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Motivation and background

* Web latency matters!

GOOgleu latency increases 100ms ~400ms, query number decrease 0.2%~0.6%[1]

biﬂg latency increases 50ms, revenue decrease 1.2% [2]

aMmazZon  every 100ms of latency cost them 1% in sales [3]

[1] J.Brutlag. (June, 2009). Speed matters for Google web search.
[2] E.Schurman,J.Brutlag.(June,2009) The User and Business Impact of Server Delays, Additional Bytes and Http Chunkingin Web Search.

[3] Latency Is Everywhere And It Costs You Sales. https://goo.gl/bRi5Xs
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Motivation and Background

 Currently, data transmission of most web services are based on TCP.

* Most flows of web service are short.
* 99% flows are smaller than 100KB [Greenberg SIGCOMM’09]
e« 70% flows of Baidu mobile search service are smaller than 100KB.
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Motivation and Background

* Short flow’s transmission is slow because of TCP’s flow startup problem [RFC6077]

* Slow-start mechanism with a conservative initial window (IW) to probe the bandwidth during the
transmission.
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Motivation and Background

* Short flow’s transmission is slow because of TCP’s flow startup problem [RFC6077]

* Slow-start mechanism with a conservative initial window (IW) to probe the bandwidth during the
transmission.

TCP State % of flows

The reason is the sender doesn’t know how to set the IW.
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Motivation and Background

* Why IW is hard to set?

e Large IW -> network congestion; Small IW -> long latency

* No knowledge to learn.
* When connection established, the sender does not know current network condition.
* Only one kind of IW has been used in history.

* One static IW is suboptimal.

 Different users have different network conditions.
* For one user, its network condition could changes over time.

Network 2G 3G 4G Wi-Fi
RTT 300~1000ms 100~500ms 10~100ms 10ms ~100ms
Bandwidth 100-400 0.5-5 Mbit/s | 1-50 Mbit/s 25 Mbit/s
Kbit/s
Ideal Cwnd 3~16 5~223 1~446 2~223

Ideal Cwnd = Bandwidth * RTT 7



Related Works

* Many prior works have been done to improve TCP performance.

1.

New congestion control algorithm (e.g. TCP Tahoe, Reno, Bic, Cubic, BBR, PCC,
Remy, PCC Vivace, Copa, Indigo)

* Pros: Quickly converge to theright available bandwidth after transmission begins.

* Cons: Flow startup problem exists.

Increasing IW (IW = 2~4 in 2002|RFC3390], IW =10 in 2013|RFC6928])

* Pros:simpleand easily deployed.
* Cons: one standard valueis suboptimal.

Aggressive startup (e.g. Jump start [FLDnet07], Halfback [Conext15]):
* Pros: fast transmission.
* Cons: hardly seen deployed; may cause damage to the other co-existing flows.
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1. New congestion control algorithm (e.g. TCP Tahoe, Reno, Bic, Cubic, BBR, PCC,
Remy, PCC Vivace, Copa, Indigo)
* Pros: Quickly converge to theright available bandwidth after transmission begins.
* Cons: Flow startup problem exists.

The flow startup problem is only mitigated but not directly solved

* Cons:one standard valueis suboptimal.

3. Aggressive startup (e.g. Jump start [FLDnet07], Halfback [Conext15]):

* Pros: fast transmission.
* Cons: hardly seen deployed; may cause damage to the other co-existing flows.



Data-drivenapproachis promising

Global data of many flows

Pytheas [NSDI'17]

Local data of single flow
CFA [NSDI'16]
VIA [SIGCOMM’16]
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Classic approaches Data-driven approach
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Model IW setting as a Reinforcement Learning problem
(Real-time Exploration and Exploitation).
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A classic problemin RL

Multi-armed bandit problem

Goal: Maximize mean rewards Goal: Optimize mean TCP performance
given a limited amount of pulls for a limited amount of flows
Slot machines IW1 IW2

= = S G
Rewa& , Reward TCP Performan& /TCP Performance
%Pulls by a gambler Q Q Q
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The challenges in practice

* Challenge #1: How to measure TCP performance data on the server side?

* Challenge #2: How to apply RL methods on highlyvariable and non-
continuous network conditionsof the Internet?

13



Challenge #1: How to measure TCP performancedataon

the serverside

* RL needs global fresh data
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&

: Client Side Collection -
= * HighOverhead
* NoTCP layerdata
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*i... Server Side Collection

* NoTCP respone time

*
llllllllllllllllllllllllllllll

Web latency = TCP response time =T, + T;
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Challenge #2: How to apply RL methods on highly variable

and non-continuous network conditions of the Internet?

* Users network condition are variable
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Challenge #2: How to apply RL methods on highly variable

and non-continuous network conditions of the Internet?

* RL requires continuity of the context that affects the reward of the decision

Context
(e.g. mean
bandwidth)

Condition 1

/\/\/\/\/\/\/\/Condition 3

'I:ime
* Not every user group can satisfythis RL’s requirement

* Fine-grained -> not enough data samples
* Coarse-grained -> suboptimal performance

16



SmartlW: Group-based RL

* The key ideas:
1. Usingdifferent IWs for different user groups who can satisfy the RLs requirements
2. Forone user group, wisely learning the optimal IW by RL
3. Server-side data collection.

Server Optimal IW selection (RL)

A

K”/ ; \\\\A
IW=10 IW=20 IW=30
O 0O O -
Select IW =20
Q Server-side performance measurement
User Groupl UserGroup2 UserGroup3 (Goodput, RTT)

(a) Using different IWsfor different user groups  (b) The logic of IW selection for one user group
17



RL Algorithm

Discounted Upper Confidence Bound® Reward:
* Goodput & RTT

‘ X (i) = as Goodput(i) L RTT in

= - (1 —a)x* ,
Optimal IW selection (RL) Goodpul maz RTTs(q)

P * Decision Space:
IW=10 [IW=20 IW=30
O O O e Arms BestArm
Select IW =20 | 5 | 10] 15|20 25 |30 |35 | 40 [messz)| 5 [10 | 15] 20| 25 ]3035 [J0 |
BelstArm
Server-side performance measurement | 5 | 10 ‘ 15 | 20 | 25 I 30 |35 |4° 5 | 10 | 15 | 20 | 2 |30 | 35 |4° |

Goodput, RTT . - ..
(Goodpu ) Fig. 4: The procedure of the sliding-decision-space method.
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User grouping Algorithm

¢ User grOUFPmuince Beijing Shanghai Beijing Shanghai
e Bottle-t '+ o« a—— e S
Isp |CMNET UNICOM CHINANET CMNET UNICOM CHINANET

* Findthe | 1~ 7 /\- e AN A
sac: 5] (58] [B0] (B 8] 66 A 51][Others] [s3] [otmers]  [s6] [Others|

) . Step1. Check the leaf nodes of the user group Step2. Merge the blue sibling leaf nodes into a
¢ R I. S req ulir« tree, if the node satisfies the RL’s requirement, new leaf node called Others which is a new child
. . the node is green, else blue. node of their original parent node.
e Continuit

All All All

Province Beijing .- Shanghai Beijing - Shanghai

! e

n
7 Zszg ISP |CMNET| | UNICOM | | CHINANET CMNET | | UNICOM | | CHINANET

s -/- ¢ 5] [so][omer] |se]
J < T Step3. Check the Others nodes in the Subnet Step4. Check the Others nodes in the ISP layer.
layer. If the Others node is blue, merge it into a If the Others node is blue, merge it into a new

new Others node which is the child node of its Others node of All node. At last, check the Others
grandparent node. node of All node. 19




SystemIimplementation
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* Online experiment:
* SmartlW can contlnuously bring about 23% improvement of the average response

tl m e - baidt;.com :
...0.
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heot2s  Hi EE U NetwBrkad Ne‘t\(ork?,
* Testbed experiment: L] L[]

* Both user grouping and reinforcement learning can help improve the network
performance by 29%.

 Directly using a aggressive IW is a bad choice.
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Testbed Experiment

* Replayuser groups’ 24*hour network condition.

30I I
0 I

* 5 Schemes:
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Testbed Experiment

* Replayuser groups’ 24*hour network condition.
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Testbed Experiment

* Replayuser groups’ 24*hour network condition.
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2. Directly using an aggressive IW is suboptimal, causing
critical congestion.
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Testbed Experiment

* Replayuser groups’ 24*hour network condition.
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Conclusion

* TCP flow startup problem is very obvious in the real world.

* We propose a system called Smart/W that can set TCP /W at server side
smartly using group-based reinforcementlearning to improve the web
performance.

» Testbed and Online experiment prove our system works well.
* Online: 23% performance improvement
* Testbed: 29% performance improvement
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