitEthernet 1/0/22: changed status to down

Top-5 words interface,down,state,GigabitEthernet,link

2In our dataset, there are 150 regular expressions for each type of switch
on average.



V. RELATED WORK

Log parsing techniques for network devices including
routers and switched have been well studied in [5], [9], [16],
[26]. Specifically, Qiu et al. proposed a log template extraction
technique [16]. For log messages that belong to a given
message type, the technique constructs a signature tree. How-
ever, the Signature Tree is not incrementally retrainable. More
recently,Zhang et al. proposed FT-Tree technique [9]. The FT-
Tree is more incrementally retrainable for extracting log tem-
plate. Kimura et al. presented an STE approach that extracts
log templates using a statistical clustering algorithm [5]. The
high-level idea is that template words appear more frequently
than parameter words. In NLP scenario, the Topic Model is
a popular method for text classification. LDA is a technique
of Topic Model which identifies latent topic information in
document collections [27]. Then, Ramage et al. proposed
Labeled LDA (L-LDA), a supervised version of LDA [22].
Credit attribution is an inherent problem corporate because
most documents have labels, but the tags do not always apply
with equal specificity across the whole document.

VI. CONCLUSION

Devices logs describe a vast range of events, which are ex-
tremely valuable in network device management (say anomaly
detection and troubleshooting). However, it is quite difficult
to apply device logs in anomaly detection and classification
because of the huge amount of logs, diverse manufactur-
ers/models of devices, and partial labels. We propose Log-
Class, a data-driven framework to classify anomalies based
on device logs. LogClass applies the bag-of-word model to
represent the word combinations of device logs. To address
the challenge posed by partial labels, LogClass introduces
PU learning to detect anomalous logs. Extensive experiments
using real-world data has demonstrated that LogClass achieves
excellent performance.
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