Unsupervised Anomaly Detection for Intricate KPIs
via Adversarial Training of VAE

Wenxiao Chen'¥, Haowen Xuf$, Zeyan Li'$, Dan Peif$*, Jie Chen?, Honglin Qiao*, Yang Feng?, Zhaogang Wang!

tDepartment of Computer Science and Technology, Tsinghua University

¥ Alibaba Group

§ Beijing National Research Center for Information Science and Technology (BNRist)

Abstract—To ensure the reliability of the Internet-based appli-
cation services, KPIs (Key Performance Monitors) are closely
monitored in real time and the anomalies presented in the
KPIs must be discovered in time. While anomaly detection
for the seasonal smooth service-level KPIs (e.g., number of
transactions per minute) have been solved reasonably well in
the literature, the intricate KPIs at the machine level (e.g.,
the number of I/O requests on a server monitored per second)
has been little studied. These intricate KPIs are prevalent and
important, but exhibit non-Gaussian noises and complex data
distribution that are hard to model. In this paper, we propose
an adversarial training method in the Bayesian network based
on partition analysis with solid theoretical proof. Based on it,
we propose the first unsupervised anomaly detection algorithm
Buzz for intricate KPIs with high performance. Its best F-scores
on the data from a global Internet company range from (.92
to 0.99, significantly outperforming a state-of-art VAE-based
unsupervised approach without adversarial training and a state-
of-art supervised approach.

I. INTRODUCTION

To ensure the reliability of the Internet-based application
services, KPIs (Key Performance Indicators) are closely moni-
tored in real time. When KPIs show anomalies (such as sudden
increase, sudden drop, and jitter), some potential failures have
occurred in the related applications [1], [2]. In order to reduce
the cost of failures, anomalies presented in KPIs must be
discovered accurately in time.

While anomaly detection for the seasonal smooth service-
level KPIs (e.g., number of transactions per minute) have
been solved reasonably well [3]-[5], the intricate KPIs at the
machine level (e.g., the number of I/O requests on a server
monitored per second) have been little studied. These intricate
KPIs are prevalent and important, but exhibit non-Gaussian
noises and complex data distribution that are hard to model.
Fig. 1 shows a few such KPIs on which Opprentice [3] (a
state-of-art supervised approach) and Donut [4] (a state-of-
art unsupervised approach based on variational auto-encoder
(VAE)) do not perform well, as will be shown in § V.

In this paper, we propose an adversarial training method
for VAE based on partition analysis. Based on it, we propose
the first unsupervised anomaly detection algorithm Buzz for
intricate KPIs with high performance.

Buzz has a few key ideas. First, to make the modeling of
intricate KPIs tractable, we apply partitioning, a common anal-
ysis method in measure theory. More specifically, we divide
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Fig. 1: Intricate KPIs in this paper, each of which is plotted
with a 36-hour-long segment, with anomalies in red and
missing in yellow. The small pictures show the detailed

KPIs nearby the missing and anomalies. The arrows indicate
position of small pictures in the large pictures.

the data space into several subspaces (partitions) and calculate
the distance in each subspace. Second, when calculating the
distance, we use Wasserstein distance [6] between generative
distribution and empirical distribution, which has been shown
in WGAN [6] to be a robust metric in distribution space.

Third, we propose a primal form of training objective with
theoretical deduction, and then transform our model into a
Bayesian network. In particular, Buzz essentially optimizes the
evidence lower bound of likelihood of a variant of VAE by
adversarial training. Fourth, we use VAE as generative model
to generate samples and use another neural network as dis-
criminative model to distinguish generative samples and real
samples. Fifth, to ensure that the adversarial training is stable,
we adopt the gradient penalty technique [7], an improvement
over the original training method from WGAN [6]. Finally,
anomaly detection is conducted by Bayesian inference.

The contributions of Buzz are summarized as follows.

e Buzz is the first unsupervised anomaly detection algo-
rithm via deep generative model on intricate KPIs. Buzz’s
best F-scores on the data from a top global Internet com-
pany range from 0.92 to 0.99, significantly outperforming
existing approaches.

e The training method proposed in Buzz is the first ad-
versarial training method for VAE, based on partitions
analysis with solid theoretical deduction and experimental



support.

o We propose a primal form of training objective of Buzz
from Wasserstein distance based on partition analysis and
give theoretical deduction to transform our model into a
Bayesian network. It is a novel idea to build the bridge
between Bayesian networks and optimal transport theory.

II. BACKGROUND AND PROBLEM
A. KPI Anomaly Detection

A KPI is a time series, and can be denoted as X =
{z1, 2, -+ ,xp}, where z; is the value corresponding to time
index t for t € {1,2,--- ,T}.

Anomaly Detection on a KPI is to determine whether the
value x; is an anomaly given a recent history of W data points.
If so, a; = 1. An anomaly detection algorithm typically com-
putes the conditional probability, P(a; = 1|xi—wi1,---,Tt),
instead of directly giving the value of «;. Therefore, fun-
damentally any KPI anomaly detection algorithm needs to
somehow model this conditional probability distribution.

B. Intricate KPIs

In this paper, we focus on the anomaly detection on intricate
KPIs. KPIs can be roughly divided into 2 types: the seasonal
smooth KPIs and intricate KPI. The former is usually statistics
at the service/business levels (e.g., number of transactions per
minute). One can roughly assume that these KPIs have diag-
onal multivariate Gaussian noises. Intricate KPIs are usually
lower-level (e.g., number of I/O requests per second on server
of a distributed database). Intricate KPIs are often monitored
in a fine granularity in order to catch the micro-congestion
caused by the bursty traffic (e.g., typical of database traffic).
One can roughly assume that the noises in intricate KPIs are
not diagonal multivariate Gaussian.

Fig. 1 shows a few examples of intricate KPIs. As can
be seen, intricate KPIs are complex, jitter violently at short
time scale, yet globally there appear to be some patterns.
Furthermore, different intricate KPIs can have different global
and local patterns. Thus, it is challenging to precisely define
intricate KPIs or enumerate different types of intricate KPIs.
As such, it is intractable to design a framework and test it
for all intricate KPIs. Therefore, in this paper we focus on the
intricate KPIs that we countered, and are important in practice.
More specifically, we obtain 11 well-maintained intricate KPIs
from a large Internet company with manual anomaly labels,
and we show part of them in Fig. 1. They represent a series of
important, practical and intricate KPIs. The operators that we
worked with confirm that it is of urgent practical significance
to solve the anomaly detection on these intricate KPIs.

C. Previous Anomaly Detection Approaches

Many anomaly detectors based on traditional statistical
models have been proposed over the years, e.g., [8] et al
[9]-[14], but algorithm selection and parameter tuning needs
to be done on a per-KPI basis, and they cannot capture the
complex data distribution in intricate KPIs.

More recent methods use supervised ensemble learning
with above detectors as features, such as EGADS [15] and
Opprentice [3], and showed promising results on smooth KPIs.
However, their labeling overhead is too large, and their features
(from traditional statistical models) are not appropriate for
intricate KPIs.

Unsupervised anomaly detection approaches e.g., [16]-[20]
learn to earn the normal data pattern and derive the conditional
probability P(c; = 1|x4—w1,.-.,2¢) from the normal data
pattern by assumption for anomalies, e.g., the likelihood of
anomalies is negligible. Donut [4] is the state-of-art unsuper-
vised anomaly detection approach. It is based on VAE [21],
[22], with high performance and solid theoretical analysis on
seasonal smooth KPI. But because Donut assumes diagonal
multivariate Gaussian noises, it does not perform well on
intricate KPIs, as will be shown in Fig. 9.

D. Variational Auto-Encoder

VAE [21], [22] is a deep Bayesian network which models
the relationship between two random variables x and z.
p(x) is called empirical distribution and p(z) is called prior
distribution, usually multivariate standard Gaussian distribu-
tion A/ (0,I). The form of conditional distribution py(x|z) is
chosen according to the particular requirement of task. Then,
Po(x) = Ep(z) [po(x|2)] can be seen as a kind of kernel density
estimation. g4(z|x) is an approximation posterior of the true
posterior py(z|x) which is intractable. ¢4 (z|x) can be fitted by
neural network through maximizing the evidence lower bound
of likelihood (ELBO) with SGVB algorithm.

The training objective of VAE, denoted by L4, is the
evidence lower bound of ;) [log ps(x)].

Lyae = Epx) [Eq, (z/x) 108 po(x]2)] — KL [g4(2]x) || po(2)]]

Donut [4] modified a part of ELBO to avoid the influence
of anomaly in training and achieved high performance on
seasonal smooth KPIs. However, Donut doesn’t work well on
intricate KPIs — we train Donut for several times and find
that the performance of Donut is low, unstable, and it is not
well-trained (shown later in § V). We conjecture that it is
hard to train on intricate empirical distribution p(x) because
of the limit of neural network expressing capacity and training
method with limited training samples with support of Fig. 8.

E. Adversarial Training

A series of adversarial training methods have been pro-
posed, such as GAN [23], WGAN [6], AAE [24], WAE [25],
and GAN-OT [26]. In adversarial training, a generator model
tries to generate samples to deceive a discriminator model,
and the discriminator tries to distinguish the generated samples
and real samples. During the adversarial training, the ability
of both generator and discriminator can greatly improve. It
has been shown that adversarial training achieves great perfor-
mance on complex empirical distribution in image classifica-
tion, image generation, speech recognition and other domains.

There are several studies about combining VAE and adver-
sarial training, such as [27], similar to our structure at the
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Fig. 2: Overall architecture of Buzz.

first glance, but our theoretical proof shows they are totally
different in essence. AAE [24] proposes an adversarial training
on the prior distribution p(z) with high performance and solid
proof. Inspired by it, we try to propose an adversarial training
method on intricate empirical distribution p(x) for VAE. Based
on it, an anomaly detection algorithm for intricate KPIs via
deep generative model is proposed in this paper.

III. ARCHITECTURE

In this section, we will introduce our motivation and pro-
posed framework, Buzz, for anomaly detection, including the
preprocessing stage, the training objective and corresponding
algorithm, the neural network architecture, as well as the
detection method. The overall architecture is shown in Fig. 2.

A. Motivation

There are two major ideas in Buzz: Wasserstein distance and
Partitioning from measure theory.

When calculating distance, we use Wasserstein distance [6]
between generative distribution and empirical distribution
(called distribution distance hereinafter), which has been
shown in WGAN [6] to be robust when measuring the distance
between probability distribution.

Partitioning is a powerful and commonly used analysis
method for distribution in measure theory [28], [29]. The basic
idea is in spirit similar to a common technique in calculus:
when we calculate the integral of a complicated function, we
often divide its integral domain into several partitions and
calculate the integral on each partition, then get the average
of them. Similarly, we divide the space X with intricate
empirical distribution into several partitions, and intuitively it
may become easier to calculate distribution distance on each
small enough partition than on the whole space.

The distribution distance on each partition is calculated by
adversarial training, and the global distance is the expectation
of distribution distance on all the partitions, as shown in Fig. 3.

Coincidentally, we notice that when each partition is smaller
and smaller, the global distance approaches the reconstruction
term in the evidence lower bound of a special variant of VAE,
whose posterior distribution is an exponential distribution.
Partition plays the role connecting the loss of WGAN and
VAE during the partitions changing from the whole to the
point-wise. It inspires our adversarial training method for VAE.

We will give the theoretical deduction of this motivation,
and an approximation training objective in § I'V. In this section,
we will first demonstrate how it works in practice.

B. Preprocessing

The KPIs in real applications are complex time-series data.
Sometimes a value is not captured by monitors and is set to
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Fig. 3: An example for our motivation, where X" is divided
into 4 partitions. For partition S,,,, p(x|w;) is obtained by
restricting p(x) on Sy, and normalizing it. pg(y|w;) is the
generative distribution from p(x|w1) by g¢4(z|x) and G(z).
We calculate the Wasserstein distance between p(x|w;) and
pa(ylwy) as the distribution distance on S, instead of
calculating the distance between pair (x,y) in ELBO. Then
we compute the distribution distance on S,,,, Sy, and Sy,
by the same method. The global distance is the expectation of

these distribution distance.
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Fig. 4: Network structure of Buzz. Gray nodes are random
variables, and white nodes are layers.

NaN, which is called missing. Sometimes the scale of the
values are all very large for a period of time. These values
will bring trouble to the training and detection, thus we need
to preprocess the data.

Firstly, we set the missing values to zeros and split the
KPI into training set and testing set. Secondly, we measure
the mean p and variance o over the training set. Thirdl%/,
we standardize the data by setting each value x to be (z%
Fourthly, we truncate the standardized values to [—10, 10].

The inputs of our model are sliding windows taken from the
standardized KPI, and each window is a T/ -long time series
segment where W is a hyper-parameter called window size.
The window ending at time ¢ is denoted by x(*) and the k-th
value in the window {x;_w1,.. (t)

., @} is denoted by x;~.
C. Neural Network

Our model consists of 3 sub-networks, the variational net-
work, the generative network and the discriminative network,
as shown in Fig. 4a, Fig. 4b and Fig. 4c.

The variational network is designed to find the correspond-
ing pattern g4(z|x) from a given window x. We reshape the



window into a 2D matrix and use convolution layers [30] to
extract its high-level features, which are denoted by h,(x).
Then we derive the mean and standard deviation of gy (z|x)
by: p,(x) = WJZ ~hy(x)+by_ and o,(x) = SoftPlus(W, -
hz(x)+ by, ) + €, where € is a small positive constant vector.

The generative network is designed to generate a recon-
structed window for ¢, (z|x), given by the variational network.
We map z to a 2D matrix by fully-connected layers, then pass
it through a series of 2D transposed convolutional layers, and
finally reshape it to 1D, to get the reconstructed window G(z).

The discriminative network is designed to distinguish real
window x from reconstructed window y. We reshape the
window into 2D, obtain high-level features by convolution
layers, pass the features through fully-connected layer, and
finally obtain the discriminator output F'(x).

D. Training Objective

The most important part of Buzz is its training objective. We
propose a novel training objective Lp,.. for intricate KPIs to
solve the problem that it is hard to train models on our dataset
using pure Bayesian lower-bounds, like the Donut approach
(see § V). The precise definition and deduction of [ZBMZZ are
given in § IV. In this section, we only give the sampling form
of Lp,.. and the training algorithm for it.

Symbols s,b are parameters, the neighborhood size and
the batch size. Let W be {wi,wa,...,wp}, a mini-batch of
randomly selected time, satisfying that each w; is a multiple
of s, and w; # w; Vi # j. We call this condition on W, the
neighborhood condition (NC). The neighborhood set for w €
Wis {w,w+1,...,w+s—1}, which is a partition on time.
The union of Voronoi cells of x(*) x(w+1)  x(wts=1) g
a partition S,, on space X . It is a simple efficient partition
method. Define symbols:

bils Z iKL [q¢(z\x(w+i)) | NV (o, 1)]

K=
weW =0
Z(\) = ?E“/}V/; o' A™", T'is the Gamma function
2
s—1
1 w1
T(Fw) = 1= Y By uttoy [FH) = F(G(2))]
i=0
1 s—1
R(F,w) = 13 By i) [Eenpo ) (VP )] - 1)°]
=0

where % denotes éx(“* + (1 — €)G(z). Then the training
objective Lp,,, can be given by

Loz = —A sup| > (T(Fw)| - nR(F,w))] - K —log Z(X)
wew

EBMZZ is an improvement of the loss in WGAN-GP [7], a spe-
cial adversarial training algorithm. The discriminative network
(F(x)) in our model can be seen as the “discriminator” of
WGAN-GP, while the variational network and the generative
network can be seen as the “generator”. sup[-| and T (F, w)
can be seen as the major “WGAN” loss term. R(F,w) can be
seen as the regularizer for F, i.e., the “~-GP” (gradient penalty)
term, while 7 is the gradient penalty weight.

In addition to the terms used in WGAN-GP [7], £~Buzz also
adds the term /C, borrowed from Bayesian training objectives,
serving as the regularizer for g4(z|x). A is a trainable vari-
able, induced from the Bayesian inference framework, which
balances the WGAN-GP terms and the Bayesian regularizer.

E. Training

Given Lp,.. is an improvement loss of WGAN-GP, so
Buzz’s training procedure also shares some similarities with the
WGAN-GP algorithm. The parameters of the “generator” (i.e.,
the parameters of the variational network and the generative
network, plus \) are denoted by w, while the parameters of
the “discriminator” (i.e., those of the discriminative network
F(x)), are denoted by v. The R(F,w) term is ignored when
optimizing w, since it is just a regularizer for F', depending
only on v. We use SGVB [21] to solve the variational
inference for ¢, (z|x), and Adam [31] to optimize the network
parameters. Thanks to the strong convergence property of the
WGAN-GP loss, we enjoy a very stable training process with
few hyper-parameters tuning.

It will be proven in § IV that Lg,,, — Lyqe When s — 1(
Lpyz; is the primal form that ﬁgm approximates). Therefore,
we can turn our model into a Bayesian network after training,
which is required by § III-F. Thus, in algorithm 1, we set
s = sp at beginning, and gradually decrease s down to 1, by
setting s < s/2 after every few epochs.

F. Detection

We shall build a bridge between Lp,;, and L4, the loss of
a spemal variant of VAE [21], in § IV, by letting py(x|z) =

)\) exp{—A\||x — G(z)]|}. With this technique, we can turn
our model, trained by algorithm 1 (a variant of the WGAN-GP
algorithm), into a Bayesian network. We can then derive the
detection output by the probabilistic framework, as follows.

When a new point is to be detected, the last window (i.e.,
whose last data point is the new point) is denoted by x. Since
our goal is to detect whether the last data point is an anomaly,
we assume it to be “anomaly”, and iteratively use MCMC
imputation (also used by Donut [4]) to obtain a reasonable
estimation of the reconstructed X, by following procedure:

1) % x, and a = 1, 1= W.or X; 1S missing

0, otherwise

2) Repeat for Thrc times: X < (1 —a) ©X + o © G(z)
Finally, we use log pg(x) —log pg(X) as the anomaly score for
the last point which is computed by:

(l) (l)
po(x|z") po(2
logL E [

a( Z(”\X)

(l) ( (l))

L
po(X|z
| ez

qo( Z”)IX)

where z(!) ~ g4(z|X), and L is the sampling number. The for-
mula is slightly modified from the importance sampling [32]
based estimation of logpg(x) — logpg(X) (denoted by the
Buzz-strict detector). We use ¢4 (2|X) to replace ¢4 (z|x) when
computing the importance sampling formula for log pg(x),
because ¢, (z|x) may deviate due to the influence of anomaly.
Experiment results in Fig. 6 confirm this conjecture. The



Algorithm 1: Buzz training

Require: The gradient penalty weight 7, the number
of critic iterations 7., ;¢ic, the initial
neighborhood size sy and batch size by. The

parameters for Adam Optimizer, «g, 51, Pa-

1 Initial the parameters w, v, s = sg,b = by.

2 repeat
3 repeat
4 fort =1,...,n¢ritic +1 do
5 Sample w; ... wy s.t. NC.
6 L,+0,L,+0
7 for:=1...bdo
8 L0, 0,5 0
9 for j=0...s—1do
10 Set x ¢ x(witJ)
1 Obtain ¢ ~ N (0, 1), set
Z 4 L O oy,(x) + p,(x).
12 Obtain £ ~ [0, 1], set
X &x+ (1 -¢)G(2).
13 L+ L;+F(x)— F(G(z))
14 £ L7 4 (| VaF )] - 1)?
15 LZ(-K) — ZIEK) +
KL [N(MZ(X)7UZ(X)) H N(o, 1)}
16 end
17 L, L, + L] — £
18 Lo+ Lo —NLi| = £ —log Z(N)
19 end
20 if t = Neritic + 1 then
21 W Adam(ng—;llw,w,ao,ﬂl,,Bg)
22 else
23 V4 Adam(V,;—jEu, v, ag, b1, B2)
24 end
25 end
26 until w convergence;

27 S 5,020
28 until s = 0;

threshold for detecting anomaly from the anomaly score in
practice is selected by the best F-score as [4] do.

IV. THEOREM

In this section, we will give the theoretical deduction of
Lpuz, the training objective of Buzz, and we shall explain why
we can turn our model, trained by algorithm 1, into a Bayesian
network. The content of this section is divided into four parts:
(1) we define symbols, useful in deduction; (2) we build a
bridge from the primal form of Lp,.., t0 L., the loss of a
special variant of VAE; (3) we explain how we can rewrite the
primal form of Lp,,, into its dual form; and finally (4) we
give an approximation [:Bm, to the dual form Lp,,,, which is
relatively easy to compute, and is used in algorithm 1.

A. Notation
The VAE training objective, using SGVB [33], is given as:

Loae = By [Eq, (a0 [l0g po(x|2)] — KL [q4(2]x) || po(2)]]

We present a special variant of VAE here, to help induce
the theorems. The prior distribution py(z) is chosen to be
a K-dimensional unit Gaussian A(0,I), while the posterior
pe(x|z) is chosen to be ﬁexp{f)\ﬂx —G(2)||}. G is a
deterministic function. A is a constant. Z(\) depends on A and
W, the dimension of x. Sy _1 = 277%/1“(%) is the surface
area of the unit (W — 1)-sphere. It is not hard to show:

Z(\) :/ Gw_ 1Vl dr = Gy T (WA
0

We denote the Euclid space of x by &, while the la-
tent space of z by Z. Define the partitions of X to be
{Sw|Sw is Lebesgue measurable set}, s.t. U,,S,, = X', where
Ll means disjoint union. Define S = {(x1,x2) |E|w X, €
Sw, Xo € Sw}

Define p(x,w) = p(x )15“}( ), where 1g, (x) =1 if X €
Sw, otherwise 0. Then p(w) = [, p(x,w)dx = fs x)dx,
and p(x|w) = p(x,w)/p(w ) Both p(w ) and p(x|w) are well-
defined according to the property of Lebesgue measurable sets.

Define the conditional distribution pg(y|z) = d(y — G(z)),
a dirac distribution, then pg(y|x) = Ey, (z)x) [Pc(y|2)], and
PG (ylw) = Epxw) [Pa(y|x)]. Notice that x and z are “true”
variables of our final Bayesian net, while y and w are just
auxiliary variables, helping to induce the theorems.

We use A | to denote a decreasing sequence {A(")}, s.t.,
A+ < A if A € R, or AT C A if A are
sets. We use A | B to denote A | and lim,,_,, A" = B

The primal form of the Buzz training objective is given by:

Lpuzz = —AEpw) WP (x|w)|| Pa(y|w)] — K — log Z(\)

where WP (x|w)||Pg(y|w)] is 1-th Wasserstein distance
between the two distributions P(x|w) and Pg(y|w), and
K = By [KL [g4(2[x) || po(2)

Define T(P(x]w), Pa(ylw)) — {7(x,y)| [y 7% y)dy =
p(xjw), [ v(x,y)dx = pa(y|w)}, denoted by T',,. We call
v € Ty, a coupling of P(x|w), Ps(y|w). The primal form of
W P(x|w)|| Pg(y|w)] can then be given by:

WP Poylw)] = inf [ x=ylda(xy)

A special case of the duality theorem of Kantorovich and Ru-
binstein [34] gives the dual form of W[P(x|w)|| Pg(y|w)]:

WP (x|w)|| Pe(y|w)]

Lip(f)<1 {/ Te

B. From EBuzz to Evae
Lemma IV.1.

Loae = AEpuw) [Epixw) Epg (yx) — 11X = y[[] = K —log Z(X)

Proof. Given p(x|z) = ﬁ exp{—A\||x — G(z)||}, we have:

Lyae = Ep(x) [Eq(b(z\x) 10gp9 (X|Z)] -K
= Epw) [Epeiu) Ba (alo) 10gP9(X|Z)] K
= /\Ep(w) [E’p(xhu) Eq¢(z|x _HX - |H lOg Z()\)



The following equation is provided in [25] and [35]. We
demonstrate it here, for the completeness of our proof. Notice

that E,(y 1) |1X — G(2)]| = Epe(yia) X — ¥, since pe(y|z)
is dirac; and that we exchange the order of the integrations by
Fubini theorem [36]:

G(z)| = Eq, (21x) Epg (v12) [Ix — G(2) ]l
= By o1 Epes iy 1% — ¥1| = / / 46 (w)pa(ylz)|x — y|dydz
-/ ( / q¢<z|x>pc<y\z>dz) I = ylldy = Epg i I — ¥

It then induces the conclusion. ]

Egy (a1 1% —

Lemma IV.2. Lp,.. | when S |, for fixed G, ¢, A

Proof. Consider the simplest process when S | by the
definition of S, where one and only one partition S, is
divided into two pratitions Sy, , Sy, , such that p(w)p(x|w) =
p(w1)p(x|wy) + p(we)p(x|ws). The Lp,,, before and after di-
viding are denoted by 1, Q5 respectively. The sign of 21 — s
is decided by the change on p(w)W?![P(x|w)| Pg(y|w)]dw.

Let v1(x,y) and v2(x,y) be the optimum couplings for
WP (x|w1) [ Pe(y|w:)]) and W [P(x|ws)||Pe(y|ws)]. Let
V(% ¥) = 5y (P(wi) 1 (x,¥) + p(wz)y2(x,y)). Obviously,
it is a coupling of W![P(x|w)||Pg(y|w)]. It then induces the
conclusion ; — Q9 > 0 by considering the minimality of
W P(xw)|| Po(y w).

Each evolution from S to S~ can be divided into
several such simplest processes. Then “€2; > 5” holds
throughout the sequence, which implies Lg,,; | when S |. O

For simplicity, we denote maxg, ¢, x Lpuz; by max Lg,;, and
maxg,c, ) Loge Dy max Lp,.. It is obvious that V.S, diagX’ =
{(x,x)|x € X} € S. We shall soon discuss the limit case,
S | diagX, i.e., p(x|w) approaches a dirac distribution.

Lemma IV3. maxCLp,, > max/Lyqe.
max Lpg,;; | max L,,. when S | diagX.

In addition,

Proof. Consider L,,. and Lp,,, with respect to the same
¢,G, \. Then +'(x,y) = p(x|w) pc(y|x) can be seen as a
coupling of (P(x|w), Pu(ylw)).

Epxfw) Epg ylx) [1X = ¥l = WHP(x|w)|| Pe(y|w)], which
is obtained by the minimality of Wasserstein distance. It
induces Lp,;; > Lyqe, and further max Lp,,, > max Ly qc.

When S = diagd’, there is only one coupling, namely
p(x|w)pe(y|x), for WP (x|w)||Pg(y|w)], as [37] shows. It
induces IEp(x|w) Epg (ylx) — ||X YH = Wl[ (X"LU)”Pg(y‘”UJ)],
and further, Lp,,, = Lyqe. Therefore, max Lp,,, = max Lyqe
when S = diagX. Recall Lemma IV.2 that max Lg,,, | when
S |, we can thus induce the conclusion. O

Lemma IV4. Let pg(y[x) denote By, (%) [pc(ylz)]. If
(G, ¢, \) is a solution, then there exist (G, ¢, \), such that:

Ep(xw) Epf () X = ¥ = WHP(x|w)|| Po (v |w)]
Then Lp,,, — L] .. =K' — K where L/ __, K’ are defined with

vae

respect to the solution (G, ¢', \).

vae)’

—— max Loae —— Ll
— maxE[logpg(,)]  reer max £ gy,

=== max Lpy..

.......
..............................

Fig. 5: Relationships of several losses in deduction. £] . —
max L, When S | diagX, which can be proved by combing
Lemma IV.3 and Lemma IV.4. However, this tendency is not

monotonic. max Lp,,, is the approximated loss to max Lg,.,.

Proof. Consider a simpler condition that G(z) is injective,
such that there exists an inverse function G~! over the image
of GG. For a fixed w, let v be the optimum coupling of
WP (x|w) || Po(y|w)]. Let g,(ylx) = 253, po(aly) =
6(z — G7U(y)). Let qp(z|x) = E, (yx) [Pc(zly)]. Since
~v(x,y) is optimum, we obtain:

Pol¥13) = By 6 (712)) = | By 1) paly I (vl2)e

~ B,y | [ PovIEIpotaly’ ]

= IEq,y(y/|x) [5(}’ - y/)] = q’Y(le) =

It induces the conclusion:

Ep ) Byt v 1% — ¥l = // (x|w)

- / / Y y)lIx — ylldydx = W [P<x|w>nPc<y|w>]

||x -yl dydx

If G is not injective, the same conclusion still holds by setting

palaly) = PR 4 (2l%) = Eq, o) o (21y))
ro(z

Then repeat the above proof. Furthermore, by above equation,
pa(y|lw) = pg(y|w). Therefore, Lg..— L. = —K+K'. O

For any solution ¢, G, ), a local optimal solution (¢, G,A)
for Lp, is obtain by fixing P (y|w) and optimizing KC. ¢ ~ ¢
denotes ¢ € {¢/'|p;(y|w) = pc(ylw)} (the equivalent class
of ¢). Lp,,; with respect to (¢, G, \) is:

~AE, ) WHP(x|w)|| Pe(y|w)] — min K —log Z())

From Lemma IV.4, we know 3¢', pc(y|w) = pg(y|w), thus
¢’ ~ ¢ ~ ¢, and the first term of the above equation can be
replaced by another form. Then, Lg,., with respect to (¢, G, \)
is rewritten into another form ﬁguzz similar to Lyge:

T in K
‘CBuzz - P(x) Eq¢/(z\x) 1ng‘9(x|z)} - gil(l;/ K
Because the optimum solution must also be a local optimal
solution, max Lp,;; = maxe G\ L‘Bm It suggests that Lg,,,
works by minimizing K term on the equivalent class of ¢'.



C. The Dual Form of Ly,

Define Symbol T (f,w) = Eyxju) f(X) = Epg(yjw) f(¥)-
Symbol T*(f,w) denotes T (R(f;Sw),w) where R is a
functional for f, defined by R(f;Sy)(x) = f(x) for x € Sy,
and R(f; Su)(y) = supges, {/(x)— [x—y[} fory & Su. In
the absence of ambiguity, we use 7 (f), 7*(f) conveniently.

Lip(f;S) denotes the minimum real constant C' € R such
that [|f(x) — f3)| < Cllx — yl,¥(x.y) € S. Let I be
the definition domain of function f, then Lip(f) denotes
Lip(f; Y x V). In particular, f|s, denotes a function defined
on Sy, then Lip(f|s, ) denotes Lip(f|s,;Sw X Sw)-

The dual form of W[P(x|w)||Pg(y|w)] on each partition
relies on Lip(f) < 1. It is intractable to find the function f
for each partition in practice. Therefore, we need to reduce
the search space for supy;, s <1 7(f) on an fixed partition.

Lemma IV.5. For a fixed w, define:
F = A{f|Lip(f) <1}, F* = {fls., |Lip(fls,) <1}

then sup;c 7 T(f) = sups; er+ T (fls,)-

Proof. Define x : F — JF*, a mapping limiting the definition
domain of a given function f to the S,,. k is surjective. We
will show that sup,.—1(s ., y7T(f) = T*(fls,) for a fixed
fls., € F*. T(f) can be decomposed as:

B ) (%)~ /S po(ylw)f(y)dy— /

w w

pe(ylw)f(y)dy

Consider sup,.-1s|; )7 (f), whose values of Ist and
2nd term are fixed. In order to get a supremum, f(y)
need to be minimized in X\S,. By Lip(f) < 1, we get
fy) = supyes, {f(x) =[x — yll} = R(fls,;S)- By
definition of R, and f(y) > R(f;Sw)(y), we get T(f) <
T (flsw)s so sup.-1p5. ) T(f) < T"(fls, ). We claim that
R(f|s,;Sw) € 67 1(fls,, ). We denote R(f|s,;Sw) by fr-

Obviously, k(fr) = fls,. We only need to show
Lip(fr) < 1. ¥x € S, (the closure of S,) and y € X,
lfr(x) — fr(y)] , which is obtained by the
definition of Lip(f|s,) < 1 and fr(y). Let y, ¥ € X\Su,
and without loss of generality, fr(y) > fr(¥). Let x* € S,,
be the optimal solution for sup, g, {f(x) —[[x —y|l}. Since

SUPyegs, /(%) =[x = ¥|I} = supyes, {frR(X) — Ix —yl}:
fr(y) — fr(¥) = sup f(x) —

Ix =yl — sup f(x)—[lx -yl
XE Sy

<frR(X") — X" =yl = fr(x") + [Ix" =¥ < [ly — ¥l
So fr € K7 1(f|s,, ), and then sup,.—1(f1s,) T (f) = T(fr) =
T*(fls,)- It induces that sup,.—1 s, T (f) = T*(fls,,)-
supT(f)= sup  sup T(f)= sup T'(f[s,)0

F Flsw €F* k= 1(flsw) flsw EF*

Theorem IV.6. The dual form of Lp,,, is

Lpizz ==X sup By T (F) =K —log Z(\)

Lip(F;S)<1

Proof. Using the dual form of W![P(x|w)| Pg(y|w)] and
Lemma IV.5, we obtain:

‘CBuzz = _)‘Ep(w) sup T(f) A log Z()‘)
Lip(f)<1
= AByw s TH(fls,) — K ~los Z()

Lip(fls,)<1

We can obtain a function F' defined on the whole space
X, composed from f|g, over all S,, by setting F|g, =
fls.s VSw. This construction is denoted by C. F is well-
defined by the property of partitions. Define:

Mp = {F‘Lip(F; S) <1}
My = {M| My = {15, |Lip(fls,) < 1}st¥8u3fls, € My}

C is a bijection between My and Mp, since each F' €
M can be constructed by exactly one M. It is obvious that
Ep(w) T*(F) = ]Ep(w) T*(f|sw ), where F' = C(Mf) Thus,

E T (flsw) = sup  Epw) T (fls,)
MyeMy

= Ssup Ep(w> T*(F)
FeMp

sup
Lip(fls,)<1

p(w)

which induces the conclusion. O

D. From the Dual Form of Lp,.. to the Approximated Lyg,..

In practice, it is hard to calculate 7*(F') since we don’t
know the exactly range of S, but only the samples of p(x|w).
Recall that in § III, we give a simple partition method: the
partitions for space X is induced by the partitions on time.
Each S, is a connected component, so we could assume such
partition to have good property, where | X\S. pe(y|lw)f(y)dy
is almost 0. It further suggests it can be ignored, and thus a
simple approximation approach is to replace 7*(F) by T (F).

Our approximation to the dual form of L, is given by:

ZBuzz =-A sup ]Ep(w) T(F) A 1Og Z(A)

Lip(F;8)<1

We use |7 (F)| to replace T (F'), to half the search space. By
the gradient penalty [7], the limit of Lip(f) can be achieved by
a soft version of the constraint with a penalty on the gradient
norm for random samples. Apply it for each partition. Define:

P(X) = Epx) Epg (ylx) Eenjo,1 (X — (x + (1 = §)y))
We now obtain the Buzz training objective used in § III:
p(w) | T(F) = nEps (V< F()]| = 1)7]

—K —log Z(\)

EBL(ZZ ==X sup [E
F

where 7 is a hyper-parameter called gradient penalty weight.

There is a limitation in our assumption that we use the
exponential distribution as posterior distribution, instead of
gaussian distribution which is used commonly but intractable
for our derivation. We will work on it in the future.

V. EVALUATION

A. Datasets

To evaluate Buzz, we obtain 11 well-maintained intricate
KPIs from a large Internet company. These KPIs’ time spans
are long enough for training and evaluation. All KPIs have
monitoring interval of 10 seconds between two observations.



We choose 3 datasets to investigate in detail, .4, B and C,
whose anomalies are thoroughly labeled by the operators that
we work with. Although labels of the rest 8 KPIs are not as
thorough, they represent more patterns of intricate KPIs. A,
B, C, D, £ and F are shown in Fig. 1.

Table I shows the detailed statistics of datasets A, BB, C and
the average of all 11 KPIs. Since the inputs of our model
are windows, we also count the number of total windows
and abnormal windows, i.e., the window contains at least one
abnormal point. We divide each KPI into training, validation
and testing sets, whose ratios are 56%, 14%, 30% respectively.

TABLE I: Statistics of A, 13, C and the average of all 11 KPIs.

DataSet Total Anomaly Total Abnormal windows
points points windows

A 172798 7352/4.25% 172671 33111/19.18%

B 250460 2518/1.01% 250333 11911/4.76%

C 259200 3512/1.35% 259073 21159/8.17%

Average 250550.73 2722.45/1.09%  250423.73 14091.81/5.63%

B. Performance

In our experiments, we set window size W = 128, dimen-
sion of z-space K = 13, gradient penalty weight n = 10, the
number of critic iterations n¢,;t;c = 3, initial neighborhood
size sg = 32 and initial batch size by = 8. The parameters of
Adam optimizer are ag = 0.001, 81 = 0.9, 52 = 0.999. We
set s < s/2,b « 2b after every 40 epochs. In detection part,
repeat times T is 10, and the sampling number L is 512.

In the variational and discriminative network, we use 4
convolutional layers, whose filters are all (5,5) and strides are
(2,2),(1,1),(2,2),(1,1) successively. The elements of € are
all 0.0001. In the generative network, we use fully-connected
layer to extract 512 features from z, then we use 4 transposed
convolutional layers to generate windows, whose filters and
strides are the same as the variational network in inverse order.

We compare the performance of (unsupervised) Buzz, (un-
supervised) Buzz-strict (defined in § III-F), Opprentice [3]
(a state-of-art supervised approach that outperforms all tra-
ditional statistical models) and Donut [4] (a state-of-art un-
supervised that outperforms Opprentice on smooth seasonal
KPIs). Each model runs for 10 times on A, B, C, and once on
rest 8 datasets. The AUC and best F-score (two metrics used
in Donut) of different approaches are shown in Fig. 6.

Next we show the training objective of Buzz on training
set and validation set during training in Fig. 7. It shows that
the adversarial training of Buzz is stable, and our simple
approximation method is effective. Moreover, it intuitively
shows that Buzz indeed maximizes ELBO.

Third, we compare KL [g4(z|x) || po(z|x)] of Buzz and
Donut, which is calculated by the difference between log
likelihood and ELBO, in Fig. 8. We calculate log likelihood by
importance sampling [32] and ELBO over the normal windows
in training set and testing set, respectively. It shows Buzz is
well-trained and stable, while Donut is not on intricate KPIs.

Fourth, we show the mean performance of Opprentice, Buzz-
strict, Donut and Buzz on all the 11 intricate KPIs in Fig. 9.

BN Donut s Buzz

Buzz-strict

BN Opprentice

1.0

0.8
0 0.6

< 0.4

0.2

0.0
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0.6
0.4

0.2

Best F-Score

0.0
A B c

Fig. 6: The performance including AUC and best F-Score over
A, B, C. Opprentice performs badly since there is no suitable
traditional indicator for intricate KPIs. The performance of
Buzz-strict is low with large variance, confirming our conjec-
ture that g, (z|x) deviates due to the influence of anomalies.
The performance of Donut is usually good since it ignores the
anomaly effect and uses MCMC imputation. The performance
of Buzz is usually significantly better than Donut with less
variance, because it considers the hard-training property of
intricate KPIs and uses adversarial training to solve it.
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Fig. 7: The training objective E;r(lj(cflthLBO of training set and
validation set during the training of Buzz. Before 160 epochs,
generator and discriminator compete intensely, and the loss
curve jitters. Jitters at 160, 200 epochs are caused by the
changing of neighborhood size and s = 1 after 200 epochs.
After 160 epochs, the training is stable. The losses at end of
each 40 epochs represent the max Lp,,, with enough training,
for different s. The fact that max Lp,,, decreases after 160
epochs, supports the theoretical analysis in Fig. 5. ELBO is
calculated directly on solution ¢, G, A instead of ¢’ mentioned
in § IV-B, which is intractable. It supports Lpg,,, > Lyqe Of
Lemma IV.3. The fact that ELBO increases during the training,
indicates our model maximizes the ELBO indeed.

Because thorough labels are only available on A, 53, C and
Opprentice is a supervised algorithm, we only measure the
performance of Opprentice on A, B, C. The results show that
Buzz consistently works well on all 11 intricate KPIs.

VI. CONCLUSION

This paper proposes an adversarial training method in the
Bayesian network based on partition analysis with solid the-
oretical proof. Based on it, we propose the first unsupervised
anomaly detection algorithm Buzz for intricate KPIs with high
performance. Its best F-scores on the data from a global Inter-
net company range from 0.92 to 0.99, significantly outperform-
ing existing approaches. We believe Buzz’s training method,
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Fig. 8: KL [g4(z|x) || po(z|x)] of Donut and Buzz. The
¢4(2z|x) is more similar to pg(z|x) when the mean is less, and
the training is more stable when the variance is less. Donut is
unstable and overfittnig on B since its variance on testing set
is much higher than training set. On average, the variance and
mean of Donut are higher than Buzz. It shows Buzz is trained
better. This confirms our conjecture in § II-D that our training
method improves the training effect of VAE.
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Fig. 9: The mean and variance of AUCs and best F-Scores
over all 11 KPIs. Opprentice performs badly since there is no
traditional indicator suitable for the intricate KPIs. On average,
Buzz significantly outperforms the others.

detection method, and theoretical inference are significant first
steps on tackling the training on data with intricate distribution
and its anomaly detection. We plan to extend our work to
many interesting and important directions: e.g., an adversarial
training method for common Gaussian posterior distribution;
more advanced partition and approximation method.
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