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Problem Formulation (1/4)

KPI: key performance indicator, e.g., pages views, search response
time, number of transactions per minute.

Figure: KPI examples.

To ensure undisrupted web-based services, operators need to
closely monitor various KPIs, detect anomalies in them, and trigger
timely troubleshooting or mitigation.

In our work, we focus on business-related KPIs. These KPIs
consist of two parts:
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Problem Formulation (2/4)

1 Seasonal patterns. Business-related KPIs have it because of
the influence from user behavior and schedule
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Problem Formulation (3/4)

2 Noises. We assume that the noises follow independent,
zero-mean Gaussian distribution.
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Problem Formulation (4/4)

Anomalies: points that do not follow normal patterns.

Abnormal points: missing points and anomalies.

Sometimes the KPI values are not collected. These data points
are called missing points. Missing points are also some kind of
anomalies, but it is easy to distinguish them from normal points.

KPI anomaly detection formulation

for any time t, given historical KPI observations vt−W+1:t with
length W , determine whether anomaly happens at time t (denoted
by γt = 1).
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Previous Works (1/1)

Table: Comparison among anomaly detection methodologies

Suffers from 1 2 3 4 5 Bagel

Selecting algorithm Yes No Some No No No
Tuning parameters Yes No Some Some Some No
Relying on labels No Yes No No No No
Poor Capacity Yes No Some No No No
Hard to train No No Some Some Some No
Time consuming Some Yes Some No No No

1: traditional statistical method, e.g., time series decomposition [1]
2: supervised ensemble method, e.g., Opprentice [2]
3: traditional unsupervised method, e.g., one-class SVM [3]
4: sequential deep generative model, e.g., VRNN [4]
5: non-sequential deep generative model, e.g. VAE [5], Donut [6]

6/37



Donut

Donut (Xu et.al. WWW 2018) is a state-of-art unsupervised
anomaly detection algorithm for KPI. It is based on variational
autoencoder (VAE). They also proposed a theoretical
interpretation for Donut.
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Figure: Overall architecture of Donut.
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Drawbacks of Donut (1/4)

Donut uses sliding windows, so the time information of a window
is totally ignored. It may cause some problems.

For example, patterns occurs frequently may not be normal pattern
when considering time.

Figure: The KPI value should be around 1 in every night, so the red part
is abnormal.
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Drawbacks of Donut (2/4)

Then we found more problems in real data.

Figure: Anomaly scores of G given by Donut. The blue lines are KPI
values. The green lines are the anomaly scores for each point. Donut
gives too high anomaly scores for the normal fragment surrounded by
missing points.

The small normal pieces surrounded by missing fragments is hard to

reconstruct for Donut, because too many points are missing and Donut

does not have enough information to reconstruct the normal pattern.
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Drawbacks of Donut (3/4)

Figure: Donut gives too high anomaly scores at many normal valleys,
which are mostly smooth but have many periodic spikes.

Since H is very smooth at most points, the x’s standard deviation will be

quite small (nearly zero). Small bias may also cause big impact on

likelihood since the standard deviation is too small on a mostly smooth

KPI.
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Drawbacks of Donut (4/4)

Summary:

1 The correct normal pattern can not be determined only by a
KPI window.

2 Model may be confused because of the abnormal points or
noises.

3 The biases brought by noises in KPI can be amplified in the
final anomaly detector, likelihood.
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More robust algorithm is needed

Figure: Donut Figure: Bagel, more healthy
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Core Idea

1 use additional time information to help reconstruct normal
patterns.

2 encode time information appropriately

Date and time

Decompose

One-hot encode

2018/7/3 16:25:13 Tuesday

25 �PLQXWH�, 16 (hour),  2 (day of week)

0ŏ�����ŏ���ŏ�����ŏ�������ŏ�
25 34 16 7 5

minute hour day of week

3 make sure that both window shape and time information work
well.
⇒ use dropout layer to avoid overfitting
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Effect of the improvements

Donut

Bagel

Donut

Bagel
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Overall architecture
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Figure: Overall architecture
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Training (1/4)

Preprocessing:

1 Imputing missing points.

2 Standardization for points in each KPI.

3 Sliding window with window length W .

Network structure:
conditional variational autoencoder [7], as shown in Fig. 10.
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Training (2/4)
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Figure: The overall neural network architecture. The double-lines
highlight the major difference with Donut [6] in network architecture.
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Training (3/4)

Encoding time information (y in Fig. 10):

1 Get the date and time of each window X.

2 Decompose it into useful components.

3 One-hot encode and concatenate.

Date and time

Decompose

One-hot encode

2018/7/3 16:25:13 Tuesday

25 �PLQXWH�, 16 (hour),  2 (day of week)

0ŏ�����ŏ���ŏ�����ŏ�������ŏ�
25 34 16 7 5

minute hour day of week
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Training (4/4)

Training objective (M-ELBO [6]):

L̃(x,y) = E qφ(z|x,y)[
W

i=1

αi · log p(xi |z,y) + β · log p(z|y)

− log qφ(z|x,y))]

(1)

α: a binary vector, denotes the corresponding anomaly labels
of a window x.

β: the proportion of normal points in a window x
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Detection (1/1)

We use negative reconstruction probability as the anomaly
detector.

−Eqφ(z|x,y) [log pθ(x|z,y)]

[6] gives a KDE (kernel density estimation) for it and explain why
it is suitable for anomaly detection problem.
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Evaluation Metric

0 0 1 1 1 0 0 1 1 1truth

0.6 0.4 0.3 0.7 0.6 0.5 0.2 0.3 0.4 0.6score

1 0 0 1 1 1 0 0 0 1point-wise alert

1 0 1 1 1 1 0 0 0 0adjusted alert

1

0.7

1

0

maximum allowed delay

We use F1-score based on the adjusted alerts as the evaluation
metric.
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Datasets (1/2)

We obtain several well-maintained KPIs from several large Internet
companies.

All the anomaly labels are manually confirmed by operators.

A,B, C are similar to those in [6], so they can demonstrate
Bagel ’s performance on those KPIs that Donut claims to
handle well. Bagel should have similar performance with
Donut on them.
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Datasets (2/2)

G has many missing points and several long missing fragments
(like that shown in item 2, and there are several similar long
missing fragments), such that many normal fragments are just
small pieces surrounded by missing points.

H is quite smooth, but has many periodic spikes every day.

Bagel should significantly outperform Donut on them.
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Overall Performance on A,B, C (1/2)

We compare Bagel ’s performance with that of Donut and
Opprentice.

Donut: a state-of-art unsupervised KPI anomaly detection
algorithm based on VAE [6].

Opprentice: a state-of-art supervised ensemble KPI anomaly
detection algorithms [2].
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Overall Performance on A,B, C (2/2)

On datasets A,B, C, Bagel ’s performance is similar to that of
Donut’s, which means Bagel is also able to handle those KPIs that
Donut is able to handle.
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Overall Performance on G,H

Bagel significantly outperforms Donut, and also outperform
Opprentice.
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Conditional KDE explanation (1/2)

Two questions:

1 We use negative reconstruction probability
(−Eqφ(z|x,y) [log pθ(x|z,y)]) as the anomaly detector, but
why can it be an effective anomaly detector?

The answer is almost the same as that of [6].
1) M-ELBO and the dimension reduction in CVAE makes it
able to reconstruct normal patterns from a potential abnormal
window.
2) Reconstruction probability can be considered as a KDE
(kernel density estimation). log qθ(x|z,y) is kernel, and
qφ(z|x,y) is the weight of kernel.

Eqφ(z|x,y) [log pθ(x|z,y)] =


z(i)

qφ(z
(i)|x,y) log pθ(x|z(i),y)
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Conditional KDE explanation (2/2)

2 Why does time information help?
1) Given a KPI window, its corresponding normal patterns is
multimodal.

2) Time information also helps when x is confusing.
e.g.: in G, there is a normal fragment surrounded by missing
points.
As this normal fragment is much shorter than the training
windows used to train the model, Donut cannot determine its
normal pattern and, therefore, gives wrong anomaly scores.
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Dropout for avoiding overfitting on time information (1/3)

Modeling the relationship between latent variables (z) and encoded
timestamps (y) is easier than that between latent variables (z) and
sliding windows (x), because the KPIs are mostly seasonal and the
local variation is not so influential compared to the periodicity.
Therefore CVAE model may be overfitted on time information
easily.

Time gradient effect: “z samples drawn from approximated z
posterior qφ(z|x,y) with more different y should be far away from
each other”.
It is important to find a good z posterior according to the analysis
in [6].
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Dropout for avoiding overfitting on time information (2/3)

Time Only

Bagel without Dropout

Bagel

Best F1-score

0.686

0.605

0.074

Latent Space
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Dropout for avoiding overfitting on time information (3/3)

Since the latent spaces of Bagel have significant time gradient,
similar to that in Donut [6], Bagel has similar ability with Donut
to reconstruct normal patterns from x, but Bagel has timing
information successfully incorporated without overfitting.
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Conclusion

For the first time in the literature, we identify the
importance of time information for non-sequential deep
generative models, such as Donut, in KPI anomaly
detection problem.

To the best of our knowledge, Bagel is the first to apply
conditional variational autoencoder (CVAE) to KPI
anomaly detection and use dropout technique to successfully
avoid overfitting.

Our experiments using real data from Internet companies
show that, compared to Donut, Bagel improves the anomaly
detection best F1-score by 0.08 to 0.43 for KPIs G and H,
greatly improving Donut’s robustness against time information
related anomalies.
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