
Reducing Web Latency through Dynamically Setting
TCP Initial Window with Reinforcement Learning

Xiaohui Nie†, Youjian Zhao†, Dan Pei†, Guo Chen‡∗ , Kaixin Sui§, Jiyang Zhang¶
†Tsinghua University ‡Hunan University §Microsoft Research ¶Baidu

†Beijing National Research Center for Information Science and Technology (BNRist)

Abstract—Latency, which directly affects the user experience
and revenue of web services, is far from ideal in reality, due to the
well-known TCP flow startup problem. Specifically, since TCP
starts from a conservative and static initial window (IW, 2∼4 or
10), most of the web flows are too short to have enough time
to find its best congestion window before the session ends. As a
result, TCP cannot fully utilize the available bandwidth in the
modern Internet. In this paper, we propose to use group-based
reinforcement learning (RL) to enable a web server, through
trial-and-error, to dynamically set a suitable IW for a web flow
before its transmission starts. Our proposed system, SmartIW,
collects TCP flow performance metrics (e.g., transmission time,
loss rate, RTT) in real-time without any client assistance. Then
these metrics are aggregated into groups with similar features
(subnet, ISP, province, etc.) to satisfy RL’s requirement. SmartIW
has been deployed in one of the top global search engines for
more than a year. Our online and testbed experiments show
that, compared to the common practice of IW = 10, SmartIW
can reduce the average transmission time by 23% to 29%.

I. INTRODUCTION

Latency, which greatly affects the user experience and rev-
enue [1, 2], has become one of the most important performance
metrics for modern online web services (e.g., web search, e-
commerce website). However, the network transmission time
in those web services is still far from ideal, and signifi-
cantly increases the end-to-end latency [3, 4]. One of the key
reasons is that TCP, which most online web services (e.g.,
Microsoft [5], Google [3], Baidu [4]) are based on, cannot
deal with short web flows gracefully.

Specifically, TCP starts with a conservative and static initial
congestion window (IW, 2, 4, or 10 [6]), then tries to find the
best sending rate of a flow by keeping probing and adjusting
its congestion window (CWND) during flow transmission.
However, most web flows are so short that they could be
finished in just one RTT with the best CWND, but inadequately
take multiple RTTs to probe for its best CWND although the
flows are too short to have enough time for TCP find one
starting from the conservative IW. As a real-world example,
Table I shows that, for the mobile search service in a top global
search company B where IW =10, more than 80% of the TCP
flows are still in slow-start phase when the sessions end, not
utilizing the available bandwidth.

The above TCP flow startup problem is still considered by
the research community as an open research problem [7] for
general TCP environment. Google proposed to increase the
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TCP state after flow ends % of flows
Slow Start 80.27%

Congestion Avoidance 19.73%

TABLE I: The distribution of TCP states after finishing trans-
mission. Measured in the mobile search service of B during
one week in 2017. The average flow size is about 120KB.

standard IW from 2 ∼ 4 to 10 [6]. But is 10 still too small
for those high-speed users (e.g., with fiber access) and is 10
too large for low-speed users (e.g., GPRS access in remote
areas)? Since the network conditions can be highly variable
both spatially and temporally, it is actually infeasible to choose
a static IW that is best for all flows. In this paper, we argue
that a web-service provider can collect TCP flow data and use
an appropriate data-driven learning method to set a suitable
IW for a web flow even before its transmission starts.

Setting TCP IW through data-driven learning has been little
studied. Since the network condition can be highly variable
and the relationship between IW and network conditions is
complex, we model the IW setting as a reinforcement learning
(RL) problem (real-time exploration and exploitation) instead
of a prediction problem (offline training and online prediction).
Its basic idea is to continuously strike a balance between ex-
ploring suboptimal decisions and exploiting currently optimal
decisions [8]. Our choice of RL is inspired and encouraged
by the recent progress in applying RL (instead of prediction
model) to Internet video QoE optimization through dynami-
cally deciding a video session’s serving frontend servers [9]
or through tuning ABR algorithms [10].

In this paper, RL is used to continuously update the deci-
sions of the suitable IW for flows, based on the most recent
fresh performance data, to maximize the cumulative reward
(network performance). Although applying RL to set TCP
IW is a promising abstraction, there are three major practical
challenges in practice:

• Challenge 1: How to measure TCP performance data
on the server side only? RL method needs fresh TCP
performance data to compute reward. However, a tradi-
tional web service server cannot directly measure the TCP
transmission time without clients’ collaboration.

• Challenge 2: How to apply RL methods on highly variable
and non-continuous network conditions of the Internet?
RL continuously updates the decisions based on fresh
data and historical experience. Its decision is determined
by a static (but unknown) distribution of the context,
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and traditional RL methods require the continuity of the
context that affects the reward of the decision [11, 12].
In our case, the decision of RL is the latest suitable IW
for a flow, and the context of RL is a flow’s network
conditions (i.e., available end-to-end bandwidth and
RTT). However, not every user or user group can satisfy
RL’s context continuity requirement. Even worse, for
some fine-grained user groups such as user IP, most
of them do not even have enough data samples to tell
whether their network conditions are continuous or not.

• Challenge 3: How to search for the optimal IW from a
large window space quickly? RL methods are essentially
based on trial and error. They require clever exploration
mechanisms. Brute-forcedly selecting actions results in
poor performance [13], and typically only suits small and
limited decision space, which can quickly converge to the
best decision after a small number of trials. However, the
possible IW space for a TCP flow can be so large that the
network conditions might have already changed before
brute-forcedly searching can find the optimal IW for the
previous network conditions.

In this paper, we propose a system called SmartIW that can set
TCP IW at server side smartly using group-based reinforce-
ment learning, which addresses all the above challenges. The
contributions of this paper are summarized as follows:
• To address Challenge 1, we modify Linux kernel and

Nginx software to enable web servers to collect and
store billions of TCP flow performance records (e.g.,
transmission time, loss rate, RTT) in real-time without
any client assistance (§V). Such a server-side TCP mea-
surement system can be used beyond SmartIW, e.g., for
TCP performance troubleshooting.

• To address Challenge 2, our intuition is that flows from
users sharing the same network features (e.g., subnet,
ISP, province) typically have similar network perfor-
mance [9]. Thus, we propose a bottom-up approach to
group flows from users with the same network features
to find the most fine-grained user groups that both have
enough samples and satisfy the RL context continuity
requirements. Then we apply RL methods at the group
granularity. (§IV-B)

• To address Challenge 3, we improve RL with a fast de-
cision space searching algorithm. Based on the common
perception of the relationship between TCP performance
and the IW, we propose a sliding-decision-space method
that can quickly converge to the best IW (§IV-A).

• SmartIW has been deployed in one of the top global
search engines for more than a year. Our online and
testbed experiments show that, compared to the common
practice of IW = 10, SmartIW can reduce the average
transmission time by 23% to 29%.

II. BACKGROUND

A. TCP response time in web services
Fig. 1 shows a typical infrastructure of web services [3, 6],

and illustrates how users, frontend servers, and backend
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Fig. 1: Typical infrastructure of web services, HTTP interac-
tions, and TCP response time.

servers interact to complete a web request. Frontend servers
parse users’ requests from the Internet (step 1), and redirect
them to the backend servers who handle the concrete tasks
(step 2). Then they receive the responses (HTML, images,
css, js files) from backend servers (step 3) and send them to
users through the Internet (step 4). The Web response time (or
informally Web latency) [3] consists of (T1 + T2 + T3) , the
transmission time between frontend servers and users through
the Internet, and T2, the time between frontend and backend
servers through the dedicated high-speed private network and
the processing time at the backend servers. Unfortunately,
neither T1 nor T3 can be directly measured at server-side
without client assistance. However, the frontend server can
measure Tstart and Tend, where Tstart is the moment when
the frontend server begins to send data to the user (step 4),
and Tend is the moment when the frontend server receives
the last ACK of the response which indicates the end of this
network transmission (step 5). Thus, T4 is the transmission
time of the response’s last TCP ACK (a small packet), which
can be used to closely approximate T1 (the time to transmit the
HTTP request, also a small packet). Therefore, it is a common
practice [3] to use T2 + T3 + T4 (estimated response time) to
estimate T1 + T2 + T3 (response time).

Because T2 can be considered by the users as an overall
processing time of the web service provider, and T1 + T3 is
affected by the TCP flow start problem the most, in this paper
we focus on (T1 +T3) only, and call it TCP Response Time
hereinafter. It is calculated as (Tend − Tstart).

B. IW greatly affects the network transmission time

The common perception of IW: IW determines the initial
sending rate at the flow startup phase. Too small an IW suffers
from more RTTs than necessary to finish the transmission;
too large an IW results in congestion or even expensive TCP
timeout, which results in high TCP response time [6]. In
summary, different IWs can greatly affect TCP response time.

Fig. 2 shows IWs’ effects in two example network condi-
tions. In Fig. 2(a) the network condition is relatively good
where the link can support CWND =3. So if server’s IW =3,
the TCP response time is 1 RTT. But when the IW = 1, the
response time is 2 RTTs. In Fig. 2(b), the network condition
is worse, i.e., when the CWND is larger than 2, it would



cause link congestion and packet loss. As such, if IW = 3,
the response time would be RTT + retransmission timeout
(RTO, which is typically several times of RTTs). But if IW =
1, the response time is 2 RTTs, shorter than that when IW =3.
We can see that a proper IW can greatly reduce the network
transmission time.

Client ServerIW	=	1 Client ServerIW	=	3

Client ServerIW	=	1 Client ServerIW	=	3

(a)	Client	request	for	3	packets	data.	The	link	supports	CWND ≥ 3.

(b)	Client	 request	 for	3	packets	data.	The	 link	only	supports	CWND ≤ 2.

Waiting	for	RTO

2*RTT
1*RTT

2*RTT
RTT+RTO

Fig. 2: An illustrative example to show the effect of IW.

III. CORE IDEAS AND SYSTEM OVERVIEW

As mentioned in §I, the best IW is determined by the client-
server end-to-end link’s network conditions (e.g., available
bandwidth and RTT), but the network conditions are highly
variable, both temporally and spatially. To deal with the
variability of the network conditions, we propose a bottom-up
approach to group flows from users with the same network
features (e.g., subnet, ISP, province) to find the most fine-
grained user groups that both have enough samples and satisfy
the RL context continuity requirements.

On the one hand, using RL method can naturally deal with
the temporal variability of the network conditions. i.e., RL
aims to find the best IW for each given network condition of a
specific user group and dynamically adapt to the latest network
conditions of the user group. On the other hand, user grouping
is used to handle the spatial variability of network conditions.
Our intuition is that, for a given server at a given time, users’
network features (i.e., subnet, ISP, province) largely determine
client-server end-to-end link’s network conditions. If we run
RL for each user group within which network conditions are
similar, the performance of each group can be improved.

A. Why reinforcement learning

Choosing a proper IW for a TCP flow is not an easy job.
Using data-driven method is a promising direction, but even
if we have detailedly logged the networking conditions, it is
still hard to decide a proper IW since it is highly related to
multiple complex factors such as network bandwidth, RTT,
router buffer size, flow size, etc., along the end-to-end path
between the user and the server. Moreover, all these factors
can frequently change over time, which means the proper IW
changes over time. Reinforcement learning (RL), inspired by
human behaviorist psychology [8], is a popular technique in
machine learning community and is very suitable to cope with
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Fig. 3: The key idea of SmartIW.

above situation. Basically, it continuously makes decisions
based on the environment feedback. Once the optimization
goal (called as reward function in RL) is properly defined, RL
can gradually find the best decision based on a trial and error
manner, by striking a dynamic balance between exploring
suboptimal decisions and exploiting currently optimal deci-
sions. Moreover, its exploration and exploitation algorithm can
quickly react to the environment change. As such, RL naturally
fits the task of dynamically setting IW. With a properly defined
reward function, the RL algorithm can help automatically find
a good IW, without worrying about the complex network
factors and their variation.

B. How to define the reward function

A naive way would be directly using the TCP response time,
which is our optimization goal in this paper. However, the size
of web responses may vary largely for different requests, so
their network transmission time cannot be directly compared.
We note that, RL method needs to aggregate TCP flows data
together to learn history and choose IW by comparing the
rewards of different decisions. Therefore, we need a reward
function that can accurately reflects the effect of IW on the
TCP response time, regardless of the response size.

Goodput, which is the number of bytes transmitted per unit
of time, is a good candidate that satisfies above requirements.
Increasing IW to get the best goodput of flows that deploy
our approach (called SmartIW flows) can hurt the performance
of non-SmartIW flows that share some network resource with
SmartIW flows. Therefore, to maintain fairness, we constrain
our RL optimization goal to be getting as higher goodput
as possible for SmartIW flows while trying best not to hurt
non-SmartIW flows. As such, we take into consideration both
goodput and RTT in the reward function, where RTT is a
good indicator to the network congestion that affects the per-
formance of non-SmartIW flows [14]. Here we do not add loss
to the reward function, because many RTT-based congestion
control algorithms [15, 16] work well without considering loss.

C. Overview of SmartIW

When the SmartIW, shown in Fig. 3, the frontend server
receives an HTTP request from a user, it establishes a session
with the user and identifies which user group it belongs to.
Then the frontend server obtains the most up-to-date decision
of IW from the per-group RL’s result and set this IW for the
session quickly before sending the response to the user. After
the response’s transmission is finished, the frontend server



outputs the TCP performance data and reports it to the server
cluster which runs per-group RL with fresh measurement data
and acts as the brain for learning each user groups’ IW.
Besides, the brain runs the user grouping algorithm with the
historical data. The brain continuously sends the IW decision
of each user group to the frontend servers at a timescale of
minutes. In this way, it controls all the sessions’ behavior.
Note that, all the procedures are done at server side without
any client or middleware (e.g. router, switch, link) modification
or assistance, and our method only changes the IWs without
modifying the TCP congestion control algorithm.

IV. CORE ALGORITHMS

In this section, we present two core algorithms of SmartIW:
RL algorithm for learning per-group IW given a user group
(§IV-A) , and user grouping algorithm (§IV-B ).

A. Reinforcement Learning
In this paper, we formulate the IW learning problem as a

non-stationary multi-armed bandit problem, a reinforcement
learning problem. It focuses on the online performance by
striking a balance between exploration (uncharted actions) and
exploitation (current optimal actions). Many algorithms for
this problem have been proposed [8].

For the stationary multi-armed bandit problem, the basic
UCB algorithm [17] has been shown to be optimal [12]. Its
assumption is that the unknown distribution of the context
does not change over time. However, in our scenario, the
network conditions could change over time, making our RL
problem a non-stationary bandit problem. In this paper, we
adopt discounted UCB algorithm [12] which was proposed to
solve the non-stationary bandit problem. The basic procedure
is as shown in Algorithm 1. At each time t, the player chooses
an arm It ∈ 1, ...,K (an decision) with the highest expected
upper-confidence Xt(γ, i)+ct(γ, i). Xt(γ, i) is the discounted
empirical average reward shown in Equation 1. Xs(i) denotes
the arm i’s instantaneous reward at time s. When Is = i,
1{Is=i} = 1, otherwise 1{Is=i} = 0. γ ∈ (0, 1) is a discount
factor to calculate the average reward.

Xt(γ, i) =
1

Nt(γ, i)

t∑
s=1

γt−sXs(i)1{Is=i} (1)

Nt(γ, i) =

t∑
s=1

γt−s1{Is=i} (2)

ct(γ, i) is the discounted padding function defined in Equa-
tion 3, where B is an upper-bound on the rewards and ξ > 0
is an appropriate constant variance to control the probability
of exploration. Note that if one arm is frequently used in the
history, its ct(γ, i) is smaller than that of the other arms, so
the suboptimal arm can be used for exploration. In this way,
the algorithm can strike a balance between exploration and
exploitation.

ct(γ, i) = 2B

√
ξ lognt(γ)

Nt(γ, i)
, nt(γ) =

K∑
s=1

Nt(γ, i) (3)

Algorithm 1 The discounted UCB
1: for t from 1 to K, play arm It = t
2: for t from K + 1 to T , play arm

It = argmax
1≤i≤K

Xt(γ + i) + ct(γ + i)

In order to use discounted UCB in IW learning, the keys
are the definitions of the reward function and the arms.

Reward function definition: Our goal is to set the ideal IW
which can fully utilize the client-server end-to-end link’s band-
width without causing congestion. As mentioned in §III-B,
we consider RTT as the signal of the network congestion.
The reward in Equation 4 reflects our goal of maximizing
the goodput and minimizing the RTT. Goodputs(i) is arm
i’s instantaneous goodput at time s, RTTs(i) is arm i’s RTT
at time s. Goodputmax is maximum goodput in the history
measurement, and RTTmin is the minimum RTT in the history
measurement. α is the parameter which strikes the balance
between the goodput and RTT. Small α favors low RTT, which
may make the algorithm be conservative with a small IW.
Large α favors high goodput, which may make the algorithm
be aggressive with a large IW.

Xs(i) = α ∗ Goodputs(i)
Goodputmax

+ (1− α) ∗ RTTmin

RTTs(i)
(4)

Arms definition: The list of arms in discounted UCB is the
decision space with some discrete values. However, IW has a
continuous and large value space. Our goal is to find the best
IW in the large decision space quickly. Brutally searching the
whole decision space is inefficient, because too many arms
will waste time in the exploration procedure. To address this
problem, we propose a sliding-decision-space method based
on the common perception (mentioned in § II-B) about the
relationship between TCP performance and the IW. At first,
we start with a short list of IWs as the arms, and the value in
the arm list is dynamic based on the arms’ performance.

The basic procedure is shown in Fig. 4. We use n IWs as
the initial arms list (e.g., n = 4, IWs = [15, 20, 25, 30]). When
updating the decision, we will first check whether to update
the arm list. The basic idea is to check whether the largest
arm IWlarge or smallest arm IWsmall is currently the best
arm. If yes, we update the arm list; else the arm list keeps
the same. The best arm is the arm having largest reward and
smallest value of padding function in Equation 3. Smallest
value of padding function means the arm has been exploited
more frequently than the other arms. Based on the common
perception of IW (§ II-B), too large and too small IW are both
sub-optimal. If the current best arm is IWlarge, we will add
a new IW (IWlarge +4) to the arm list and delete IWsmall.
If the current best arm is IWsmall, we will add a new IW
(IWsmall −4) to the arm list and delete IWlarge. 4 is the
constant step size for searching IW space. If the current best
IW is not the largest or smallest, the arm list keeps the same.

B. User grouping
In reality, the users’ network conditions have large diversity

because users have different network features (i.e., subnets,
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Fig. 4: The procedure of the sliding-decision-space method.

Subnet (IPstart ∼ IPend) ISP Province
S1 (223.72.97.0∼223.72.98.255) CMNET Beijing

S2 (223.71.208.0∼223.71.208.255) CMNET Beijing
S3 (123.118.89.0∼123.118.93.255) UNICOM Beijing
S4 (114.243.33.0∼114.243.33.255) UNICOM Beijing
S5 (123.120.72.1∼123.120.72.189) UNICOM Beijing
S6 (219.143.38.0∼219.143.38.255) CHINANET Beijing

S7 (58.130.48.0∼58.130.54.255) CHINANET Beijing
S8 (58.131.131.0∼58.131.132.255) CHINANET Beijing

TABLE II: An example of the B company’s geolocation
database.

ISP, province). For the users coming from different provinces
(e.g., Beijing, Shanghai) and ISP (e.g., CHINANET, CMNET,
UNICOM), both their network conditions (e.g., bandwidth and
RTT) could be different. To apply RL in highly spatially
variable network conditions, users with different network
conditions should be treated differently.

The flow’s IW is determined by its end-to-end link’s net-
work conditions (i.e., bandwidth and RTT). The ideal solution
would be learning IW for per-link. However, each link hardly
has enough samples for RL to learn IW. Thus, we argue that
grouping users with similar network features to share their
samples is a promising solution. However, grouping users is
challenging due to the following dilemma. 1) Too fine-grained
a user group (e.g., IP) typically lacks enough samples to
monitor its network performance continuously, which cannot
satisfy the requirement of RL; 2) Too coarse-grained a user
group (e.g., all flows) leads to suboptimal performance.

To address the above problem, we propose a new user
grouping method. The goal of user grouping is to find the
most fine-grained user groups that can satisfy the RL’s require-
ment (i.e., keep continuity in network conditions). The basic
idea is using a bottom-up (thus finest-to-coarsest) searching
technique to find the finest user groups, each of which has
enough samples and keeps the continuity of the network con-
ditions. We quantify the network conditions with the reward
function in §IV-A, which considers both goodput and RTT.

More specifically, before the data transmission, IP is the
most fine-grained user group, because the server at that time
can only obtain the IP as the user’s network feature. By
looking up B company’s geolocation database by IP, which is
similar to the geolocation database [18], we can infer the other
network features such as subnet, ISP, province etc. Table II
shows an example of the geolocation database. Note that an
IP only belongs to one record of the features in the table, and
all the records are mutually exclusive in IP space. Thus the
structure of user grouping result forms a 4-layer (subnet, ISP,
Province, All) tree. Fig. 5 shows an example.

We say a user group has enough samples when it has at
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All

Province
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Subnet

All

Fig. 5: The procedure of the user grouping algorithm.

least Smin samples in a time bin with length t. For each time
bin, we calculate the distribution of the reward and use the
average reward to quantify the network condition of this time
bin. In this way, we obtain a time series of average reward to
characterize the changes of network conditions.

We then define a metric called network jitter J shown in
Equation 5 to capture the continuity of the network conditions.
n denotes the number of time bins, and Xs is the reward at
time bin s. Since IW affects the reward, when computing J ,
the IW should remain the same in each time bin. Note that
a small J means the change of network condition is small.
To apply RL method to a given user group, the smaller J ,
the better. Here we choose a threshold T , if user group has
J ≤ T , it satisfies the requirement of RL.

J =

∑n
s=2 |Xs −Xs−1|/Xs

n− 1
(5)

In the example, assuming the finest users’ network feature
is the subnet and the coarsest feature is All. Beijing has three
ISPs: CMNET, UNICOM and CHINANET, they have 8 subnets
S1∼S8. The user grouping algorithm has 4 steps:
• Step 1: we check whether all the leaf nodes can satisfy

the RL’s requirement (Equation 5). The example’s result
is that S1, S3, S6 (in green color) satisfy the RL’s
requirement and S2, S4, S5, S7, S8 (in blue color) do
not, so S1, S3, S6 are three finest user groups that can
use RL to learn IW.

• Step 2: the sibling leaf nodes which cannot satisfy the
RL’s requirement are merged into a new leaf node called
Others, which is a new child of their original parent node.
In the example, S1 is turned into the Others, a new child
node of CMNET. S4 and S5 are merged into the Others, a
new child node of UNICOM. S7 and S8 are merged into
the Others, a new child node of CHINANET.

• Step 3: we check whether Others nodes satisfy the
RL’s requirement. If the Others node doesn’t meet the
requirement, it needs to be merged with its parent (ISP)’s
sibling’s Others nodes, and form a new child Others node
of its original grandparent (Province). In the example,



the node Others of CMNET and the node Others of
CHINANET are merged into the Others, a new child node
of Beijing. The node Others of UNICOM satisfies the
requirement because it has sufficient samples to measure
its network conditions after merging S4 and S5.

• Step 4: the algorithm continues to check the leaf Others
nodes until all the leaf nodes (except root’s child Others
node) satisfy the RL’s requirement. Finally, if the Others
of All doesn’t meet the requirement, we use the standard
IW [6] for its flows. In the example, the leaf nodes except
the Others of All node are the user groups that can use
RL to learn IW.

V. DESIGN AND IMPLEMENTATION

In this section, we present the system design and imple-
mentation of SmartIW as shown in Fig. 6. It has three keys
components. 1) Connection Manager is a module implemented
in the web proxy (e.g., Nginx [19]), which is deployed at
frontend servers. Its basic functions are setting a suitable IW
for each TCP session and output the performance data for
each TCP session. It has a configuration file called IW Table,
which stores each user group’s IWs. 2) Data Collector collects
and stores all the performance data of the frontend servers. It
provides the fresh data for Reinforcement Learning. (Note that
these two components can be used beyond SmartIW, e.g., for
TCP performance troubleshooting.) 3) Reinforcement Learning
runs user grouping and RL algorithms in §IV based on the
fresh data and updates the IW Table for Connection Manager
periodically. It is the controller of the SmartIW system.

3.	IW

Connection
Manager	

IW	Table

Data
Collector	

Reinforcement	
Learning	

1. Request

2.	Look	up

4.	Response	

User

Frontend	Server Control	Center

5.	Performance	
data

6.	Fresh	data

7.	Latest	 IW for	
each	user	group

Fig. 6: System Design

A. Connection Manager

When the frontend server establishes a TCP connection with
a user, Connection Manager queries the IW Table with the
user’s IP, the result is the IW for this session. Then it modifies
the IW for this TCP session immediately. All the procedures
are quickly finished before the frontend server sends TCP
data to the user. When the TCP session is closed, Connection
Manager outputs the TCP performance data of this session.

To realize the functions of Connection Manager, we im-
plemented a new module in a web proxy (e.g., Nginx) and
modified Linux kernel. To be a robust and easily controllable
system, most of the jobs are done in application level in the
web proxy, such as getting user’s IP after TCP three-way
handshake, looking up the IW from the IW Table, etc. The

TABLE III: The performance data in our system

TCP Metrics Description
Size The data size of the HTTP response.
TCP Response Time The transmission time defined in Fig. 1.
MSS Maximum segment size.
Goodput Size

TcpResponseTime

RTT The smoothed round-trip time (srtt) at the end
of the transmission.

Client Initial Rwnd Initial receive window of the user.
IW Initial congestion window of the TCP session.
Retrans The retransmission rate of the HTTP response.
Network Features Description
IP the user’s IP
Province the user’s province
ISP the user’s ISP
Subnet the subnet that user belongs to.

modified Linux kernel’s job is just exporting two new APIs
to change the value of IW and output the TCP performance
data. The web proxy cooperates with the modified kernel by
calling these two APIs. The first API is SetIW(fd, iw), which
is implemented in the setsockopt function in Linux, fd is the
file descriptor of the TCP socket, iw is the value of IW. When
it is called, the socket’s IW is changed. The second API is
GetData(fd), which is implemented in the getsockopt function
in Linux. When it is called, it returns the performance data
of the TCP socket. For the web proxy, the IW Table is the
configuration file, providing per-group IWs for different user
groups. Since the value of IW for each user group is based on
RL’s decision and can change over time, the web proxy also
reloads IW Table on demand or periodically.

User(IP=192.168.1.1) Frontend	Server

1.	Look	up	IW

2.	SetIW(fd,	iw =	10)

…
Connection	 Closed

3.	GetData(fd)

4.	GetData(fd)

5.	GetData(fd)

IP→IW
192.168.1.1→	10

IW	Table

Fig. 7: An example of the connection manager’s workflow.

Fig. 7 is a simple example that illustrates the basic work-
flow of Connection Manager. It obtains the use’s IP (e.g.,
192.168.1.1) when a TCP connection is established, and then
looks up the user’s IW from the IW Table. The IW Table is
stored in a trie [20] structure with IP as the key and IW the
value, which provides longest prefix IP lookup function. The
time consumption of query is O(N), where the worst case is
N = 32. In this example, the query result is IW = 10. Then it
calls the API SetIW(fd, iw=10) to set the session’s IW before
sending the response data to 192.168.1.1.

B. Data Collector

The TCP Response Time described in Fig. 1 is the key
metric for evaluating TCP performance. However, it cannot
be obtained directly. Our system aims to be easily deployable



with only server-side modification. Here we use a carefully-
designed method to record the latency with only server-side
change. The key is collecting the timestamp of Tstart and
Tend (see Fig. 1). When the web proxy begins to send data to
the user or terminate the connection, it calls the GetData(fd),
which labels the Tstart of this HTTP response, and it also
records the Tend of the previous HTTP response. When it is
called, the transmission of the previous HTTP response should
be finished and Tend is the timestamp of the last TCP ACK.

In addition to the TCP response time, all the return data
of GetData(fd) is shown in Table III. Each frontend server
outputs the data in a log file and also use HTTP POST to
send the data to a centralized data storage platform in Data
collector. Reinforcement Learning takes this performance data
as the basic input. All the data is collected in real time, Data
Collector aggregates and monitors the network performance of
each user group, including TCP Response Time, RTT Goodput,
Retrans, etc.. Note that these TCP performance data can
be used beyond just SmartIW, e.g., for TCP performance
troubleshooting.

C. Reinforcement Learning

After collecting all the performance data, SmartIW runs
user grouping and reinforcement learning algorithm in §IV.
The user grouping algorithm runs at a long timescale such as
day or week. RL algorithm runs at a timescale of minutes to
continuously learn the suitable IW for each user group. The
result is the IW Table which contains the user groups’ IWs
at the next learning iteration. This module controls all the
frontend servers’ behavior by updating their IW Tables. It is
implemented with Golang [21] and Python in Control Center.

VI. ONLINE EVALUATION

In this section, we use a large-scale online experiment to
evaluate the performance of SmartIW. We mainly present the
performance in one production data center of mobile search
service in B company, which was chosen in our experiment
because it is among B’s most important services. SmartIW has
been deployed in this service for more than a year. Our real-
world A/B testing results show that SmartIW can continuously
bring about 23% improvement of the average TCP response
time. For some specific user groups, the improvement can be
up to 30%.

A. Experiment Setup

Fig. 9 has shown the statistics of mobile search service,
which confirms that the flow sizes are almost all small in this
service, but the TCP response time (with IW =10) is far from
the ideal (one RTT transmission according to [3] for short
flows). Besides, as shown previously in Table I, more than
80% of the TCP flows are still in slow-start phase when the
sessions end, not utilizing the available bandwidth.

In the studied data center located in Beijing, the HTTP
sessions are uniformly load-balanced to frontend servers,
which have the same functions and configurations. They all
use 21 Intel(R) Xeon(R) 2.40GHz CPUs, 62GB RAM and
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Fig. 8: The characteristics of mobile search service in B.
Response time is the TCP response time introduced in §II-A.
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Fig. 9: TCP response time of SmartIW.

10Gbps NIC. The Linux kernel version is 2.6.32 and the
congestion control algorithm is Cubic [22]. To perform an
A/B test experiment, we select 4 frontend servers in the data
center and divide them into two groups as follows:
• TCP-10: Current standard method with a static IW = 10.
• SmartIW: Our method with group-based RL. The learning

iteration interval is 10min, which means SmartIW will
recalculate and update the IWs for all user groups in
every 10min. The user grouping method takes Subnet,
ISP, Province as users’ network features. The parameters
of user grouping is Smin = 100, θ = 0.1 and the size
of time bin = 10min. The RL’s α = 0.8,4 = 5, and
ξ = 0.1. The initial arm list is IW = [5, 10, 15, 20]

B. Overall Performance

Fig. 9a shows an example of the average TCP response
time in the two groups of frontend servers. Before 2017.09.13



10:00:00, both groups of servers use IW = 10 [6], and their
performance proved to be the same. After that, SmartIW is
started in one group. The TCP response time of SmartIW
decreases dramatically and continuously outperforms the other
group TCP-10 with about 23% improvement. Besides, Fig. 9b
shows that SmartIW can make improvement in each percentile
of the response time. The 50th and 80th percentiles have been
improved by about 25%. We observe that 99th percentile has
the smallest improvement, and the main reason is SmartIW
does not explicitly help with the loss that are part of the
reasons that causes the 99th percentile long tail response
time [3]. Compared with TCP-10, SmartIW may appear to
be more aggressive in IW, but the results show that even in
99th percentile, SmartIW also has about 5% improvement over
TCP-10. From this we can see that SmartIW is also quite
cautious when increasing IW.

C. User Group’s performance

SmartIW uses user grouping technique to treat different
user groups individually. In this section, we mainly introduce
the performance of each user group. Af first, there are about
1501665 IPs, after using the user grouping method. The output
is 19 user groups (3 Provinces, 15 Province+ISP, 1 Others)
which can use RL to improve their performance. Fig. 10 shows
the jitter J of each these 19 groups. For the user groups
Shanghai, Guangdong, Xinjiang, their jitters are high (closer
to the threshold 0.1) flows cannot be grouped into more fine-
grained user groups because the more fine-grained user groups
cannot satisfy the RL’s requirement. i.e., there are not enough
samples (either jitter is larger than 0.1 or number of samples
are smaller than Smin). This is because the requests of these
users should be routed to data centers, but are by accident
routed to the studied data center in Beijing. Fig. 11 shows
that all the use groups’ response time have been improved (by
about 15% ∼ 31%).

VII. TESTBED EVALUATION

In this section, we use a trace-driven method to systemat-
ically evaluate SmartIW. We built a testbed which supports
replaying the online data traces and running different opti-
mization techniques. The data traces consist of user groups’
network conditions (e.g. Bandwidth, RTT) and application
information (e.g. size) in each time bin, which is collected
from the online production data center in B. The testbed
experiments validate the following:

1) Both key techniques, user grouping and reinforcement
learning, can help improve the network performance.

2) The flows using a aggressive IW can cause network
congestion and even hurt their own performance.

3) SmartIW’s performance is the closest to the optimal
performance.

A. Testbed Setup

The testbed consists of 10 physical machines, which are
connected by one switch. Its network environment is totally
private. Every machine has two 1000Mbps NICs, 64GB RAM
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Fig. 11: The average TCP response time’s improvement of
each user group.

and 64 CPUs (2.4 GHz). One machine acts as the server with
SmartIW deployed, and each of the other 9 machines acts as
one user group. All the machines use TCP cubic with default
configuration.

Given the HTTP traffic typically has a daily pattern, we
selected one day of data traces for 9 user groups from the
online experiments in §VI. The HTTP requests are replayed in
the original timing order by the users and served by the server
with the original response sizes. To simplify the experiments,
we assume that the network conditions of each user group
change at the timescale of one hour. Then for each hour of
each user group, we estimate its bandwidth (RTT) using the
90th-percentile goodput (average RTT) from the data traces
of this user group and hour. We then simulate the network
conditions by using the Linux TC tool [23] (with HTB and
netem queue) to shape the traffics.

To systematically evaluate the performance of SmartIW, we
compare the performance of the following techniques:

1) TCP-10: It is the baseline [6], which uses one static IW
= 10 for all the flows. The data size of IW = 10 is about
14KB (MSS = 1448).

2) TCP-200: It uses a aggressive IW = 200 for all the flows1.
The data size of IW = 200 is about 280KB.

3) SmartIW: The learning iteration interval is 10min. The
RL’s α = 0.8,4 = 1, and ξ = 0.1. The initial arm list is
IW = [5, 10, 15, 20].

4) SmartIW without grouping: Compared with SmartIW, it
only uses RL to learn the IW for all the flows.

5) Optimal: It is the best possible performance in the testbed
experiment setting, obtained by exhaustively searching

1The actual sending window size is min(Rwnd, Cwnd). Rwnd is the client
receive window. In order to remove the influence of the client’s Rwnd, the
initial Rwnd is set to be larger than 200.



(a) Reward (b) TCP response time (c) Goodput (d) RTT

Fig. 12: Compared with the baseline TCP-10, the figures show each technique’s the improvement in the average reward, TCP
response time, goodput and the degradation in the average RTT.

(a) Reward (b) TCP response time (c) Goodput (d) RTT

Fig. 13: The distribution of each technique’s reward, TCP response time, goodput and RTT.

the IW space for the best IW for each network condition
of each user group.

B. Overall Performance

Fig. 12 shows each technique’s improvement or degradation
over TCP-10, and Fig. 13 shows each technique’s
distribution of the network metrics (response time,
reward, goodput, and RTT). We define the technique t’s
improvement in reward, goodput, and response time as
(rewardt − rewardtcp−10)/rewardtcp−10, (goodputt −
goodputtcp−10)/goodputtcp−10, (responsetimetcp−10 −
responsetimet)/responsetimetcp−10. The degradation of
RTT is defined as (RTTt−RTTtcp−10)/RTTtcp−10. We can
see that SmartIW is closest to the optimal, and significantly
outperforms TCP-10. Its improvement over TCP-10 is 30%
for the average reward, 29% for the average response time
and 49% for the average goodput.

C. Contributions of user grouping and RL

In this experiment, we use reward as the metric since
it capture the effects of both goodput and RTT. Firstly, to
evaluate the performance of RL, we compare the reward of
SmartIW without grouping with TCP-10. Fig. 12a shows that
SmartIW without grouping has 25% improvement. Fig. 13a
also shows that SmartIW without grouping greatly outper-
forms TCP-10. Secondly, to evaluate the performance of user
grouping, we compare the reward of SmartIW with SmartIW
without grouping. Fig. 13a shows SmartIW can bring more
improvement (29%) than SmartIW without grouping (25%).
Besides, SmartIW also outperfoms SmartIW without grouping
in goodput (Fig. 12c) and RTT (Fig. 12d). The reason is that
using RL for all the flows (without grouping) with variable
network conditions is suboptimal. From this we can see, both
user grouping and reinforcement learning can help improve
the TCP response time.

D. Aggressive IW’s effect:

According to the common perception of IW (see §II-B),
neither too small an IW nor too large a IW is suitable. The
results of TCP-200 confirm the second half of this common
perception. The flows using an aggressive IW =200 can cause
network congestion and even hurt their own performance.
Fig. 13d shows that TCP-200 has a highest average RTT,
which is a good indicator for network congestion. On the other
hand, SmartIW’s RTT is closet to that of Optimal’s, and is
better than that of SmartIW without grouping. From this we
can see, SmartIW is quite cautious in avoiding congestions.
For average response time and goodput, TCP-200 outperforms
TCP-10, but it cannot beat SmartIW. The reason is that directly
using a large IW may cause packet loss and increase the
response time. Fig. 13b shows TCP-200 has a much longer
tail than SmartIW because it suffers from packet loss, which
causes costly TCP timeout.

VIII. RELATED WORK

TCP Optimization from within a TCP session: There is
a rich body of literature in TCP optimizations which utilize
information from within a TCP session only, and do not utilize
the valuable information from previous sessions. For example,
TCP congestion control algorithms (such as [15, 16, 24, 25])
use a heuristic-based trial-and-error approach to probe for
the best CWND within a TCP session only. Remy [26] uses
offline-trained machine learning model to dynamically assign
the congestion window sizes based on the latest network
conditions measured within the TCP session only. [3, 27, 28]
modify TCP protocol to achieve fast loss recovery based on
the data collected within a TCP session only. None of these
above approaches try to improve IW or utilize information
from history sessions, thus SmartIW is complementary to and
compatible with these approaches.



IW Improvement: [6] proposed to simply increase the
standard IW to 10 for all flows, and we have shown that
SmartIW outperforms this approach by 23%. Halfback [29]
always starts with a large IW, then applies pacing and redun-
dancy technologies to deal with the loss (caused by the ag-
gressive startup) within the flow without using history session
information, while we have shown SmartIW outperforms the
approach that blindly sets a large IW (e.g., 200) which can
cause significant congestion. In an early work, for repeated
flows between the same client and server, [30] uses the last
session’s TCP parameters for a fast startup, but it needs router
support and there might not be many repeated flows between
the same client and server. In comparison, SmartIW utilizes
much richer history information from the user group, is much
more applicable, and only needs to modify the TCP servers.

Cases of Reinforcement Learning in Internet Video
QoE Optimization: Pytheas [9] applies RL to the video
QoE optimization, through dynamically deciding a session’s
serving frontend server, and differ with SmartIW due to
domain difference as follows. First, IW uses the sliding-
decision-space approach to deal with the large IW decision
space, which is much larger than frontend server selection
in Pytheas. [9] only shows testbed evaluation while SmartIW
has been deployed in real data centers for more than a year.
Third, the user grouping methods are different in SmartIW
(for general TCP performance) and Pytheas (tailored for video
QoE). Pensieve [10] improves video QoE through applying
Deep RL to generate ABR algorithms for each client session
given the measurement data from within the session, without
utilizing history session data.

IX. CONCLUSION

In this paper, we propose a system, called SmartIW, to use
group-based reinforcement learning to enable a web server
to dynamically set a suitable TCP initial congestion window
for a web flow before its transmission starts. SmartIW is
incrementally deployable at the server side without any client
or router support. It doesn’t change and is compatible with
existing TCP congestion control algorithms. SmartIW has been
deployed in one of the top global search engines for more
than a year. Our online and testbed experiments show that,
compared to the common initial window size of 10, SmartIW
can reduce the TCP response time by 23% to 29%.

We believe that SmartIW is an important step towards
applying advanced machine learning techniques to solving the
hard and open network research problems.
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