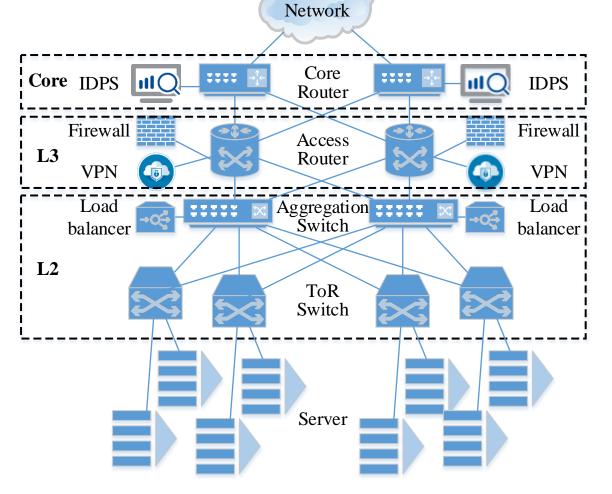
Device-Agnostic Log Anomaly Classification with Partial Labels

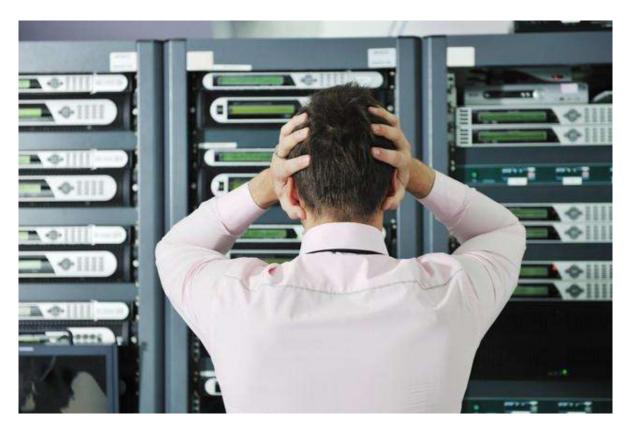
Weibin Meng, Ying Liu, Shenglin Zhang, Dan Pei Hui Dong, Lei Song, Xulong Luo

Motivation

Architecture of Datacenter Networks

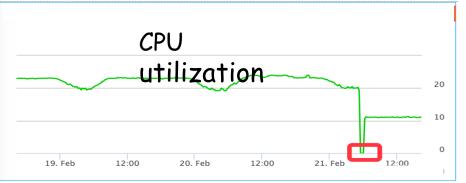
Inter-DC





Motivation

- Traditional anomaly detection methods usually monitor KPI curves.
 - KPI need network operators select manually.
 - KPI methods can only find anomalous behaviors



- Logs describe some events that KPI curve can't, such as the root cause.
 - Logs are most valuable data sources for device management.

SYSLOG/6/SYSLOG_RESTART: System restarted -- H3C Comware Software. DEV/2/FAN STATE CHANGE TO FAILURE: Trap 1.3.6.1.4.1.2011.2.23.1.12.1.6(fanfailure): fan ID is 1 P01 OUT_SWITCH 192.168.201.218 2016 %%10DEVM/1/FAN STATE CHANGES TO FAILURE(t): Trap 1.3.6.1.4.1.2011.2.23.1.12.1.6: fan ID is 1 DEV/5/SYSTEM_REBOOT: System is rebooting now.

2018/6/23

Device logs

Message types are ambiguous for accurate classification

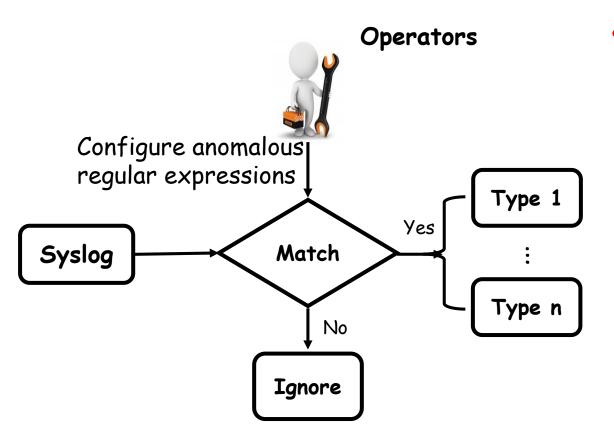
• Examples of device(switch) log:

Switch ID	Timestamp	Message Type	Detailed Message
Switch 1	Jun 12 19:03:27 2017	SIF	Interface te-1/1/59, changed state to down
Switch 2	Jun 13 20:22:03 2017	-	Vlan-interface vlan22, changed state to down
Switch 1	Jun 13 20:22:03 2017	SIF	Interface te-1/1/17, changed state to up
Switch 18	Jun 18 05:21:03 2017	SIF	Interface te-1/1/19, changed state to up
Switch 22	Jun 15 13:46:43 2017	OSPF	Neighbour vlan23, changed state from Exchange to Loading
Switch 28	Jun 15 13:46:43 2017	OSPF o	PVID mismatch discovered on Ten-GigabitEthernet 6/0/10
		0	, to S12516XAF-38.Int Ten-GigabitEthernet 3/0/17

Detailed Messages are Semistructured natural languages provided by device developers

Drawbacks in Regular Expression

Regular Expression is the popular technique for anomalous log classification.



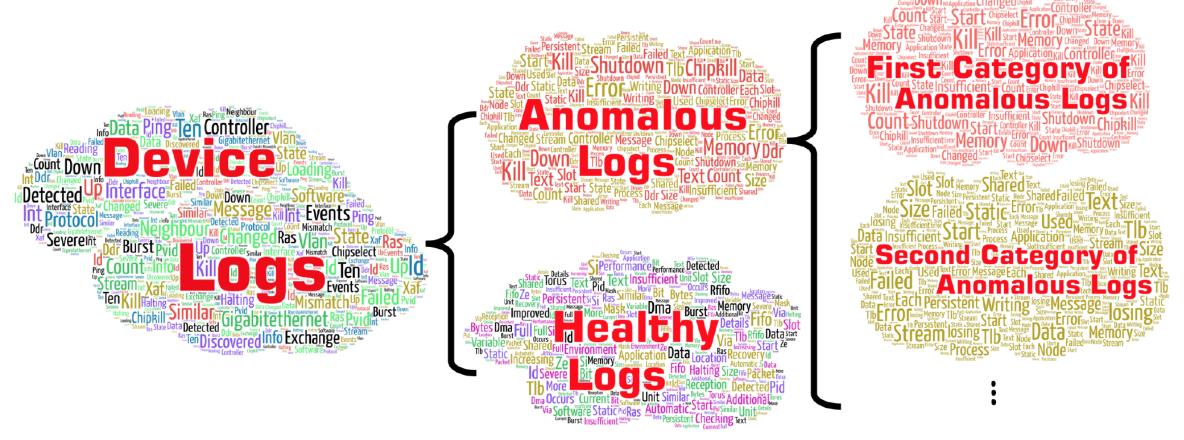
Drawbacks:

- Low generality
- Labor intensity

RE for Manufacturer B logs Manufacturer A

2018/6/23 weibin

Problem Definitions



Anomalous log detection Anomalous log classification

Challenges

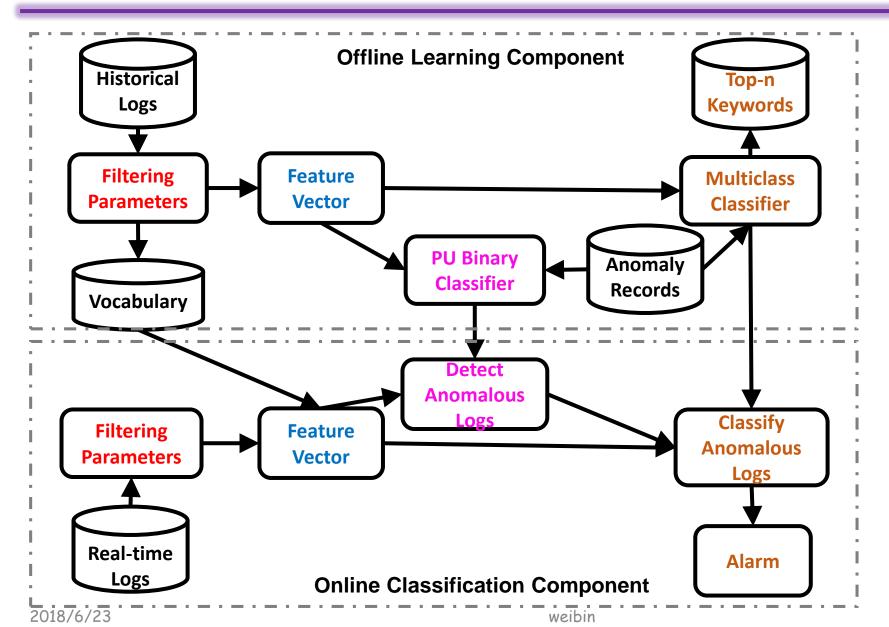
Device-agnostic vocabulary

- Device logs are type-specific and manufacturer-specific.
- · It is hard to fit one classification model for all different device types.

Partial labels

- Network operators only label partial anomalous logs they encountered.
- · Difficult to train a traditional classification model.

LogClass Design Overview



- 1. Log Preprocessing
- 2. Feature vector
- 3. Anomaly detection
- 4. Anomaly classification

8

Text feature vector

The universal method to construct a text feature vector is the bag-of-words model.

logs:

L_1	Interface	te-1/1/59	changed	state	to	down		
L_2	VlanInterface	vlan22	changed	state	to	up		
L_3	Neighbour	ylan23	changed	state	from	Exchange	to	Loading

bag-of-words vectors:

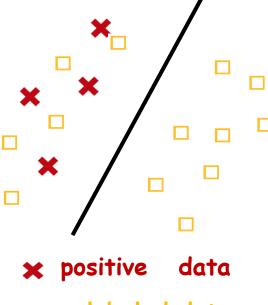
Vocabulary	Interface	changed	state	to	down	VlanInterface	Neighbour	from	Exchange	Loading	up
L_1	1	1	1	1	1	0	0	0	0	0	0
L_2	0	1	1	1	0	1	0	0	0	0	1
L_3	0	1	1	1	0	0	1	1	1	1	0

Assign weighting values to each component in vectors. (e.g., TF-IDF)

PU Learning

- Different from tradition classification.
 - In our scnario, labelling all existing anomalous logs is not natural.
- PU Learning input:
 - Positive set P (Anomalous logs)
 - Unlabeled set U (Unlabeled logs)

PU learning



□ unlabeled data

Evaluation

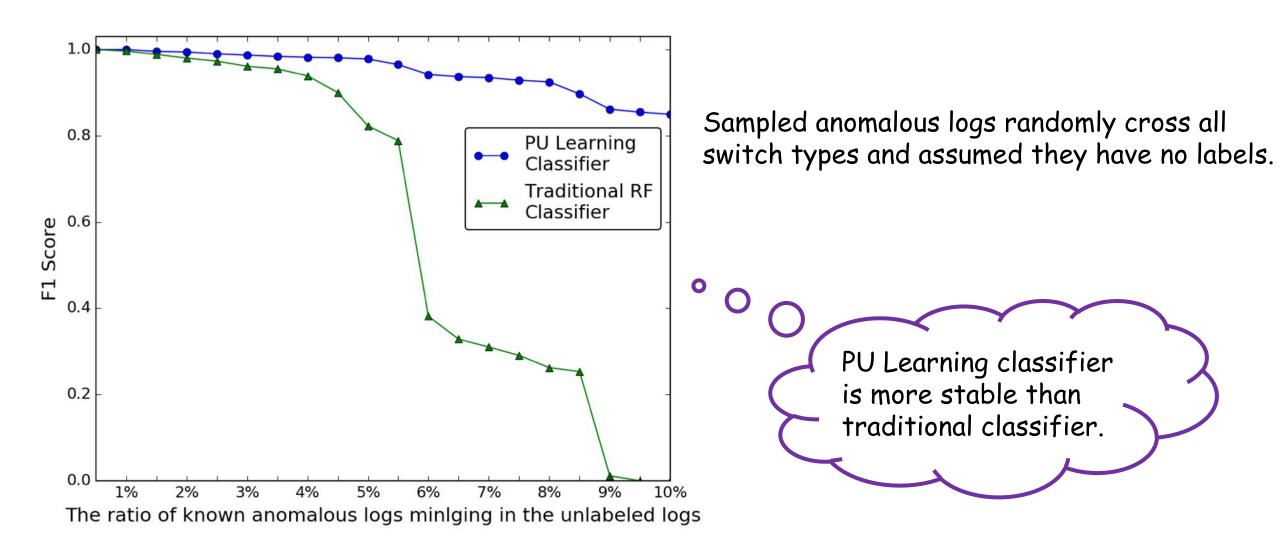
Dataset

- ·Real-world Switch logs
- •58 switches types
- ·Two-week period
- •1,758,456 anomalous logs
- ·16,702,547 unlabeled logs

Benchmark methods

- · Labeled-LDA
- Regular Expression

Evaluation on PU Learning



Evaluation on Anomalous Log Classification

Methods	Macro-F1	Micro-F1	Training Time(s)	Classifying Time(s)	
LogClass	95.32%	99.74%	247.73	4.836	
L-LDA	89.68%	93.53%	4436.4	28.59	
RE	<u> </u>	_	_	419.47	

LogClass is more accurate.

The overheads of L-LDA and RE are larger than LogClass

Conclusion

Challenges

- ·Device-Agnostic vocabulary
- ·Partial anomalous logs have labels

LogClass

- PU learning
- · Simple NLP techniques

Evaluation

· Real-world switch logs.

Thank you!

mwb16@mails.tsinghua.edu.cn