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Abstract—To ensure undisrupted web-based services, opera-
tors need to closely monitor various KPIs (Key Performance
Indicator, such as CPU usages, network throughput, page views,
number of online users, and etc), detect anomalies in them,
and trigger timely troubleshooting or mitigation. There can
be hundreds of thousands to even millions of KPIs to be
monitored, thus operators need automatic anomaly detection
approaches. However, neither traditional statistical approaches
nor supervised ensemble approaches satisfy this requirement
in practice when facing large number of KPIs. A state-of-art
unsupervised approach Donut offering promising results, but
it is not a sequential model thus cannot deal with the time
information related anomalies. Thus, in this paper we propose
Bagel, a robust and unsupervised anomaly detection algorithm
for KPI that can handle time information related anomalies,
using CVAE to incorporate time information and dropout layer to
avoid overfitting. Our experiments using real data from Internet
companies show that, compared to Donut, Bagel improves the
anomaly detection best F1-score by 0.08 to 0.43.

I. INTRODUCTION

To ensure undisrupted web-based services, operators need
to closely monitor various KPIs (Key Performance Indicator,
such as CPU usages, network throughput, page views, number
of online users, and etc), detect anomalies in them, and trigger
timely troubleshooting or mitigation. Fig. 1 shows a few KPIs
that we studied in this paper. There can be hundreds of
thousands to even millions of KPIs to be monitored [1], [2],
thus operators need automatic anomaly detection approaches.

Despite many proposed anomaly detection approaches in
the past [3]-[12], most do not work well in the practice
according to [11]. A comparison summary is shown in Table I,
which will be elaborated later in §VI. For Traditional sta-
tistical algorithms [3]-[7], operators have to manually select
an anomaly detection algorithm and tune its parameters for
each KPI. Supervised learning based methods [8], [9] require
manually labeling anomalies for each KPI. Thus, neither
traditional statistical approaches nor supervised learning based
approaches are automatic, and they do not work well in
practice when facing large number of KPIs.

More recently, unsupervised approaches using deep genera-
tive models show some very promising results. Based on varia-
tional autoencoder (VAE), a state-of-art unsupervised anomaly
detection algorithm, Donut [11], significantly outperforms
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Fig. 1. KPI studied in this paper. We plot 36 hours of A, B,C,H and 72
hours of G. The red lines denotes anomaly parts, and the orange lines denotes
missing parts. The rest black lines are normal parts. A, 3, C are very similar
to those KPIs on which Donut works well. G has a lot of missing points, and
many long missing fragments. There are several normal fragments surrounded
by long missing fragments. For example, the fragments in the blues boxes are
following the same pattern, but the last one is surrounded by two long missing
fragments, making it difficult to reconstruct its normal pattern. H is quite
smooth but has many short periodic spikes, but these spikes are not exactly
the same every day (such as the valleys highlighted by the brown boxes).

the state-of-art supervised ensemble approach Opprentince
(which outperforms all traditional statistical approaches) [9]
on seasonal KPIs (such as 4, B,C in Fig. 1). Seasonal KPIs
are very common in practice and are business-related (such
as number of online users, number of queries), thus are very
important in anomaly detection [11].

However, Donut is not robust enough against time informa-
tion related anomalies. This is because VAE is not a sequential
model and Donut uses sliding windows to feed KPIs to VAE
but ignores the relationship between windows. i.e., Donut
ignores the time information of a KPI window, and the SGD
based optimization algorithm Donut uses shuffles the training
data. For example, the relatively long fragment of missing
data in G in Fig. 1 causes false positives for the data points
right after the missing data fragment (highlighted in rightmost
blue dashed box in the figure), while we can imagine if we
somehow incorporate timing information into the model (the
pattern in those blue boxes are very similar across different
days), these false negatives can be avoided. Similarly, the
periodic (thus normal) spikes at the daily valleys in KPI ‘H
in Fig. 1 will be mistakenly classified as anomalous by Donut,
while incorporating timing information can help as well.

Since Donut is the state-of-art anomaly detection algorithm



TABLE I
COMPARISON AMONG ANOMALY DETECTION METHODOLOGIES
Suffers from 1 2 3 4 5 Bagel
Selecting algorithm  Yes No Some No No No
Tuning parameters Yes No Some Some Some No

Relying on labels No Yes No No No No
Poor Capacity Yes No Some No No No
Hard to train No No Some Some Yes No
Time consuming Some Yes Some No No No
: traditional statistical method, e.g., time series decomposition [5]
: supervised ensemble method, e.g., Opprentice [9]

: traditional unsupervised method, e.g., one-class SVM [14]

: sequential deep generative model, e.g., VRNN [15]

: non-sequential deep generative model, e.g. VAE [11], [16]
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and more importantly have solid theoretical foundations, in
this paper, we aim to push Donut one significant step forward
towards practical deployment, by improving Donut’s robust-
ness against time information related anomalies, like G, H in
Fig. 1. Note that in this paper we focus on anomaly detection
in seasonal KPIs as well, just as in Donut [11] .

We propose Bagel, a robust and unsupervised anomaly
detection algorithm for KPI. To incorporate time information,
Bagel is based on conditional variational autoencoder (CVAE)
as opposed to VAE in Donut, and uses time information as
the input condition. However, there is one important challenge
in incorporating time information into CVAE model. Because
fitting the relationship between timing and KPI value is much
easier (similar to traditional statistical model with seasonality,
e.g., historical average) than fitting the relationship between
the input sliding windows and reconstructed normal patterns,
CVAE can be easily overfitted on time information for seasonal
KPIs. To avoid overfitting, we add an extra layer of dropout,
which can be considered making an ensemble model of many
smaller neural networks [13].

The contributions of this paper can be summarized as
follows:

o For the first time in the literature, we identify the impor-
tance of time information for non-sequential deep gener-
ative models, such as Donut, in KPI anomaly detection
problem.

o To the best of our knowledge, Bagel is the first to
apply conditional variational autoencoder (CVAE) to KPI
anomaly detection and use dropout technique to success-
fully avoid overfitting.

e Our experiments using real data from Internet compa-
nies show that, compared to Donut, Bagel improves the
anomaly detection best F1-score by 0.08 to 0.43 for KPIs
G and H, greatly improving Donut’s robustness against
time information related anomalies.

The rest of the paper is organized as follows. §IV-A reviews
the background of KPI anomaly detection and reviews the
background of VAE and CVAE. §III presents Bagel’s neural
network architecture, and its design of training and anomaly
detection. §IV evaluates Bagel’s performance. §V analyzes
how Bagel works. §VI reviews related work. Finally, §VII
concludes the paper.

II. BACKGROUND AND PROBLEM
A. KPI and KPI Anomaly Detection

In this paper, we focus on business-related KPIs, as in [11].
These KPIs have seasonal patterns because of the influence
from user behavior and schedule. However, the KPI patterns
at each repetitive cycle is not exactly the same, since user
behavior will not be exactly the same everyday. As [11] does,
we name these differences “local variations”. A KPI anomaly
detection algorithm will not work well unless it can handle the
local variations well. Besides the seasonal pattern and local
variations, there are also noises on KPIs. We assume that the
noises follow independent, zero-mean Gaussian distribution.

In summary, the normal patterns of the KPIs that we study
consist of two components: (1) seasonal patterns with local
variations, (2) independent, zero-mean Gaussian noises. The
anomalies are those data points which do not follow the normal
patterns.

The KPI values are usually collected with a fixed monitoring
interval like 10 seconds or 1 minute. However, because of
occasional technical errors, sometimes the KPI values are not
collected. These data points are are called missing points.
Missing points are also some kind of anomalies, but it is
easy to distinguish them from normal points. Therefore, in
this paper, we use anomaly points to call those points that
do not follow normal patterns but are not missing points, and
use abnormal points to call both missing points and anomaly
points.

KPI anomaly detection problem can be formulated as
follows: for any time ¢, given historical KPI observations
Vi—w41:¢ With length W, determine whether anomaly happens
at time ¢ (denoted by v; = 1).

B. Variational Autoencoder and Conditional Variational Au-
toencoder

As previously mentioned in §I, one particularly promising
direction for KPI anomaly detection is deep generative model,
such as Variational Auto-Encoder (VAE) [17], [18]. VAE uses
neural networks to model data’s distribution and generate new
samples following it. Donut [11] is a state-of-art VAE based
KPI anomaly detection algorithm. In this section, we briefly
introduce the background of VAE and conditional variational
auto-encoder (CVAE) used in our proposed approach Bagel.

Deep Bayesian networks combines deep learning and prob-
abilistic graphical models (PGM). It models the relationship
among random variables with neural networks, which extends
the ability of PGM. Variational inference [19] is very useful
for solving the posteriors of the distributions derived by
neural networks, so it is usually adopted for the training and
prediction of deep Bayesian networks.

Variational autoencoder (VAE) and conditional variational
autoencoder (CVAE) [20], [21] are typical deep Bayesian
networks. VAE models the relationship between two random
variables x and z. CVAE models the relationship between x
and z, conditioned on y, i.e., it models p(x,z|y). VAE and
CVAE are very similar. We choose CVAE in Bagel rather
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Fig. 2. The architecture of CVAE. Considering the prior of z as part of the
generative process, the whole generative model (solid lines) can be formulated
as pg(z,x|y) = po(x|z,y)pe(z|y). The approximated posterior (dashed
lines) is g4 (z|%,y).

than VAE because the condition variable is important for KPI
anomaly detection (see §V-B).
The generative process of CVAE is as follows:
1) Choose a z prior distribution, and sample z from it, i.e.,
z ~ py(z|y). As [21] suggests, we can make latent z
independent of y, i.e., z ~ py(2z).
2) Sample x from py(x|z,y), which is derived from a
neural network with parameter 0, i.e., x ~ pg(x|z,y)
Although the true posterior pg(z|x,y) plays an important
role in training and prediction, it is intractable [18]. In varia-
tional inference, it is approximated by a variational distribution
¢4(z|x,y), which is fitted by another neural network with
parameter ¢. SGVB [17], [18] is a variational inference
algorithm which is often used along with VAE. SGVB jointly
trains the approximated posterior and generative model by
maximizing the evidence lower bound (ELBO, Eqn. (1)). We
adopt SGVB because it works for a broad range of applications
[19] and is sufficient for our task already.

log p(x|y)
> log p(x|y) — KL [g4(2[x,y) || po(zlx,y)]
=L(x,y)
= E ¢, (z1x,y) [log po (x|2, y) + log po(z) — log ¢ (2[x,y)]

6]

The overall architecture of CVAE is summarized in Fig. 2

III. ARCHITECTURE

In this section, we will introduce the details of our proposed
algorithm Bagel, including the network architecture, training
and detection. We will also highlight the major difference
between Bagel and Donut.

A. Network Architecture

1) Preprocessing: As mentioned in §II-A, there are some
missing points in KPIs. So first of all we impute these missing
points with zero, then the imputed KPIs become time series
with fixed monitoring interval. Different KPIs’ value ranges
are various, so we standardize KPIs with z-score: firstly we
calculate the mean p and standard deviation o of the whole
KPI, and then calculate the new value of each point v; by

Ui(_u.
o
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Fig. 3. The overall neural network architecture. The double-lines highlight
the major difference with Donut in network architecture.
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As mentioned in §II-A, the KPIs that we studied are time
series. However, CVAE is not a sequential model. We use
sliding windows of a KPI as the input data of CVAE. Formally
speaking, for a KPI v = (v1, v, ..., v,), the i-th window of
the KPI is x(* = (v;,vi41,...,visw_1), where W denotes
the window’s length.

2) Architecutre: The overall neural network architecture is
shown in Fig. 3. As [21] suggests, we make the latent variable
z independent of condition variable y. The z prior is chosen
to be p(zly) = p(z) = N(0,I). Both z and x posterior are
chosen to be diagonal Gaussian distributions, i.e., ¢4 (z|x,y) =
N (1. diag(02))), po(x|z.y) = N(py, diag(02))), where
W, Iy, Oz, 0« denote the means and standard deviations of
¢4(z|x,y) and pg(x|z,y). It makes sense since we already
assume that there are independent Gaussian noises on the
KPIs. The hidden neural networks fy(x) and fp(z) are both
several fully connected layers with ReLLU [19] activation. They
are used to extract hidden features from z or x for deriving
Gaussian statistics. The Gaussian means are derived with a
linear layer: p, = W;Ez fo(x)+by, . p, = W;X fo(z)+b,,
The standard deviations are derived by a softplus layer plus
a positive real constant A: o, = In(1 + exp(fs(x))) + A,
ox = In(1 + exp(fo(z))) + A. Softplus gives very similar
outputs with the common activation function ReLU [19], but
the outputs are all strictly positive, which is required by
standard deviation. The positive real constant A is used to
avoid numeric problems, such as underflow.

3) Encoding Time Information: The condition variable y
represents the input window x’s timestamp (to be precise, the
latest point xyy’s timestamp)

To emphasize the seasonality, the timestamp are decom-
posed into several parts: minute, hour, day of week, since
user behavior schedule usually can be factorized to these basic
units. We do not use seconds because the interval of KPIs is
typically 1 minute or 5 minutes in our context. We do not use
month or year since empirically there is no seasonality at these
levels. Since neural networks is more sensitive to directions
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Fig. 4. The way we construct condition variable for window x. The first line
is the time of a window (specifically speaking, the timestamp of the latest
point of the window). Then we use some components of the timestamp as the
input condition for CVAE: the minute 25, the hour 16, the day of week: 2 (for
Tuesday). We do not use second or month and year, because typically there is
no seasonality of these levels in our data. Then we convert these three numbers
into three one-hot encoded vectors and concatenate them. One-hot encoding
means converting a positive integer to a binary vector full of zeros but only a
single one, and the position of the single one represents the original integer’s
value. For example, a “1” value the 26" element in the minute vector means
minute = 25 in the timestamp.

than values [19], we choose to convert the decomposed values
to one-hot vectors. Fig. 4 illustrates how Bagel encodes time
information.

Encoding time information can help Bagel deal with time
information related anomalies. For example, in G, too many
missing points makes it hard to reconstruct normal patterns
from the sliding windows, but, with the help of time informa-
tion, Bagel is less affected. In H, the spikes are not exactly the
same every day, so the reconstruction may be biased. Since H
are otherwise quite smooth except for those periodic spikes,
i.e., the x standard deviation is fairly small, those little biases
cause unreasonable high anomaly scores from Donut. With
the help of time information, Bagel is not confused by these
spikes.

Because fitting the relationship between timing and KPI
value are easier (similar to traditional statistical model with
seasonality, e.g., historical average) than fitting the relationship
between x and reconstructed normal patterns, CVAE can
be easily overfitted on time information for KPI anomaly
detection. As will be demonstrated in §V-B, the performance
of Bagel without dropout layer is really poor. This is, without
dropout layer, the model pays too much attention to the
relationship between time and the normal patterns, i.e., it
learns too much about the seasonality but too little about
the local variations. However, as [11] points out, an anomaly
detection algorithm cannot work well unless local variations
are handled appropriately.

Therefore, in Bagel, there is an input dropout layer for
condition variable y, as shown in Fig. 3. Dropout [13] reduces
the risk of overfitting by randomly disabling some connections
in a neural network in training. A network with dropout layers
can be considered as an ensemble of many smaller networks
[13]. Since we notice that CVAE can be easily overfitted on
y, we add an extra dropout layer after the condition input
layer. The input dropout in Bagel is implemented by randomly
setting Paropout radio of dimensions to zero. In the perspective
of ensemble as [13], now Bagel becomes an ensemble model
of many smaller models, which only take a small part of y as
the input condition variable. Fitting the relationship between

time information and normal patterns are considered easy, but
fitting that between only a small part of time information and
normal patterns will not be so easy, thus we avoid overfitting.

4) Summary of improvement over Donut: Compared to the
network architecture in Donut, Bagel’s major improvement are
three-fold:

« Adoption of CVAE as opposed to VAE so that we can
encode time information as the conditional variable.

o Use one-hot encoding to encode time information in
vectors.

« Use dropout layer to avoid overfitting introduced by time
information.

B. Training

The SGVB algorithm [17], [18] is used for training CVAE.
One key technique for SGVB is re-parameterization, which
means in training z is produced by z = €, - 0, + Uz, €5 ~
N(0,1), rather than z ~ N (u,, diag(c2)). It makes it possible
to pass gradients to the approximated posterior g4(z|x,y) and
thus train it.

The CVAE model is supposed to capture the normal patterns
of a KPI, thus it is necessary to avoid learning the abnormal
patterns. [11] proposes a loss function called M-ELBO to
ignore abnormal pattern for VAE and shows that M-ELBO
is satisfying enough. A similar loss function can be applied to
CVAE. For an input window x, assume that its corresponding
label window is a binary vector o (x; is abnormal if and
only if a; = 1), and § denotes the proportion of normal
points. Since the x posterior is assumed to be diagonal
Gaussian distribution, its log-likelihood can be rewritten as
log po(x|z,y) = Zzl log pg(x;|z, y). By multiplying «; and
log po(x;|z,y), the M-ELBO for CAVE can be formulated as
follows:

w
L(%,) = E g @pey) D @i - logp(xi|z,y) + B - log p(zly) 2
=1

—log qs(2]%,y))]

M-ELBO makes the CVAE model ignore the loss from
abnormal points in a training window x. Though there may
be only occasional labels, ignoring missing points can be
very helpful [11]. Therefore it makes our model able to
learn reconstructing normal patterns from potential abnormal
windows. To take advantage of such an ability, abnormal data
injection, which is some kind of data augmentation should be
applied. However, since CAVE itself is a generative model
with high capacity, using another simpler generative model to
generate anomaly points seems unreasonable. Therefore only
missing points are injected in our practice. Before each epoch,
some points are randomly chosen and set to zero (or other
imputed value for missing points).

Bagel’s training design is similar to that of Donut, and the
difference is that we need to introduce conditional variable y
in probability functions in Bagel. We do not claim the Bagel’s
training design as our contribution.
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Fig. 5. Illustration of a MCMC imputation step. Firstly, use the trained CVAE
model to reconstruct the original input vector x, then replace the missing
points with those corresponding points in the reconstructed vector.

C. Detection

We use the reconstruction term in ELBO (Eqn. (1)) as
anomaly detector, i.e., Eq, (z/x,y) [logpe(x|z,y)]. It is called
“reconstruction probability” in [11], [16], while it is ac-
tually not a well-defined probability. As mentioned above,
the CVAE model are supposed to learn reconstructing nor-
mal patterns from potential abnormal input window x. If a
sample of z from g,4(z|y,x), z(*), is corresponding to x’s
normal patterns (i.e., pg(X|z(?),y) gives x’s normal patterns’
distribution), then the log-likelihood log pg(x|z(?),y) repre-
sents how much x follows the normal patterns. Consider-
ing z("’s likelihood g¢,4(z¥|x,y) as a weight, the negative
weighted average — ) ¢5(z(V|x,y) logpe(x|z(V),y) be-
comes a reasonable anomaly score. Its expectation form is
— By, (alx,y) log pe(x|z,y)].

The abnormal points in the testing windows may have a
bad influence on finding a good posterior. In order to reduce
the bias introduced by missing points (we don’t know which
points are anomaly points), we take advantage of the trained
generative CVAE model to impute the missing points in the
testing windows with MCMC [17]. At each step, we feed a
testing window x to the trained model, replace the missing
points of x with the corresponding missing points in the
reconstructed window, and keep the other points original. Such
a step is repeated for L times. An illustration of MCMC
imputation is given in Fig. 5

Bagel’s design of detection is similar to that of Donut,
and the difference is that we need to introduce conditional
variable y in probability functions in Bagel. We do not claim
the Bagel’s detection design as our contribution.

D. Improvement over Donut

The main differences from Donut are highlighted in Fig. 3
with double lines. Firstly, we adopt CVAE rather than VAE, so
there is an input condition in both variational and generative
networks. We also use sliding windows as Donut does, but
with the help of the additional time condition, Bagel will not
ignore the time information of the KPI windows. Secondly, to
reduce the risk of overfitting, we add an additional dropout
layer after the condition input layer.

These design differences make Bagel more robust than
Donut when dealing with time information related anomalies.
Later in §IV-A will show that Bagel outperforms Donut on

KPIs such as KPIs H and G which have time information
related anomalies, and §V will explain the results in detail.

Since the condition variable actually do not affect the overall
architecture a lot, Bagel re-uses some designs in Donut: we
use the same preprocessing methods, and use M-ELBO and
reconstruction probability with condition as Bagel’s training
objective and detector. We also adopt the missing data injection
and MCMC imputation techniques from Donut as they are
shown to be effective in [11]. We do not claim these are the
contributions of Bagel.

IV. EXPERIMENTS

In this section, we use real data from Internet companies to
evaluate Bagel’s performance and compare with some state-
of-art algorithms.

A. Evaluation Metrics

A modified anomaly F1-score, which is proposed by [11],
will be used as our evaluation metric. Fl-score is usually
adopted to evaluate classification problems, which takes both
precision and recall into consideration. However, in KPI
anomaly detection problem, the points to be classified are
not independent and operators only cares about the times
when anomalies start [11]. Therefore, if an anomaly detection
algorithm raises an alert fast enough (i.e., before a maximum
allowed delay) after an anomaly begins, the whole anomaly
fragment will be considered detected successfully when cal-
culating modified F1-score.A successful alert with huge delay
is not useful at all. Thus, if for an anomaly segment in ground
truth, an anomaly detection algorithm does not raise any
alert before the maximum allowed delay, this whole anomaly
segment in the ground truth is considered as false negative,
even though the anomaly detection algorithm might raise some
alerts after the maximum allowed delay.

An illustration of the metric is given in Fig. 6. For conve-
nience, we will call this modified F1-score as just Fl-score.
Similar to [11], to show the best potential performance of the
models, we use the best Fl-score, which is computed with
the threshold which acquires best performance on test set.
In other words, we calculate the modified Fl-scores on test
set with all potential thresholds and use the best one as our
evaluation metric.

B. Datasets

We obtain several well-maintained KPIs from several large
Internet companies. All the anomaly labels are manually
confirmed by operators. The statistics of these KPIs are shown
in Table II. A4, B,C are similar to those in [11], so they can
demonstrate Bagel’s performance on those KPIs that Donut
claims to handle well. G has many missing points and several
long missing fragments (like that shown in Fig. 1, and there
are several similar long missing fragments), such that many
normal fragments are just small pieces surrounded by missing
points. H is quite smooth, but has many periodic spikes every
day. G and H are representive KPIs to demonstrate the effect
of time information. Since we collect these datasets from
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Fig. 6. Illustration of the evaluation metric. The first line is the ground truth
and the second line is the anomaly scores. With the threshold 0.5, the original
point-wise alerts are given in the third line. The maximum allowed delay is set
to be 1 here (the vertical lines). In the first anomaly segment, there is an alert
before the maximum allowed delay, so the whole fragment is considered to
be detected successfully. In the second anomaly segment, the first alert occurs
after the maximum allowed delay, so the whole fragment is not considered to
be detected at all.
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Fig. 7. Best Fl-score with different window sizes on A, B,C. Bagel and
Donut have very similar performance. The average Fl-score of Bagel ranges
from 0.7 to 0.8 on A, 3,C in most settings.
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TABLE 1T I Donut
STATISTICS OF KPI DATASETS = Bagel
087 mm Opprentice
KPI total missing anomaly anomaly monitering
points points points fragments interval 0.6
A 296460 1222/0.412% 1213/0.409% 51 Imin 04
B 317522 1117/0.352% 1979/0.623% 49 Imin :
C 285120 304/0.107% 4394/1.541% 126 Imin
g 24950  3032/12.152%  365/1.463% 31 Smin 0.2
H 17568 0/0.000% 103/0.586% 6 Smin

different sources, they have different monitoring intervals and
different number of data points. Fig. 1 plots these KPIs.

C. Overall Performance on A,B,C

We compare Bagel’s performance with that of Donut (which
is the state-of-art unsupervised algorithm) and Opprentice
(which is the state-of-art supervised algorithm and outperforms
most traditional statistical algorithms [9]). All experiments are
repeated for 10 times.

In the following experiments, we set latent space dimensions
K = 8, missing data injection radio A = 0.01, dropout rate
Ddropout = 0.1. We use two fully-connected layers with 100
units in both variational and generative networks. Donut uses
the same number of layers with the same number of units.
Opprentice uses random forest (the number of components
is 200 and the max depth is 6) to ensemble 129 traditional
detectors. We set the maximum allowed delay in modified F1-
score to be 7 as in [11]. Bagel and Donut are both trained
without any labels, and Opprentice need complete anomaly
labels.

Average best Fl-scores over different W are shown in
Fig. 7. On datasets A, B,C, Bagel’s performance is similar
to that of Donut’s, which means Bagel is also able to handle
those KPIs that Donut is able to handle.

D. Overall Performance on G, H

In Fig. 8, we compare the performance of Bagel, Donut and
Opprentice on KPI G, H.

0.0 -

Fig. 8. Best Fl-score on G, H. On G, Bagel outperforms Donut by 0.08.
On H, Bagel outperforms Donut by 0.43. Opprentice always get similar
performance with Bagel on these two KPIs, but it is supervised algorithm
while the others are unsupervised.

For G, Bagel’s average best Fl-score is 0.08 higher than
that of Donut’s, and Opprentice has similar performance with
Bagel. A comparison of the anomaly scores of G given by
Donut and Bagel are given in Fig. 9. The small normal pieces
surrounded by missing fragments (such as that shows in Fig. 9)
is hard to reconstruct for Donut, because too many points
are missing and Donut does not have enough information
to reconstruct the normal pattern. Therefore Donut may give
too high anomaly scores for a normal window, which will
cause poor performance. With the help of the additional time
information, Bagel is less affected by the large amount of
missing points, since this KPI have very similar patterns
at the same time every day and Bagel is supposed to find
this fragment’s normal pattern in these patterns. Opprentice
also outperforms Donut on G, because Opprentice have many
detectors that will not be affected by a large amount of missing
points (e.g., the difference from the KPI value from the last
season).

Bagel’s average best Fl-score on H is 0.43 more than that
of Donut’s. Fig. 10 shows that anomaly scores of H given
by Donut and Bagel. Since H is very smooth at most points,
the x’s standard deviation will be quite small (nearly zero).



Fig. 9. Anomaly scores of G given by Donut and Bagel. The blue lines are
KPI values and the red line marks the ground truth anomalies. The green lines
are the anomaly scores for each point. Donut gives too high anomaly scores
for the normal fragment surrounded by missing points.

Donut

Bagel

Fig. 10. Anomaly scores of H given by Donut and Bagel. The blue lines are
KPI values and the red line marks the ground truth anomalies. The green lines
are the anomaly scores for each point. Donut gives too high anomaly scores
at many normal valleys, which are mostly smooth but have many periodic
spikes.

However, since the periodic spikes do not occur at exactly
the same time every day, and do not have the same height
every day, such spikes bring some extra bias for reconstruction.
Small bias may also cause big impact on standard deviation
since the standard deviation is too small on a mostly smooth
KPI. Thanks to the time information, Bagel does not suffer so
much from this. Although such spikes also bring extra bias for
Bagel, the time information can reduce its impact by guiding
the reconstruction. Donut finds normal patterns in all patterns
that are similar to the input window, but Bagel will only find
similar normal patterns in all patterns that have similar y. Note
for a seasonal KPI, KPI windows with similar y are supposed
to have similar patterns.

Donut’s performance in H is much worse than Opprentice
because Opprentice has many detectors (thus features) and
many of them are not affected by the small standard deviation.
Bagel outperforms Opprentice a bit since CVAE has more
capacity than simple statistical detectors.

V. ANALYSIS

In this section, we explain in detail how Bagel’s two
important components work: conditional variable with time
information, and dropout layer.

A. Conditional KDE explanation

The effectiveness of M-ELBO, missing data injection and
MCMC imputation for VAE have already been shown in [11].
As the additional input condition in CVAE does not change
the network structure a lot, these three techniques can be
easily applied to CVAE and they are supposed to work in the
same way as in VAE in [11]. Generally speaking, M-ELBO
and the dimension reduction in autoencoder structure makes
Bagel be able to reconstruct normal patterns from a potential
abnormal window, and missing data injection amplifies M-
ELBO’s effect, and MCMC imputation help the model find a
good posterior in detection. As a result, since Bagel also uses
reconstruction probability as the detector, Bagel still works in
the KDE way, as interpreted in [11].

The difference between Bagel and Donut is that Bagel finds
z posterior conditioned on time information. In the KDE
perspective, Bagel uses kernels and weights conditioned on
time information. We call the way Bagel works as conditional
KDE.

Given a KPI window, its corresponding normal patterns is
multimodal. For example, suppose that a script should be
executed every day at 3:00pm, so there will be a peak in
the KPI at 3:00pm every day. If someday this script fails to
be executed, the corresponding KPI fragment will looks very
similar to that of different time of day (e.g., 11:00am), where
no scripts are executed. Without time information, we cannot
tell if this fragment is normal (because it is similar to the
normal pattern at 11:00am), or abnormal. However, with time
information, we can confidently report that this fragment is
abnormal since we know there is a peak at 3:00pm every day.

Time information also helps when x is confusing. For
example, in Fig. 9, there is a normal fragment surrounded by
missing points. As this normal fragment is much shorter than
the training windows used to train the model, Donut cannot de-
termine its normal pattern and, therefore, gives wrong anomaly
scores. But Bagel have additional time information, so it is able
to reconstruct this fragment’s normal pattern even if too many
points are missing. Although Bagel also cannot reconstruct
its normal pattern by the small piece of normal points, the
time information guides Bagel to find normal pattern in those
patterns that occur at similar time in a day, which is much
easier and robust than find normal patterns in all possible
patterns.

B. Dropout for avoiding overfitting on time information

Modeling the relationship between latent variables and
encoded timestamps is easier than that between latent variables
and sliding windows, because the KPIs are mostly seasonal
and the local variation is not so influential compared to the
periodicity. Therefore CVAE model may be overfitted on time
information easily. In order to avoid the risk of overfitting on
timing, we use an extra dropout [13] layer after the condition
variable’s input layer (see Fig. 3).

The time gradient effect originally pointed out by [11] for
Donut, in CVAE becomes “z samples drawn from approxi-
mated z posterior g, (z|x,y) with more different y should be
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Fig. 11. Dropout’s effect on latent spaces. This figure plots the 3-D latent
spaces of G with different models. “Bagel without dropout” denotes our
model without the dropout layer. “Time only” denotes a model use only time
information in the encoder, i.e., gy (z|x,y) = ¢4 (2ly)

far away from each other”. This time gradient is important to
find a good z posterior according to the analysis in [11]. If
the z samples of two x windows following different patterns
are not far away from each other but are fairly close, it will
be much more likely to find wrong normal patterns.

Some latent spaces are shown in Fig. 11, which draws the
z samples: z ~ ¢4(2|X,¥),X, Y ~ Pdaaa(X,y), and a point’s
color denotes its corresponding time in a day (counting in
minutes, i.e., in [0,1440)). We compare the latent spaces of
our proposed model (with dropout layer), that without dropout
layer, and a “time only” model, in which the shape information
is ignored, i.e., g4(z|x,y) = ¢4(2z|y) and there is no dropout
layer.

In the latent spaces of “time only” models, z samples with
different colors, i.e., different times and therefore different
shapes, are completely mixed together. As for Bagel without
dropout, the points with similar colors also get together
somewhat, but dissimilar points are not far away enough like
those in Bagel’s latent space.

In the latent space of Bagel, the z samples form a circle, and
along the circle the colors changes gradually, which means that
points with different y are as far away as possible. Therefore,
we conclude that dropout layer is helpful to learn a good z
space topology, and therefore helpful to reconstruct normal
patterns.

Since the latent spaces of Bagel have significant time
gradient, similar to that in Donut [11], Bagel has similar
ability with Donut to reconstruct normal patterns from x,
but Bagel has timing information successfully incorporated
without overfitting.

VI. RELATED WORK

This section briefly reviews three main directions in KPI
anomaly detection: traditional statistical methods, supervised
ensemble methods, and unsupervised learning based methods.

Many traditional statistical methods are used for anomaly
detection in the past few decades, such as [1], [3]-[9], [14],
[15], [22]-[33]. These methods make some simple assump-
tions for the KPIs, therefore operators must take efforts to
choose an appropriate algorithm and tune the hyper-paramters
for each KPI and each service. Simple equations used in these
models are often not able to capture the properties of the KPIs
in practice. For example, [5] detects the anomalies in search
response time KPI with WoW (week-over-week) method, but
there are not only weekly periodicity but also daily periodicity,
holidays and other factors. In such cases the combination of
many different detectors seems necessary. However, simple
ensemble of these statistical detectors, like majority vote [24]
or normalization [30], does not help a lot according to [9].

To automatically combine detectors, some supervised en-
semble methods, such as EDGAS [8] and Opprentice [9],
were proposed. The philosophy under them are clear and
simple: since simple combination of detectors is not enough,
we can use actual data to model the best combination of
detectors. They compute features with traditional statistical
detectors firstly, and then train a supervised machine learning
classifier model like random forest, with user feedbacks,
typically anomaly labels. These supervised methods show
excellent performance. For example, experiments in [9] show
that Opprentice outperforms all traditional statistical methods.
However, they heavily rely on careful labels. However, getting
enough careful labels requires too much manual efforts and
time, which makes such supervised methods expensive and
impractical. Although there might be occasional anomaly
labels, the coverage of these labels is usually far from the
requirements of traditional supervised methods. Besides, these
ensemble algorithms are time-consuming because they have
to execute a lot of traditional statistical algorithms, some of
which might be time-consuming.

In general, anomaly detection (not necessarily KPI anomaly
detection) based on unsupervised machine learning, such as
one-class SVM [14], [23], GMM [26], VAE [11], [16], [34]
and VRNN [15], model the normal patterns with machine
learning methodology and raise alerts for points that do
not follow normal patterns (rather than doing classification
between normal and abnormal like Opprentice [9]). Along
this direction, Donut [11] is so far the only one that works
on KPI anomaly detection, and it outperforms the state-of-art
supervised ensemble approach Opprentince. Our experiments
have shown that Bagel outperforms it in robustness.

VII. CONCLUSION

Anomaly detection for the vast number of KPIs in the
web-based services require automatic approaches. Built upon
a state-of-art unsupervised VAE-based approach Donut, this
paper for the first time identifies Donut’s inadequacy in dealing
with the time information related anomalies, and proposes



Bagel, a robust and unsupervised KPI anomaly detection
algorithm that can handle time information related anomalies.
Compared to Donut, Bagel greatly improves the robustness
of deep generative models in KPI anomaly detection, by
using CVAE to incorporate time information and dropout
layer to avoid overfitting. Our experiments using real data
from Internet companies show that, compared to Donut, Bagel
improves the anomaly detection best Fl-score by 0.08 to
0.43. Deep generative in general and VAE in specific are

not

sequential models. By successfully incorporating time

information using CVAE to KPI anomaly problem, we believe
we make an important step forward in making deep generative
models work on more sequential scenarios.
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