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Problem Scenario: KPIs in Internet companies

. Large Internet companies monitor a large number of KPIs (Key
Performance Indicators, e.g., CPU utilization, # of queries per second) to
ensure the service quality and reliability.

. KPIs are time series data. Anomalies on KPIs (e.g., a spike or dip) often
indicate potential failures on relevant applications, such as server failures,
network overload, efc.
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. KPIs are time series data. Anomalies on KPIs (e.g., a spike or dip) often
indicate potential failures on relevant applications, such as server failures,

Use Anomaly Detection techniques to detect anomalous events timely!
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Problem Scenario: Large-Scale KPI Anomaly Detection

. Most anomaly detection algorithms (e.g., Opprentice[1], DONUTI[2]) assume
that an individual model is needed for each KPI.

. Large-scale anomaly detection is very challenging due to the large
overhead of model selection, parameter tuning, model training or anomaly
labeling.

. Many KPIs are similar in underlying shape due to their implicit associations
and similarities.

. ldentify homogeneous KPIs and apply one anomaly detection model per
cluster.
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KPI Clustering can help!

. ldentify homogeneous KPIs and apply one anomaly detection model per
cluster.



Major Challenges

. Shape Variations
» Anomalies
» Noises
» Phase Shifts
» Amplitude Differences

. High Dimensional
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Overall Framework of ROCKA
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Preprocessing

. Fill missing values with linear interpolation

. Standardization (remove amplitude differences)

J?t — (xt — .ux)/a-x

x; are the original KPI values, i, and o, are the mean and standard
deviation of x;.
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Baseline Extraction

. Smoothing extreme value

» Remove the top 5% data which
deviates the most from the mean
value.

» Fill them using linear interpolation
with their neighboring normal
observations.

. Extract baseline
» Apply moving average with a small
sliding window.

» Baseline extraction removes
anomalies and noises, while
preserving the underlying shape of
KPlIs.
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Shape-based Similarity Measure

. Normalized version of cross-correlation (NCC) € [—1,1], robust to phase
shifts.

NCC(@, §) = max( 2=&:9)
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. Shape-based distance (SBD[3]) € [0,2]. Smaller SBD means higher shape
Slmllarlty SBD(Z,4) = 1 — NCC(Z, ¥)

raw KPl: SBD=0.2802 ) smoothed baseline: SBD=0.0208

Baseline extraction step plays an | MMM
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Density-based Clustering

. DBSCAN: find some cores in dense regions, and then expand the cores by
transitivity of similarity to form clusters.

Shape-based Distance
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Assignment

. Calculate the centroid of each cluster and assign the rest of KPIs based on
centroids. standardized KPIs

cluster centroid baseline

12.5

Ve N
A cluster with 18 standardized

KPIs and its centroid capturing 0
\the underlying shape of cluster./ e
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centroid = arg min Z SBD(f,g)z

I Ecluster; Fecluster;
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Performance on public datasets

« YADING]I4]: a state-of-the-art clustering algorithm for large-scale time
series data.
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Performance on real-world KPIs

. Evaluation metrics:

KPI type A

Cluster 2
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KPI type B

. Performance:

DS1 DS2

ROCKA | YADING’| ROCKA | YADING’
F-score 1.00 0.98 0.85 0.99
fraction of outliers 0.04 0.18 0.17 0.49
# clusters 6 7 29 33
avg distance calcula- 53 0.205 58 0.226
tion (ms)
avg assignment time 411 54 1350 99
(ms)

. Each curve is a baseline extracted

from the raw KPI
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The effects of techniques in ROCKA
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ROCKA for KPI Anomaly Detection

Prohibitive amount of model training time: Anomaly detection algorithms
are often designed to have a model trained for each individual time series.

» ROCKA clusters KPls similar in underlying shapes into a cluster.
» Train anomaly detection model on each cluster centroid.

» Directly use the model to detect anomalies on other KPls in the same
cluster.

Simplifying threshold selection: in some anomaly detection algorithms, a
threshold needs to be fine-tuned by the ground-truth anomaly labels for
optimal performance.

» The threshold selected for a cluster centroid can be used by other KPIs in

the same cluster, reducing the overhead of parameter tuning and anomaly
labeling.
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Anomaly Detection Experiments Setup

DONUT][2]: a state-of-the-art unsupervised anomaly detection algorithm for
seasonal KPlIs.

Dataset: 48 6-month-long KPIs collected from different machines in a large
Internet company. Experienced operators has labeled anomalies on these KPlIs
according to their domain knowledge to provide a ground truth for anomaly
detection.

Experiments:

» E1: DONUT only. use DONUT to train an anomaly detection model for each KPI and fine-tune
the threshold for each KPI for the best F-score.

» E2: ROCKA + DONUT. First apply ROCKA on 48 KPIs to form clusters, then use DONUT to
train an anomaly detection model only on the centroid KPI in each cluster, and select the best
threshold according to the ground-truth labels on the centroid. The model and threshold are
then used to detect anomalies in other KPIs of the same cluster.

> E3: ROCKA + DONUT + KPI-specific threshold. Similar to E2, but reestimate the threshold for
each KPI, except centroids, according to its ground-truth anomaly labels to get best performance.
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Anomaly Detection Performance

Cluster El E2 E3 # KPIs
A 0.88 0.66 0.86 18
B 0.79 0.78 0.79 6
C 0.95 0.81 0.95 12
D 0.87 0.86 0.87 4
E 0.90 0.83 0.88 8
Overall 0.89 0.76 0.88

Average F-score for anomaly detection

algorithm cluster | tot. train | avg. train | avg. test
DONUT only (E1) - 51621 1075 345
ROCKA+DONUT (E2) 11 5145 1029 345
ROCKA+DONUT+KPI-

specific threshold (E3) | 11 5145 1029 345

Time Consumption for anomaly detection (seconds)

22

F-score change % from E1

1.0
—— DONUT only (E1) //
081 —— ROCKA + DONUT (E2) e
ROCKA + DONUT /
0.6 ===~ 4 KPLspecific threshold (E3) y
/ 7
0.4 s
/‘/ !
/. II
0.2 - 7 y
0.0 ——— . . < I
0.0 0.2 0.4 0.6 0.8 1.0
F-score
CDF of F-score on each KPI
20 T3
0 - .i:::mzttwi‘m::~hwd*~‘-m**
...""'0-0-000-‘ hh\’-\
—20 . ‘.\‘ \N
e
—40 ‘K
1Y
—60 1 -=- ROCKA + DONUT (E2) \
g0 - ROCKA + DONUT .
777+ KPI-specific threshold (E3) \
—100 . Lol

0

|
10 20 30 40
KPI rank

The F- score change while using ROCKA+DONUT, compared to
raw DONUT result (E1)



Anomaly Detection Performance
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Analysis of Results

. KPlIs with similar underlying shape tend to have implicit associations in
practice (e.g., belong to the same cluster of machines). In this way, KPlIs in
the same cluster also have similar normal patterns. As a result, they can
share an anomaly detection model and threshold.

. KPls may share the same anomaly detection model, but they can vary by
their anomaly severity levels, and a uniform threshold cannot be the
optimal for every KPI. This leads to some performance drop when directly
applying centroid KPI's model and threshold on other KPIs in the same

cluster.
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Analysis of Results
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KPI A with ROCKA + DONUT

— T
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/ Orange line is anomaly indicator at each point \

and red line is the anomalies detected by
algorithm. The best threshold on KPI A’s centroid
is 15.35, larger than the indicator of the most
significant anomaly on A (11.90). With the
reestimated threshold (10.01), all anomalies on A

\\fan be detected. //

anomaly detection model can be shared in
the same cluster regardless of different
anomaly severity levels.




Analysis of Results
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The raw DONUT model on KPI B is a bit
overfitting and sensitive to small
fluctuations. The cluster centroid model is
more robust and gets higher F-score.
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Conclusion

. We propose a robust and rapid time series clustering algorithm, ROCKA, to
cluster a large number of KPIs, and assist in anomaly detection.

. ROCKA reduces the model training time of a state-of-the-art anomaly
detection algorithm DONUT by 90%, with only 15% performance loss. This is
the first reported study that uses clustering to reduce the training overhead of
KPIl anomaly detection.

. ROCKA is an important first step towards the direction of using KPI clustering
to enable large-scale KPI anomaly detection, a key to ensure service reliability
In the Internet.
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