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Abstract— Despite many years of improvements to it, TCP
still suffers from an unsatisfactory performance. For services
dominated by short flows (e.g., web search and e-commerce), TCP
suffers from the flow startup problem and cannot fully utilize the
available bandwidth in the modern Internet: TCP starts from a
conservative and static initial window (IW, 2-4 or 10), while most
of the web flows are too short to converge to the best sending
rate before the session ends. For services dominated by long
flows (e.g., video streaming and file downloading), the congestion
control (CC) scheme manually and statically configured might
not offer the best performance for the latest network conditions.
To address these two challenges, we propose TCP-RL, which
uses reinforcement learning (RL) techniques to dynamically
configure IW and CCin order to improve the performance of
TCP flow transmission. Basing on the latest network conditions
observed at the server side of a web service, TCP-RL dynamically
configures a suitable IW for short flows through group-based
RL, and dynamically configures a suitable CC scheme for long
flows through deep RL. Our extensive experiments show that for
short flows, TCP-RL can reduce the average transmission time by
about 23%; and for long flows, compared with the performance
of 14 CC schemes, TCP-RL’s performance ranks top 5 for about
85% of the 288 given static network conditions, whereas for
about 90% of conditions, its performance drops by less than
12% compared with that of the best-performing CC schemes for
the same network conditions.

Index Terms— TCP initial window, congestion control, web
service, reinforcement learning.
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I. INTRODUCTION

NOWADAYS, most online web services (e.g.,
Microsoft [2], Baidu [3]) are based on TCP transmission;

TCP performance directly affects user experience and
company revenue [4], [5]. However, despite many years of
improvements to it, TCP still suffers from an unsatisfactory
performance [6], [7]. In this paper, we focus on two
well-known TCP performance problems: (1) TCP cannot
deal with short flows gracefully [1], and (2) the performance
of congestion control (CC) algorithms remains far from
ideal [8].

In the first problem, TCP begins the transmission with a
slow start phase to probe the available bandwidth, and then
it uses a CC algorithm to converge to the best sending rate.
Specifically, TCP starts with a conservative and static initial
congestion window (IW , 2, 4, or 10) [9], and then it tries
to find the best sending rate of a flow by keeping probing
and adjusting its congestion window (CWND) during flow
transmission. However, most web flows are so short that they
could be finished in just one RTT with the best CWND,
but they inadequately take multiple RTTs to probe for their
optimal CWND within the slow-start phase. As a real-world
example, Table I shows that for the mobile search service in
a top global search company, Baidu, where IW =10, more
than 80% of TCP flows are still in the slow start phase
when the sessions end; they do not fully utilize the available
bandwidth.

The above TCP flow startup problem is still considered by
the research community as an open research problem [?] for
the general TCP environment. Google proposed increasing the
standard IW from 2-4 to 10 [9]. But is 10 still too small
for high-speed users (e.g., with fiber access), or is 10 too
large for low-speed users (e.g., GPRS access in remote areas)?
As network conditions can be highly variable both spatially
and temporally, choosing a static IW that is best for all flows
is infeasible.

In the second problem, an efficient CC algorithm is critical
for data transmission, especially for services dominated by
long flows, such as video streaming and large file down-
loading. With the rapid development of network techniques
and Internet infrastructure in the past few decades, many
variants of CC schemes (e.g., Tahoe, Reno [11], Cubic [12],
BBR [13], PCC Vivac [7], Copa [14], Indigo [8]) have been
proposed. However, a recent study in Pantheon [8] shows that
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TABLE I

DISTRIBUTION OF TCP STATES AFTER FLOWS END. MEASURED
IN THE MOBILE SEARCH SERVICE OF Baidu DURING ONE WEEK

IN 2017. THE AVERAGE FLOW SIZE IS ABOUT 120 KB

the performance of different CC schemes varies significantly
across various network conditions, and there is no single
CC scheme that can outperform all others in all network
conditions. As the network conditions for the same web
service can vary temporally (across time) and spatially (across
different users), to achieve the best TCP performance for long
flows, a web service might need different CC schemes across
different time and/or users. Yet, the common practice is that a
web service’s providers manually and statically configure one
specific CC scheme for the web service and stick to it, leaving
the TCP performance undesirable.

To address the two problems above, we argue that a
web-service provider can use reinforcement learning RL meth-
ods to dynamically configure IW and CC for improving the
network transmission performance in the Internet. Basically,
network conditions determine the ideal value of IW and CC,
so the process of configuring IW and CC involves building
a mapping between states (network conditions) and actions
(IW , CC). Here we cast above two problems as RL problems
because RL’s basic idea is to maximize some notion of
cumulative reward through building the mapping between
environment states and actions. Our choice of RL is inspired
and encouraged by recent progress in applying RL to Internet
video QoE optimization through dynamically deciding a video
session’s serving frontend servers [15] or through tuning ABR
algorithms [16].

In this paper, to maximize the cumulative reward (network
performance, which needs to be continuously monitored), RL
is used to continuously update the decisions of the suitable
IW for services dominated by short flows, and the suitable
CC scheme for services dominated by long flows. Although
applying RL to configure IW and CC is a promising abstrac-
tion, there are some major challenges in practice:

• Challenge 1: How to measure the fresh TCP data on the
server side only? RL methods need fresh data to compute
reward and the states. However, a traditional web service
server cannot directly measure some TCP data (e.g.
transmission time) without clients’ collaboration.

• Challenge 2: How to apply RL methods on highly
variable and non-continuous network conditions of the
Internet? RL’s decisions are determined by a static (but
unknown) distribution of the context. RL methods require
the continuity of the context that affects the reward of the
decision [17], [18]. In our case, the context is a flow’s
network conditions (i.e., available end-to-end band-
width and RTT), but these are highly variable across
different times and user granularities (i.e. IP or subnet).
Using which RL methods in which user granularity is a
problem.

• Challenge 3: How to rapidly search for the optimal TCP
IW or CC from a large decision space? RL methods are
essentially based on trial and error. They require clever
exploration mechanisms. Brute-forcely selecting actions
results in poor performance [19] and typically only suits
a small and limited decision space, which can quickly
converge to the best decision after a small number of
trials. However, the search space for IW (ranging from
2 to more than 100) and CC (at least 14 variants [8]) is
so large that the network conditions might have already
changed before brute-force searching can find the optimal
IW or CC for the previous network conditions.

In this paper, to address the above challenges, we propose a
system called TCP-RL that can automatically and dynamically
configure IW at the server side through group-based RL, and
can automatically and dynamically configure CC through deep
RL. The contributions of this paper are summarized as follows:

• To address challenge 1, we modify the Linux kernel
and Nginx software to enable web servers to collect and
store billions of TCP flow performance records (e.g.,
transmission time, throughput, loss rate, RTT) in real time
without any client assistance (§VI).

• To address challenge 2 for the IW configuration problem,
we apply a traditional model-free RL method at the group
granularity, because IW should be configured before
transmission when there is no state information (network
condition). The basic idea is to apply online exploration-
exploitation [15]. Since fine-grained user groups (i.e., IP)
could have too few data samples to detect context conti-
nuity, we propose a bottom-up approach to group flows
from users with the same network features in order to
find the most fine-grained user groups that both have
enough samples and satisfy the RL’s context continu-
ity requirements [17], [18]. Compared with previous
works [9], [20], [21], TCP-RL utilizes much richer his-
torical information from the user group to help configure
the suitable IW .

• To address challenge 2 for the CC configuration problem,
TCP-RL uses a deep RL method at per-flow granularity.
It trains an offline neural network model that can be used
online to select the suitable CC for the given network
conditions. Furthermore, in order to handle the variable
network conditions, we build a model that detects changes
of network conditions to help the deep RL method adapt
to the network changes over time. Instead of building
a new CC [7], [8], [11]–[14], TCP-RL proposes to use
deep RL to dynamically configure the right CC schemes
for different network conditions on a per-flow level.

• To address challenge 3, for the IW configuration problem,
we improve RL with a fast decision space searching
algorithm. Based on the common perception of the rela-
tionship between TCP performance and IW , we propose a
sliding-decision-space method that can quickly converge
to the best IW (§IV-A). For the CC configuration prob-
lem, our neural network model trained offline can directly
select the right CC online without brute-force searching.

• To the best of our knowledge, TCP-RL is the first work
to solve IW and CC configuration problems through RL.
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It is much more applicable, and only needs to modify
the sender side. TCP-RL has been deployed in one of
the top global search engines for more than a year. Our
online and testbed experiments show that for short flow
transmission, compared with the common practice of
IW = 10, TCP-RL can reduce the average transmission
time by 23% to 29%. For long flows, compared with the
performance of 14 CC schemes, TCP-RL’s performance
ranks top 5 for about 85% of the 288 given static network
conditions, whereas for about 90% of conditions, its
performance drops by less than 12% compared with that
of the best-performing CC schemes for the same network
conditions.

The rest of the paper is organized as follows: §II provides
the background of this work, §III introduces the core idea
and overview of TCP-RL, and §IV and §V describe the
algorithms for the configuration of the IW and CC schemes,
§VI presents the implementation details of TCP-RL, §VII and
§VIII systematically evaluate TCP-RL’s performance on the
IW and CC configuration, respectively, §IX presents related
works, and §X concludes the paper.

II. BACKGROUND

A. The Preliminary of TCP Congestion Control

TCP is one of the main Internet protocols providing reliable,
ordered, and end-to-end transportation service. CC is TCP’s
core algorithm to determine the rate of data transmission.
A good CC should efficiently utilize network resources, guar-
antee fair rates when multiple senders compete over network
resources, and be easily deployable. Despite thirty years of
research on CC, it is still a challenging task in the Internet.
The reason is that the ideal sending rate is determined by
the link (router, switch, etc.) between the sender and the
receiver. However, the sender does not have a global view
and actually has hardly any information about the link before
data transmission. Thus, most of the CC schemes take a
conservative approach by starting transmission from a small
sending rate, and then adjust the sending rate during the
transmission with some strategies (e.g., AIMD). However,
probing from a small sending rate cannot deal with short
flows gracefully because these flows could have finished their
transmission when TCP is still at a conservative sending rate.
Furthermore, although many versions of CC schemes have
been proposed, there is no scheme that works best in all
network conditions [8].

B. Initial Window and Short Flows

For short flow transmission, the transmission time is the key
performance metric. As shown in §I, for services dominated
by short flows, most of the flows end the transmission without
exiting the slow start phase. The initial window (IW ) is a
key parameter that determines the initial sending rate. The
common perception of IW is that too small an IW suffers
from more RTTs than necessary to finish the transmission; too
large an IW results in congestion or even an expensive TCP
timeout, which results in a high network transmission time.
Thus, different IWs can significantly affect the transmission

Fig. 1. An illustrative example to show the effect of IW .

time of short flows. Fig. 1 shows IWs’ effects in two example
network conditions. In Fig. 1(a), the network condition is
relatively good as the link can support CWND = 3. If the
server’s IW = 3, the TCP response time is 1 RTT. But when
IW = 1, the response time is 2 RTTs. In Fig. 1(b), the network
condition is worse, i.e., when the CWND is larger than 2,
it would cause link congestion and packet loss. As such,
if IW = 3, the response time would be RTT = retransmission
timeout (RTO, which is typically several times of RTTs). But
if IW = 1, the response time is 2 RTTs, shorter than that when
IW = 3. We can see that a proper IW can significantly reduce
the network transmission time.

C. Congestion Control and Long Flows

For long flow transmission, achieving higher throughput
and lower RTT are the goals of network transmission. Simply
tuning IW might reduce only a few RTTs, so it is not very
helpful to long flow transmission with hundreds or thou-
sands of RTTs. However, achieving both high throughput
and low RTT is quite challenging, and that is why many
CC schemes are being proposed. Some of them are heuristic
(Cubic [12], BBR [13]), some of them are generated by
machine learning (TCP Remy [22], Indigo [8]). However, none
of the existing algorithms can consistently perform optimally
in diverse network conditions in the real Internet [8]. §VIII
compared the performance of 14 CCs on 288 kinds of synthetic
networks, whose bandwidth, RTT, and loss rate are sampled
from 1-200Mbps, 10-200ms and 0-10%. The results show
that 10 different CCs performed best in at least one network
condition. Ideally, if we can somehow choose an appropriate
CC for each specific network condition, the transmission
performance can be significantly improved.

III. CORE IDEAS AND SYSTEM OVERVIEW

As mentioned in §II, IW and CC work on different sce-
narios. For short flows, IW is the major factor that affects
TCP performance, and the flow ends its transmission before
CCtakes effect. For long flows, CC is the key to achieving
good performance, whereas IW has little impact. Therefore,
we treat configuring IW and configuring CC separately.
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In theory, the optimal IW or CC is determined by the
client-server end-to-end link’s network conditions (e.g., avail-
able bandwidth and RTT), but Internet network conditions
are highly variable, both temporally and spatially. Ideally,
we should configure an appropriate IW or CC for each new
flow, but doing so is challenging without enough knowledge
of network conditions.

For the IW configuration problem for short flows, learning
IW in a single flow is impossible because before configuring
IW , the sender cannot observe the state of the network envi-
ronment. To deal with the variability of network conditions,
we propose a bottom-up approach to group flows from clients
(users) with the same network features (e.g., subnet, ISP,
province) to find the most fine-grained user groups that both
have enough samples and satisfy the RL’s context continuity
requirements; then, we apply an online RL method in each
user group. On the one hand, using an online RL method
can naturally deal with the temporal variability of network
conditions, i.e., RL aims to find the best IW scheme for
each given network condition of a specific user group and
dynamically adapt to the latest network conditions of the user
group. On the other hand, user grouping is used to handle
the spatial variability of network conditions. Our intuition is
that for a given server at a given time, users’ network features
(i.e., subnet, ISP, province) largely determine the client-server
end-to-end link’s network conditions. If we run RL for each
user group, within which the network conditions are similar,
the performance of each group can be improved.

For the CC configuration problem for long flows, during the
transmission, the sender can observe the network state (i.e.,
throughput, RTT, loss rate), and there is enough time to make
the decision during the transmission. Thus, we propose to
dynamically configure CC at the most fine-grained granularity
(i.e., flow level). On the other hand, unlike IW , which is a
numerical value, CC schemes are categorical; thus, online
brute-force searching for CC is inefficient. We thus train a
neural network model offline to build the mapping from the
state (network conditions) to the best actions (CC). When
a new flow starts transmission, the model can dynamically
configure the suitable CC according to the state (network
condition) it observed. In this way, it can improve TCP
performance in variable network conditions.

A. Why Reinforcement Learning

Choosing a proper IW or CC scheme for a TCP flow is
not an easy task. Using the data-driven method is a promising
direction, but even if we have logged the networking con-
ditions in details, choosing a proper IW or CC scheme is
still difficult because it is highly related to multiple complex
factors such as network bandwidth, RTT, router buffer size,
flow size and the end-to-end path between the user and the
server. All these factors can frequently change over time,
which means that the proper IW or CC scheme changes over
time. RL, inspired by human behavior psychology [23], is a
popular technique in the machine learning community and
is very suitable to cope for addressing the above situation.
Basically, it continuously makes decisions based on environ-
ment feedback. Once the optimization goal (called the reward

Fig. 2. The key idea of TCP-RL. Parm is IW or CC.

function in RL) is properly defined, RL can gradually find the
best decision based on trial and error, by striking a dynamic
balance between exploring suboptimal decisions and exploit-
ing currently optimal decisions. Moreover, its exploration and
exploitation algorithm can quickly react to the environment
change. As such, RL naturally fits the task of dynamically
configuring IW or CC.

B. Overview of TCP-RL

The key idea of TCP-RL is shown in Fig. 2. The frontend
server can dynamically configure IW or CC for different
user groups. For each user group, the server collects its TCP
performance data (throughput, RTT, etc.) periodically, which
make up RL’s state and reward. Then, it reports the data to
the server, which runs per-group RL with fresh data, and the
server acts as the brain for learning each user group’s new IW
and CC in the next time step. Note that, all procedures are
done at the server side without any client or middleware (e.g.,
router, switch, link) modification or assistance.

Specially, for the IW configuration, the user groups are
the flows with the same network features (e.g. subnet, ISP,
province). When the frontend server receives a request from a
user, it establishes a TCP session with the user and identifies
the user group it belongs, and then it obtains the most up-
to-date decision of IW from the per-group RL’s result and
configures the IW for the session quickly before sending
the response to the user. After the transmission of the data
response is completed, the frontend server outputs the TCP
performance data to the brain server in order to run RL.
Besides, the brain runs the user grouping algorithm with the
historical data. The brain continuously sends the decision of
each user group to the frontend servers at a timescale of
minutes. This way, it controls all sessions’ behavior.

For the CC configuration, the user group is at per-flow
granularity, and the brain server is the frontend server itself,
which means that TCP-RL dynamically configures the CC for
each TCP flow. When a TCP flow’s connection is established,
the model first randomly configures one CC, and then it
can obtain the network state and reward from the network
environment. The RL’s neural network model takes the value
of the state and reward as the input, and then it outputs
and configures the new CC for this flow. This procedure is
conducted repeatedly at a timescale of seconds. The neural
model is trained offline, and this will be introduced in §V.
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Because IW configuration and CC configuration work
separately, the servers serving services (e.g. mobile search)
dominated by short flows can deploy TCP-RL’s IW configu-
ration, and the servers serving services (e.g. video streaming)
dominated by long flows can deploy CC configurations.

IV. RL FOR IW CONFIGURATION

In this section, we present two TCP-RL core algorithms for
IW configuration: the online RL algorithm for learning per-
group IW given a user group (§IV-A) to address challenge 3 in
§I, and the user grouping algorithm (§IV-B) to address chal-
lenge 2 in §I.

A. Online Reinforcement Learning

In this paper, we formulate the IW learning problem as
a non-stationary multi-armed bandit problem. It focuses on
online performance by striking a balance between exploration
(uncharted actions) and exploitation (current optimal actions).
Many algorithms for this problem have been proposed [23].

For the stationary multi-armed bandit problem, the basic
UCB algorithm [24] has been shown to be quite efficient [25].
Its assumption is that the unknown distribution of the context
(network conditions) does not change over time. However,
in our scenario, the network conditions could change over
time, making our RL problem a non-stationary bandit problem.
In this paper, we use the discounted UCB algorithm [25],
which was proposed to solve the non-stationary bandit prob-
lem. The intuition is that, to estimate the instantaneous
expected reward of each IW , it averages past rewards with
a discount factor that gives more weight to recent observa-
tions. The basic procedure is shown in Algorithm 1. At each
time t, the player chooses an arm It ∈ 1, . . . , K (a decision)
with the highest expected upper-confidence Xt(γ, i)+ct(γ, i).
Xt(γ, i) is the discounted empirical average reward shown in
Equation 1. Xs(i) denotes the arm i’s instantaneous reward at
time s. When Is = i, �{Is=i} = 1; otherwise, �{Is=i} = 0.
γ ∈ (0, 1) is a discount factor to calculate the average reward.

Xt(γ, i) =
1

Nt(γ, i)

t∑

s=1

γt−sXs(i)�{Is=i} (1)

Nt(γ, i) =
t∑

s=1

γt−s
�{Is=i} (2)

ct(γ, i) is the discounted padding function defined in Equa-
tion 3, where B is an upper bound on the rewards and ξ > 0 is
an appropriate constant variance to control the probability of
exploration. Note that if one arm is frequently used in the
history, its ct(γ, i) is smaller than that of the other arms,
so the suboptimal arm can be used for exploration. In this
way, the algorithm can strike a balance between exploration
and exploitation.

ct(γ, i) = 2B

√
ξ log nt(γ)
Nt(γ, i)

, nt(γ) =
K∑

s=1

Nt(γ, i) (3)

To successfully apply the above general discounted UCB
framework to a given scenario (IW configuration), the key is
to appropriately define the reward function and the arms.

Algorithm 1 The Discounted UCB
1: for t from 1 to K , play arm It = t
2: for t from K + 1 to T , play arm

It = arg max
1≤i≤K

Xt(γ + i) + ct(γ + i)

1) Reward Function Definition: Services dominated by
short flows are sensitive to the TCP response time [1], [6],
which is the flow completion time. Our goal is to configure the
ideal IW , which can fully utilize the end-to-end link’s band-
width without causing congestion; thus, our reward function
needs to somehow capture both bandwidth utilization and
congestion level. For bandwidth utilization, the throughput (the
number of bytes transmitted per unit of time) is a better metric
than the TCP response time because the latter is affected by
the size of flows, which can still vary largely even for different
short flows in web services. On the other hand, considering
congestion is also necessary because simply increasing IW to
obtain the best throughput of flows that deploy our approach
(called TCP-RL flows) can hurt the performance of non-TCP-
RL flows that share some network resources with TCP-RL
flows.1 Given that RTT has been successfully used to reflect
the congestion levels in many well-known RTT -based CC
algorithms [26], [27], we select RTT as the signal of network
congestion.

Based on the above analysis, our goal for the reward
function is to maximize the throughput and minimize the RTT,
as shown in Equation 4. We normalize the reward because
UCB requires the reward to be within [0, 1]. Throughputs(i)
is arm i’s instantaneous throughput at time s, and RTTs(i)
is arm i’s RTT at time s. throughputmax is the maximum
throughput in the history measurements, and RTTmin is
the minimum RTT in the history measurements. In case
of the normalized reward being out of [0,1], before com-
puting the reward, TCP-RL will check whether to update
throughputmax or RTTmin with the new observations. If the
new throughput > throughputmax, throughputmax =
throughput; if the new rtt < RTTmin, RTTmin = rtt. TCP-
RL will recalculate the reward with the latest throughputmax

and RTTmin. Because all the arms (IWs) of the discounted
UCB use the same throughputmax and RTTmin, the order
of their reward values remains the same after the above
renormalization. In this way, the decision of the discounted
UCB will not be affected. α is the parameter that strikes a
balance between the throughput and RTT. Small α favors a
low RTT, which may make the algorithm conservative with a
small IW . Large α favors a high throughput, which may make

1If TCP-RL only considers throughput as the reward, it will aggressively
maximize its own throughput and occupy other non-TCP-RL flows’ bandwidth.
The reason is that, when TCP-RL flows increase their IWs and cause network
congestion, the other non-TCP-RL flows will reduce their CWND and occupy
less bandwidth, but TCP-RL flows will continue to increase their IWsin the
next time because they can obtain larger throughput (reward) as a result of
the non-TCP-RL flows occupying less bandwidth.
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Fig. 3. The procedure of the sliding-decision-space method.

the algorithm aggressive with a large IW .

Xs(i) = α ∗ Throughputs(i)
Throughputmax

+ (1 − α) ∗ RTTmin

RTTs(i)
(4)

2) Arms Definition: The list of arms in a discounted UCB
is the decision space with some discrete values. However, IW
has a continuous and large value space. Our goal is to find
the best IW in a large decision space quickly. Brute-forcely
searching the entire decision space is inefficient because too
many arms will waste time in the exploration procedure.
To address this problem, we propose a sliding-decision-space
method based on the common perception (mentioned in § II-
B) about the relationship between TCP performance and IW .
At first, we start with a short list of IWs as the arms, and
the value in the arm list is dynamically adjusted based on the
arms’ performance.

The sliding-decision-space approach is illustrated in Fig. 3.
We use n IWs as the initial arms list (e.g., n = 4,
IWs = [15, 20, 25, 30]). When updating the decision, we will
first check whether the arm list should be updated. The basic
idea is to check whether the largest arm IWlarge or the
smallest arm IWsmall is currently the best arm. If yes,
we update the arm list; otherwise, the arm list remains the
same. The best arm is the one which has the largest reward
and the smallest value of padding function in Equation 3.
The smallest value of padding function means the arm has
been exploited more frequently than the other arms. Based
on the common perception of IW (§ II-B), a too large or a
too small IW is sub-optimal. If the current best arm is IWlarge,
we will add a new IW (IWlarge+�) to the arm list and delete
IWsmall. If the current best arm is IWsmall, we will add a
new IW (IWsmall − �) to the arm list and delete IWlarge.
� is the constant step size for searching the IW space. If the
current best IW is not the largest or smallest, the arm list
remains the same.

With the above sliding-decision-space approach, although
the best arm selected in each step might not be the eventual
ideal IW , it is gradually approaching the eventual ideal IW .
Such a design has two benefits: it reduces the search space
from a larger number of potential IWs to only n IWs in the
arms window, and it avoids being too aggressive in increasing
the IWs, helping avoid congestion. This successfully addresses
challenge 3 in §I for the IW configuration.

B. User Grouping

In reality, users’ network conditions highly vary because
users have different network features (i.e., subnets, ISP,
province). For users coming from different provinces (e.g.,
Beijing, Shanghai) and ISPs (e.g., CHINANET, CMNET, UNI-
COM), their network conditions (e.g., bandwidth and RTT)

TABLE II

AN EXAMPLE OF Baidu COMPANY’S GEOLOCATION DATABASE

could be different. To apply RL in highly spatially variable
network conditions, users with different network conditions
should be treated differently.

The flow’s IW is determined by its end-to-end link’s
network conditions (i.e., bandwidth and RTT). The ideal
solution would be learning IW for each link. However, each
link hardly has enough samples for RL to learn a suitable
IW or CC scheme. Thus, we argue that grouping users with
similar network features to share their samples is a promising
solution. However, this is challenging because of the following
dilemmas: 1) A too fine-grained user group (e.g., IP) typically
lacks enough samples to monitor its network performance
continuously, so it cannot satisfy the requirement of RL; 2)
A too coarse-grained user group (e.g., all flows) leads to
suboptimal performance.

To address the above problem, we propose a new user
grouping method. The goal of user grouping is to find the
most fine-grained user groups that can satisfy the RL’s require-
ment (i.e., maintains continuity in network conditions). The
basic idea is to use a bottom-up (finest-to-coarsest) searching
technique in order to find the finest user groups, each of which
has enough samples and keeps the continuity of the network
conditions. We quantify the network conditions with the
reward function in §IV-A1, which considers both throughput
and RTT.

More specifically, before the data transmission, IP is the
most fine-grained user group because the server at that
time can only obtain the IP as the user’s network feature.
By looking up Baidu company’s geolocation database by IP,
which is similar to the geolocation database [28], we can infer
the other network features, such as subnet, ISP and province.
Table II shows an example of the geolocation database. Note
that one given IP can only appear in one record of the features
in the table, and all the records are mutually exclusive in IP
space. Thus, the structure of the user grouping result forms a
four-layer (subnet, ISP, Province, All) tree, as Fig. 4 shows.

We say that a user group has enough samples when it has
at least Smin samples in a time bin with length t. For each
time bin, we calculate the distribution of the reward and use
the average reward to quantify the network condition of this
time bin. In this way, we obtain a time series of the average
reward to characterize the changes of network conditions.

We then define a metric called network jitter J , shown in
Equation 5, to capture the continuity of network conditions.
n denotes the number of time bins, and Xs is the reward at
time bin s. As IW or CC scheme affects the reward, when
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Fig. 4. Procedure of the user grouping algorithm.

computing J , IW or CC scheme should remain the same
in each time bin. Note that a small J means the change in
network condition is small. To apply the RL method to a given
user group, the smaller the J , the better. Here, we choose a
threshold T ; if the user group has J ≤ T , it satisfies the
requirement of RL.

J =
∑n

s=2 |Xs − Xs−1|/Xs

n − 1
(5)

In the example, we assume that the finest users’ network
feature is the subnet, and the coarsest feature is All. Beijing
has three ISPs, namely CMNET, UNICOM, and CHINANET,
and they have 8 subnets which are S1∼S8. The user grouping
algorithm has 4 steps:

• Step 1: We check whether all the leaf nodes can satisfy
the RL’s requirement (Equation 5). The example’s result
is that S1, S3, and S6 (in green color) satisfy the RL’s
requirement, and S2, S4, S5, S7, and S8 (in blue color)
do not, so S1, S3, and S6 are the three finest user groups
that can use RL to learn IW .

• Step 2: The sibling leaf nodes that cannot satisfy the
RL’s requirement are merged into a new leaf node called
Others, which is a new child of their original parent node.
In the example, S2 is turned into Others, a new child
node of CMNET. S4 and S5 are merged into Others,
a new child node of UNICOM. S7 and S8 are merged
into Others, a new child node of CHINANET.

• Step 3: We check whether Others nodes satisfy the
RL’s requirement. If an Others node does not meet the
requirement, it needs to be merged with the Others
nodes of its parent (ISP)’s sibling, and form a new child
Others node of its original grandparent (Province). In the
example, the node Others of CMNET and the node Others
of CHINANET are merged into Others, a new child node
of Beijing. The node Others of UNICOM satisfies the
requirement because it has sufficient samples to measure
its network conditions after merging S4 and S5.

• Step 4: The algorithm continues to check the leaf Oth-
ers nodes until all leaf nodes (except the root’s child
Others node) satisfy the RL’s requirement. Finally, if the
Others node of All does not meet the requirement, we use

the standard IW [9] for its flows. In the example, the leaf
nodes, except the Others of All node, are the user groups
that can use RL to learn IW .

When one user group (e.g., S2, S4, S5) cannot satisfy the
RL’s requirement, its data will be merged into the Others node
with the same parent node. Finally, if the leaf Others node
cannot satisfy the RL’s requirement, its data will be merged
into the Others node one level up (a sibling node of the current
Other node’s parent node). Notice that the Others nodes are
used to group fine-grained users who cannot satisfy the RL’s
requirement. The Others nodes at an upper level would have
more data samples to describe the distribution of context, so
there is a larger chance to satisfy RL’s requirement.

In summary, to address challenge 2 (in §I) for the IW
configuration problem, we apply model-free RL methods at
the group granularity because IW should be configured before
transmission when there is no state information (network
condition). The basic idea is to apply online exploration-
exploitation [15]. As a fine-grained user group (i.e. IP) could
have too few data samples to detect context continuity, we pro-
pose a bottom-up approach to group flows from users with the
same network features in order to find the most fine-grained
user groups that both have enough samples and satisfy the RL
context continuity requirement [17], [18].

V. RL FOR CC CONFIGURATION

A. Overview

The optimal CC scheme on a specific network condition can
be different across different network conditions [8]. However,
the current practice for the CC configuration is that the
operators of a web service manually and statically configure a
CCfrom a few variants and stick to it at least for a while.
This approach cannot handle the dynamic network conditions
across spatial and temporal dimensions; different users of the
same service can have different access networks with different
network conditions, and even the same user and the same long
flow might have different network conditions at different times.

How to select the appropriate CC during a long flow’s
lifetime has been seldom studied in the literature. To address
this problem, TCP-RL uses a deep RL method at per-flow
granularity. It trains an offline neural network model that can
be used online to select the suitable CC for given network
conditions. Furthermore, in order to handle the variable net-
work conditions, we build a model that detects the changes
in network conditions, to help the deep RL method adapt
to the network changes over time. This flow-level automatic
and dynamic CC configuration is a significant improvement
over service-level static and manual CC configuration given
the temporal and spatial (across different users) dynamics of
network conditions.

TCP-RL applies RL to learn the CC configuration policy
purely through experience. However, directly using the online
exploration-exploitation mechanism (as used in TCP-RL IW
configuration) is inefficient, as there are about 14 CC schemes,
and there is no clear performance order among these CC
schemes under each condition. It would waste much time in
online exploration. Therefore, TCP-RL uses modern deep RL
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Fig. 5. Applying deep reinforcement learning to CC configuration.

techniques [29] to dynamically configure CC. Fig. 5 illustrates
how deep RL can be applied to the CC configuration. The
actions of the agent are the CCs, and the state of the agent
consists of the TCP measurement data (throughput, RTT,
loss rate) at the server side. The policy of choosing CC
is determined by the neural network model, which builds
a mapping from the observed network states to the actions
(selected CCs).

B. A3C Background

TCP-RL uses A3C [29], a state-of-the-art deep RL algo-
rithm. It has been successfully applied to many problems,
such as the dynamic selection of the bitrate for video stream-
ing [16], and to Atari games [29]. A brief description of A3C
is as follows:

Input: The learning agent of TCP-RL takes state inputs
st = (Throughputt, RTTt, Losst) to its neural network.

Policy: After receiving st, the agent selects actions (i.e.,
the CC for each flow) based on the policy π, defined as
a probability distribution over actions: π(st, at) → [0, 1].
π(st, at) is the probability that an action at is taken after
a state st is observed. In practice, we train a neural network
with adjustable parameters θ to maintain the policy πθ(st, at).
This way, the actor network takes the raw TCP measurement
data as states and determines the corresponding action to be
applied in the current state.

Reward: At each step t, the agent observes a state st and
chooses an action at according to the actor-critic network.
Then, the state of environment transitions to st+1 and the
agent receives a reward rt from the action. The goal of the
agent is to maximize the expected cumulative reward that it
receives. The reward is defined as the TCP performance metric
in Pantheon [8]: rt = log(Throughputt

RTTt
); it is a version of

Kleinrock’s power metric [30], which aims to keep the network
pipe just full, but not too full.

C. Training A3C Offline

Deep RL learns purely from experience. To generate a
good neural network, TCP-RLfirst trains the neural network
on many network conditions offline. The A3C algorithm uses
a policy gradient method [31] to train its policy. The data
needed for offline training are generated as follows. We build
an emulation environment similar to that used in Pantheon [8],
and we run flows with different CCs under different network
conditions. More details can be found in §VIII-A.

Fig. 6. The neural network structure used in TCP-RL. “FC 128” means a
fully connected layer with 128 units.

Below, we briefly introduce the algorithm and intuitively
explain how the algorithm can be applied in our task. The main
idea of the method is to estimate the gradient of the expected
cumulative reward by observing a series of executions obtained
by following the policy. The gradient of the cumulative reward
can be computed as follows [29]:

∇θEπθ
[
∞∑

t=0

γtrt] = Eπθ
[∇θ log πθ(s, a)Aπθ (s, a)] (6)

where θ are the parameters of the policy network, γ is a
discounting factor, and Aπθ (s, a) is the advantage function,
which represents the difference in the expected discounted
returns from a set of experiences after we pick an action at,
compared with the expected reward for actions drawn from
policy πθ . Intuitively, the advantage function tells the agent
how much better its actions turned out to be than expected,
and then the network is updated to encourage or discourage
actions appropriately.

In practice, the agent samples a trajectory of actions and
empirically calculates the advantage A(st, at) as follows:

A(st, at) = rt + γV (st+1; θv) − V (st; θv) (7)

where V (·; θv) is the estimate of vπθ (·), which is the value
function that can be obtained from the critic network. Note
that following the suggestions in [29], we share some of the
parameters between the actor network and the critic network.
Typically, we use a network that has one softmax output for the
policy πθ(st, at) and one linear output for the value function
V (st; θv), with all non-output layers shared. The network
structure is shown in Fig. 6.

Finally, as discussed in [16] and [29], adding the entropy
H(πθ(·|st)) of the policy π to the objective function can
improve the exploration, helping us discover better poli-
cies. Then, the gradient of the full objective function
with respect to the policy parameters can be written as
∇θ log πθ(st, at)Aπθ (st, at) + β∇θH(πθ(·|st)), where β is a
hyperparameter that controls the strength of the entropy term.

D. Online Running of A3C

For the online CC configuration, the agent randomly uses
a CC at the beginning of the flow. After a few seconds
(e.g., 5 seconds), the agent will receive the states from the
network environment, which are used as the input of the
neural network (illustrated in Fig. 5). Then, the neural network
outputs the CC that the flow should use in the next step.
This way, the agent continuously updates its decision to find
the appropriate CC for the flow transmission. From receiving
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Fig. 7. System design.

the states from the network environment to updating the CC,
the time consumption is about 700 ms in our experiments
on a server with 21 Intel(R) Xeon(R) 2.40 GHz CPUs,
20 GB RAM. It is quite small compared with the time of
the RL decision-making cycle (e.g., 5s).

Furthermore, as the network environment changes fre-
quently and complicatedly, it might be difficult for the RL
model to notice the environment changes through only observ-
ing the current states. Therefore, we train another neural
network offline to detect changes in the network conditions.
We manually change the network conditions over time and
take the states and action of the last step and the current
states as the input of a neural network. The neural network
has two fully connected layers and output probabilities of
whether the network condition is changed. After offline train-
ing, the network can judge whether the network condition is
changed with the inputs (last states, last action, current states)
during online running. In this way, the agent randomly selects
a new CC when the neural network detects a network change
(just fit the way we do in training, as discussed in VIII-
A), which can flush out the states under the old network
condition and make our model adapt to the network changes
over time.

VI. DESIGN AND IMPLEMENTATION

In this section, we present the system design and imple-
mentation of TCP-RL, as shown in Fig. 7. It has the following
three key components: 1) Connection Manager is a module
implemented in the web proxy (e.g., Nginx [32]), which
is deployed at frontend servers. Its basic functions are to
configure an appropriate IW or CC for each TCP flow and
to log the performance data. It has two configurations, called
IW Table and Neural Network, which store each user group’s
IWs and the policy of CC configuration. 2) Data Collector
collects and stores all the performance data of the frontend
servers. It provides the fresh data for Reinforcement Learning
component. 3) Reinforcement Learning runs user grouping and
online RL algorithms in §IV based on the fresh data, and it
trains the neural network for §V. It updates the IW Table and
Neural Network for Connection Manager periodically. It is the
controller of the TCP-RL system.

A. Connection Manager

For the IW configuration for short flow dominated services,
when the frontend server establishes a TCP connection with a
user, the Connection Manager queries the IW Table with the
user’s IP, and the result is the IW for this flow. Then it modifies
the IW for this flow immediately. All the procedures are
quickly finished before the frontend server sends the TCP data
to the user. When the TCP session is closed, the Connection
Manager logs the TCP performance data of this session.

For the CC configuration for long flow dominated ser-
vices, the difference is that the Connection Manager queries
the Neural Network with the network state (defined in §V)
obtained recently, and the result is the CC for this flow; then,
it modifies the CC for this flow. The Connection Manager
repeats these procedures at a timescale of seconds until the
flow transmission is finished.

To realize the functions of the Connection Manager,
we implemented a new module in a web proxy (e.g., Nginx)
and modified the Linux kernel. To be a robust and easily con-
trollable system, most of the jobs are done in the application
level in the web proxy, such as obtaining a user’s IP after a
TCP three-way handshake and looking up IW and CC from
the IW Table, Neural Network. The modified Linux kernel’s
job is just exporting two new APIs: configuring the IWand
CC for the TCP flow, and obtaining the TCP performance
data. The web proxy cooperates with the modified kernel by
calling these two APIs. The first API is SetParm(fd, iw, cc),
which is implemented in the setsockopt function in Linux, fd
is the file descriptor of the TCP socket, iw is the value of
IW , and cc is the CC scheme. When the first API is called,
the socket’s IW and CC will be changed. The second API is
GetData(fd), which is implemented in the getsockopt function
in Linux. When it is called, it returns the performance data of
the TCP socket. For the web proxy, the IW Table and Neural
Network are the configuration files, providing per-group IW
and per-flow CC policy. As the IW or CC for each user
group or flow is based on RL’s decision and can change over
time, the web proxy also reloads the IW Table and Neural
Network on demand or periodically.

B. Data Collector

All the return data of GetData(fd) are shown in Table III.
Each frontend server outputs the data in a log file and also
uses HTTP POST to send the data to a centralized data
storage platform in Data Collector. Reinforcement Learning
takes these performance data as the basic input. All the data
are collected in real time, and Data Collector aggregates
and monitors the network performance of each user group,
including TCP Response Time, RTT Goodput, and Retrans.
Note that these TCP performance data can be used beyond
just TCP-RL, e.g., for TCP performance troubleshooting.

The TCP Response Time is the key metric for evaluating
the performance for short flow. However, it cannot be obtained
directly. Our system aims to be easily deployable with only
server-side modification. Here, we use a carefully designed
method to record the latency with only server-side change. The
key is to collect the timestamp of Tstart and Tend [1], where
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TABLE III

THE PERFORMANCE DATA IN OUR SYSTEM

Tstart is the time when data sending begins, and Tend is the
time that the server receives the last ACK from the user. When
the web proxy begins to send data to the user or terminate the
connection, it calls GetData(fd), which labels the Tstart of
this response, and it also records the Tend of the previous
response. When it is called, the TCP Response Time of the
previous response can be computed.

C. Reinforcement Learning

For the IW configuration for short flows, after all the
performance data are collected, TCP-RL runs user grouping
and RL algorithm in §IV. The user grouping algorithm runs
at a long timescale, such as days or weeks. The RL algorithm
runs at a timescale of minutes to continuously learn the
suitable IW or CC scheme for each user group. The result is
the IW Table, which contains the user groups’ TCP parameters
at the next learning iteration. This module controls all the
frontend servers’ behavior by updating their IW Tables. It is
implemented with Golang [33] and Python in the Control
Center. For the CC configuration for long flows, it runs
the A3C [29] offline training in §V and updates the online
Neural Network periodically. Our A3C is implemented with
Tensorflow [34].

VII. EVALUATION FOR IW CONFIGURATION

In this section, we use large-scale online experiments and
testbed experiments to systematically evaluate the performance
of TCP-RL’s dynamic IW configuration for short flow trans-
mission. The online experiment results show that TCP-RL can
continuously bring about a 23% improvement in the average
response time. For some specific user groups, the improvement
can be up to 30%. Then, we run a trace-driven evaluation with
ground truth in a testbed. The testbed experiments validate our
key ideas:

1) The two keys techniques, which are user grouping and
RL, can help improve performance.

2) Directly using an aggressive IW causes network conges-
tion, which even hurts the performance of own flows.

Fig. 8. Characteristics of the mobile search service in Baidu. The response
time is the TCP response time [1].

A. Online Experiment

In this section, we mainly present the performance in one
production data center of mobile search service in Baidu
company; this service was chosen in our experiment because
it is among Baidu’s most important services. It is a typical
service dominated by short flows. TCP-RL has been deployed
in this service for more than a year. Our real-world A/B testing
results show that TCP-RL can continuously bring about a 23%
improvement in the average TCP response time. For some
specific user groups, the improvement can be up to 30%.

1) Experiment Setup: Fig. 8 shows the statistics of mobile
search service, which confirms that the flow sizes are almost all
small in this service, but the TCP response time (with IW =
10) is far from the ideal (one RTT transmission according
to [6] for short flows). Furthermore, as shown previously
in Table I, more than 80% of the TCP flows are still in the
slow start phase when the sessions end without utilizing the
available bandwidth.

In the studied data center located in Beijing, the HTTP
sessions are uniformly load balanced to frontend servers,
which have the same functions and configurations. They all
use 21 Intel(R) Xeon(R) 2.40 GHz CPUs, 62 GB RAM,
and 10 Gbps NIC. The Linux kernel version is 2.6.32, and
the congestion control algorithm is Cubic [12]. To perform
an A/B test experiment, we select 4 frontend servers in the
data center and divide them into two groups as follows:

• TCP-10: Current standard method with a static IW = 10.
• TCP-RL: Our method with group-based RL. The learning

iteration interval is 10 min, which means TCP-RL will
recalculate and update the IWs for all user groups in every
10 min. The user grouping method takes Subnet, ISP, and
Province as users’ network features. The parameters of
user grouping are Smin = 100, θ = 0.1 and the size
of time bin = 10 min. The RL’s α = 0.8,� = 5, and
ξ = 0.1. The initial arm list is IW = [5, 10, 15, 20]

2) Overall Performance: Fig. 9a shows an example of the
average TCP response time in two groups of frontend servers.
Before 2017.09.13 10:00:00, both groups of servers use IW =
10 [9], and their performance proved to be the same. After
that, TCP-RL is started in one group. The TCP response time
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Fig. 9. TCP response time of TCP-RL.

Fig. 10. The average network jitter of each user group.

of TCP-RLdramatically decreases and continuously outper-
forms the other group, TCP-10, with about 23% improvement.
Furthermore, Fig. 9b shows that TCP-RL can make improve-
ments in each percentile of the response time. The 50th
and 80th percentiles have been improved by about 25%.
We observe that the 99th percentile has the smallest
improvement, and the main reason is that TCP-RL does not
explicitly help with the loss, which is one of the factors causing
the 99th percentile’s long tail response time [6]. Compared
with TCP-10, TCP-RL may appear to be more aggressive in
IW , but the results show that even in the 99th percentile,
TCP-RL also has about 5% improvement over TCP-10. From
this, we can see that TCP-RL is also quite cautious when
increasing IW .

3) User Group’s Performance: TCP-RL uses the user
grouping technique to treat different user groups individually.
In this section, we mainly introduce the performance of each
user group. Af first, there are about 1501665 IPs, after using
the user grouping method. The output is 19 user groups
(3 Provinces, 15 Province+ISP, 1 Others) that can use RL
to improve their performance. Fig. 10 shows the jitter J of
these 19 groups. For the user groups Shanghai, Guangdong,
and Xinjiang, their jitters are high (closer to the threshold 0.1);
flows cannot be grouped into more fine-grained user groups
because the more fine-grained user groups cannot satisfy the
RL’s requirement. i.e., there are not enough samples (either the
jitter is larger than 0.1 or the number of samples is smaller

Fig. 11. The average TCP response time’s improvement of each user group.

than Smin). This is because the requests of these users should
be routed to other data centers, but they are instead routed,
by accident, to the studied data center in Beijing. Fig. 11 shows
that all the use groups’ response times have been improved (by
about 15%-31%).

B. Testbed Evaluation

In this section, we use a trace-driven method to systemati-
cally evaluate TCP-RL. We built a testbed that supports replay-
ing the online data traces and running different optimization
techniques. The data traces consist of user groups’ network
conditions (e.g. Bandwidth, RTT ) and application information
(e.g. size) in each time bin, which is collected from the online
production data center in Baidu.

1) Testbed Setup: The testbed consists of 10 physical
machines, which are connected by one switch. Its network
environment is totally private. Every machine has two 1 Gps
NICs, 64 GB RAM, and 64 CPUs (2.4 GHz). One machine
acts as the server with TCP-RL deployed, and each of the
other 9 machines acts as one user group. All the machines
use TCP cubic with default configuration.

As the HTTP traffic typically has a daily pattern, we selected
one day of data traces for 9 user groups from the online
experiments in §VII-A. The HTTP requests are replayed in
the original timing order by the users and served by the server
with the original response sizes. To simplify the experiments,
we assume that the network conditions of each user group
change at the timescale of one hour. Then, for each hour of
each user group, we estimate its bandwidth (RTT) by using the
90th-percentile throughput (average RTT ) from the data traces
of this user group and hour. We then simulate the network
conditions by using the Linux TC tool [35] (with HTB and
netem queue) to shape the traffics.

To systematically evaluate the performance of TCP-RL,
we compare the performance of the following techniques:

1) TCP-10: It is the baseline [9], which uses one static IW
= 10 for all the flows. The data size of IW = 10 is
about 14 KB (MSS = 1448).

2) TCP-200: It uses an aggressive IW = 200 for all the
flows.2 The data size of IW = 200 is about 280 KB.

3) TCP-RL: The learning iteration interval is 10 min. The
RL’s α = 0.8,� = 1, and ξ = 0.1. The initial arm list
is IW = [5, 10, 15, 20].

2The actual sending window size is min(Rwnd, Cwnd). Rwnd is the client
receive window. In order to remove the influence of the client’s Rwnd,
the initial Rwnd is set to be larger than 200.
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Fig. 12. Compared with the baseline TCP-10, the figures show each technique’s improvement in average reward, TCP response time, throughput, and
degradation in the average RTT.

Fig. 13. Distribution of each technique’s reward, TCP response time, throughput and RTT.

4) TCP-RL without grouping: Compared with TCP-RL,
it only uses RL to learn the IW for all flows.

5) Optimal: It is the best possible performance in the
testbed experiment setting, obtained by exhaustively
searching the IW space for the best IW for each network
condition of each user group.

2) Overall Performance: Fig. 12 shows each technique’s
improvement or degradation over TCP-10, and Fig. 13
shows each technique’s distribution of the network metrics
(response time, reward, throughput, and RTT). We define
technique t’s improvement in reward, throughput, and
response time as (rewardt − rewardtcp−10)/rewardtcp−10,
(throughputt − throughputtcp−10)/throughputtcp−10,
(responsetimetcp−10−responsetimet)/responsetimetcp−10.
The degradation of RTT is defined as (RTTt −
RTTtcp−10)/RTTtcp−10. We can see that TCP-RL is closest
to the optimal, and it significantly outperforms TCP-10. Its
improvement over TCP-10 is 30% for the average reward,
29% for the average response time, and 49% for the average
throughput.

3) Contributions of User Grouping and RL : In this
experiment, we use reward as the metric because it captures
the effects of both throughput and RTT. First, to evaluate
the performance of RL, we compare the reward of TCP-RL
without grouping with TCP-10. Fig. 12a shows that TCP-
RL without grouping has a 25% improvement. Fig. 13a also
shows that TCP-RL without grouping significantly outper-
forms TCP-10. Second, to evaluate the performance of user
grouping, we compare the reward of TCP-RL with TCP-RL
without grouping. Fig. 13a shows TCP-RL can bring more
improvement (29%) than TCP-RL without grouping (25%).
Besides, TCP-RL also outperforms TCP-RL without grouping
in throughput (Fig. 12c) and RTT (Fig. 12d). The reason is
that using RL for all the flows (without grouping) with variable
network conditions is suboptimal. From this, we can see both
user grouping and RL can help improve the TCP response
time.

4) Aggressive IW’s Effect: According to the common per-
ception of IW (see §II-B), neither a too small IW nor a
too large IW is suitable. The results of TCP-200 confirm
the second half of this common perception. The flows using
an aggressive IW = 200 can cause network congestion and
even hurt their own performance. Fig. 13d shows that TCP-
200 has the highest average RTT, which is a good indicator
for network congestion. On the other hand, TCP-RL’s RTT
is closest to that of Optimal, and is better than that of TCP-
RL without grouping. From this, we can see TCP-RL is quite
cautious in avoiding congestions. For the average response
time and throughput, TCP-200 outperforms TCP-10, but it
cannot beat TCP-RL. The reason is that directly using a large
IW may cause packet loss and increase the response time.
Fig. 13b shows TCP-200 has a much longer tail than TCP-RL
because it suffers from packet loss, which causes a costly
TCP timeout.

VIII. EVALUATION FOR CC CONFIGURATION

This section evaluates the performance of TCP-RL’s
dynamic CC configuration for long flow transmission. The
highlights of the results are as follows:

1) The performance of different CC schemes varies sig-
nificantly across various network conditions, and no
single CC scheme can outperform all others in all
network conditions. This confirms the observations in
Pantheon [8].

2) TCP-RL’s trained neural network model can quickly
select a well-performing CC scheme for a specific
network condition within only one or two trials. For
long flows, compared with the performance of 14 CC
schemes, TCP-RL’s performance ranks top 5 for about
85% of the 288 given static network conditions, whereas
for about 90% of conditions, its performance drops by
less than 12% compared with the that of best-performing
CC schemes for the same network condition.
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TABLE IV

CONGESTION CONTROL SCHEMES IN TCP-RL

3) During the lifetime of a long flow, TCP-RL can detect
network changes and converge to the corresponding CC
scheme after only 2 tries.

Overall, TCP-RL’s flow-level automatic and dynamic CC
configuration is a significant improvement over service-level
static and manual CC configuration, given the temporal
and spatial (across different users) dynamics of the network
conditions.

A. Experiment Setup

We use Pantheon [8] to test the performance of different
CC schemes on different network conditions. Pantheon has a
collection of CC schemes, shown in Table IV, and a mahimahi
tool [40], which can emulate diverse network conditions on
one server. TCP-RL directly utilizes Pantheon’s functions to
dynamically set the CC scheme for one flow, and emulates the
network conditions.

Model Training: We use 288 synthetic network conditions
to train TCP-RL’s neural network. The synthetic network
conditions consist of all the combinations of (1, 5, 10, 20, 50,
70, 100, 150 and 200 Mbps) bandwidths, (10, 20, 40, 60, 80,
100, 150 and 200ms) RTTs and (0, 1%, 2% and 10%) loss rate.
A3C’s neural network is implemented using TensorFlow [34].
We spent about 30 hours to train the model on a Linux server
with 21 Intel(R) Xeon(R) 2.40 GHz CPUs, 20 GB RAM.

The neural network in our algorithm consists of two fully
connected layers, followed by one LSTM layer and one fully
connected layer, with 128 units in each layer, as shown
in Fig. 6. We apply softmax function on the output of the
last hidden layer to obtain the policy πθ (a set of action
probabilities), and a linear layer to obtain the value function
V (st; θv). The learning rate of the actor-critic network is
set to 10−4, and the reward discounting factor γ is set to
0.99. In addition, the entropy term factor β is controlled
to decay from 0.5 to 0.01 over 105 iterations, which can
encourage exploration at the start of the training, and then
to decrease over time in order to emphasize the improving
reward. Moreover, to speed up the model training and well
explore the action space under different network conditions,
we use 16 parallel worker agents to experience different
network conditions asynchronously and collect the (state,
action, reward) data (i.e., TCP measurement data, selected

Fig. 14. Percentage of the 288 network conditions in which each CC scheme
has the best performance.

Fig. 15. Performance rank of the CC learnt by TCP-RL.

CC, reward) continuously. In different network conditions,
we apply a random CC in each environment for starting, and
the network condition in each environment lasts for a while.
A central agent receives these data and updates the actor-critic
network to train the model, and then it pushes the parameters
to the network in each worker agent.

B. Best CCSchemes on Different Network Conditions

We run each CC scheme on each of the 288 synthetic
network conditions to find the best CC (with the largest
reward = log(throughput/RTT)) for each condition. Fig. 14
shows the percentage of network conditions in which each CC
has the best performance. The results confirm the observation
in Pantheon [8] that no single CC scheme can outperform
all the others in every network condition. Copa performs
the best overall, but it can only do so in about 28% of the
network conditions. For the CC, such as Cubic and Fillp,
the percentage is 0, which means they perform the best in
none of the 288 conditions. These observations validate the
need for a dynamic CC configuration instead of manual and
static configuration.

C. Performance of TCP-RL’s Neural Network

We test the TCP-RL’s deep RL model in the 288 synthetic
network conditions. Fig. 15 shows the CDF of the reward rank
of the CC scheme that the TCP-RL model learned. The results
show that TCP-RL can learn the top-5 CC for about 85%
of the network conditions. Fig. 16 shows the performance
loss distribution between TCP-RL’s CCand the optimal CC.
From this, we can see that for about 90% of conditions, its
performance is less than 12% worse than that of the optimal
CC schemes for the same network conditions. TCP-RL’s CC
performance is quite close to that of the optimal CC for the
same network conditions. We also found that for 96% of
the network conditions, the model can converge to one CC
within 3 trials.
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Fig. 16. CDF of the performance loss between TCP-RL’s CC and Optimal
CC. The performance loss =

Rewardoptimal−RewardTCP-RL
Rewardoptimal

.

Fig. 17. Reward of each CC and TCP-RL in a dynamic network condition
environment. One step is 5 s. Here we only show the curves of Top3
CC, namely, TCP-RL, TCP-RL w/o DNC, and the last CC in Table V for
simplicity.

D. TCP-RL’s Performance for Changing
Network Conditions

In reality, the network could change over time. Fig. 17
shows the performance of TCP-RL for one long flow
whose network conditions change during the flow’s lifetime.
We compared the performance of a few representative CCs
in Table IV, TCP-RL and TCP-RL w/o DNC; TCP-RL w/o
DNC is the version of TCP-RL without the model that detects
changes of network conditions (§V-D). The network condition
was set to be changed every 12 steps (about 1 min, as there
are 5 s in one step). The trajectory of network condition change
is (20 Mbps, 20 ms, 2%) → (50 Mbps, 40 ms, 1%) →
(150 Mbps, 20 ms, 10%) → (200 Mbps, 20 ms, 1%). The
results show that TCP-RL can learn the appropriate CC with
only 2 or 3 trials, and this learned CC is close to the
optimal CC’s performance if not the same. Table V shows this
long flow’s mean performance (i.e., reward, throughput, RTT,
loss rate) for TCP-RL, TCP-RL w/o DNC, and the 14 CCs.
The results show that TCP-RL outperforms all the other CC
schemes in this long flow. This is because without the detection
of network changes, TCP-RL w/o DNC performance is worse
than that of TCP-RL, but it is still better than that of many
other CC schemes because of the good performance of A3C
model. Although some CC schemes (i.e. Taova, Fillp) have
a larger throughput than TCP-RL, they have a much higher
RTT (95th percentile). The reward (log(Throughput/RTT ))
ensures TCP-RL achieve a high throughput while still keeping
a low RTT.

In theory, there could be room to define an even better
reward, TCP-RL’s learning method is general and can easily
extend to other versions of reward. We leave this to our future
work.

IX. RELATED WORK

A. Congestion Control

An efficient CC algorithm is critical for data transmis-
sion. Since the development of Jacobson’s TCP Tahoe algo-
rithm [11] in 1988, TCP CC over the Internet has been a
hot research topic for decades. Many CC algorithms [8], [11],
[13], [22], [26], [41]–[43] have been proposed.

Some CCs are rule based, including Tahoe, Reno [11],
NewReno [41], Vegas [26], FastTCP [42], Compound
TCP [43], Bic, Cubic [12], and BBR [13]. They all depend
on some specific rules (e.g. slow start, fast retransmission) to
determine their window size and when data are transmitted.
Tahoe, Reno [11], New Reno [41], and Cubic [12] are loss-
based algorithms. The sender increases or reduces its conges-
tion window based on whether loss has happened. Vegas [26]
and FastTCP [42] are delay-based algorithms. They treat RTT
as the congestion signal. Compound TCP [43] combines the
ideas of loss-based and delay-based algorithms, treating loss
and RTT as the congestion signal. BBR [13] aims to find the
balance between maximizing the throughput and minimizing
the RTT. All the above CC schemes use a heuristic-based trial-
and-error approach to probe for the best congestion window
size within a TCP session only. Some CCs are based on
machine learning. Remy [22] uses an offline-trained machine
learning model to dynamically assign the congestion window
sizes based on the latest network conditions measured within
the TCP session only. Indigo [8] uses a deep learning method
to train a network congestion algorithm for detailed network
conditions. Some other works [6], [44]–[46] modify CC
schemes and propose better loss recovery mechanisms to deal
with packet losses. However, although many variants of CC
schemes have been proposed, it is shown in Pantheon [8] that
until now, there is no CC scheme that can outperform all the
others. In this paper, instead of building a new congestion CC
scheme, we argue that using deep RL could dynamically con-
figure the right CC schemes for different network conditions
on a per-flow level.

B. IW Improvement

Reference [9] proposed to simply increase the standard
IW to 10 for all flows, and we have shown that TCP-RL
outperforms this approach by 23%. Halfback [20] always
starts with a large IWand then applies pacing and redundancy
technologies to deal with the loss (caused by the aggressive
startup) within the flow without using history session informa-
tion; by contrast we have shown that TCP-RL outperforms the
approach that blindly sets a large IW (e.g., 200) which can
cause significant congestion. In an early work, for repeated
flows between the same client and server, [21] uses the last
session’s TCP parameters for a fast startup, but it needs router
support, and there might not be many repeated flows between
the same client and server. These approaches use information
from within a TCP session only, and they do not utilize the
valuable information from previous sessions. In comparison,
TCP-RL utilizes much richer history information from the user
group, is much more applicable, and only needs to modify the
TCP servers.
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TABLE V

TCP-RLVERSUS EXISTING CONGESTION CONTROL ALGORITHMS

C. Cases of RL in Internet Video QoE Optimization

Pytheas [15] applies RL to video QoE optimization, by
dynamically deciding a session’s serving frontend server.
It differs from TCP-RL because of the following domain
differences: First, IW uses the sliding-decision-space approach
to deal with the large IW decision space, which is much larger
than the frontend server selection in Pytheas. Reference [15]
only shows the testbed evaluation while TCP-RL has been
deployed in real data centers for more than a year. Third,
the user grouping methods are different in TCP-RL (for general
TCP performance) and Pytheas (tailored for video QoE).
Pensieve [16] improves video QoE by applying Deep RL to
generate the ABR algorithms for each client session given the
measurement data from within the session. In order to improve
TCP transmission performance for long flows, TCP-RL uses
deep RL to generate a policy for dynamically configuring CC
schemes.

X. CONCLUSION

In this paper, to improve the performance of TCP trans-
mission, we propose a system called TCP-RL to dynamically
configure a suitable IW for short flows through group-based
RL, and to dynamically configure a suitable CC scheme for
each long flow through deep RL. TCP-RL is incrementally
deployable at the server side without any client or router
support. TCP-RL’s dynamic IW configuration does not
change and is compatible with existing TCP CC algorithms.
TCP-RL’s dynamic CC configuration can work with any
CC schemes. TCP-RL has been deployed in one of the top
global search engines for more than a year. Our online and
testbed experiments show that for services dominated by short
flows, compared with the common initial window size of 10,
TCP-RL can reduce the TCP response time by 23% to 29%.
For long flows, compared with the performance of 14 CC
schemes, TCP-RL’s performance ranks top 5 for about 85%
of the 288 given static network conditions, whereas for
about 90% of the conditions, its performance drops by less
than 12% compared with that of the best-performing CC
schemes for the same network condition. Even when net-
work conditions change dynamically during a flow’s lifetime,

TCP-RL can converge to the appropriate CC according to
the latest network conditions after only 2-3 trials. This flow-
level automatic and dynamic CC configuration is a significant
improvement over service-level static and manual CC config-
uration, given the temporal and spatial (across different users)
dynamics of network conditions.

We believe that TCP-RL is an important step toward apply-
ing advanced machine learning techniques to solve hard and
open network research problems. In the future, we could use
RL to control other TCP parameters (such as RTO), or use
machine learning techniques to improve the network protocol
in the data center, satellite, and other network scenarios.
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