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Abstract

Recording runtime status via logs is common for al-
most computer system, and detecting anomalies in
logs is crucial for timely identifying malfunctions
of systems. However, manually detecting anoma-
lies for logs is time-consuming, error-prone, and in-
feasible. Existing automatic log anomaly detection
approaches, using indexes rather than semantics of
log templates, tend to cause false alarms. In this
work, we propose LogAnomaly, a framework to
model a log stream as a natural language sequence.
Empowered by template2vec, a novel, simple yet
effective method to extract the semantic informa-
tion hidden in log templates, LogAnomaly can de-
tect both sequential and quantitive log anomalies
simultaneously, which has not been done by any
previous work. Moreover, LogAnomaly can avoid
the false alarms caused by the newly appearing log
templates between periodic model retrainings. Our
evaluation on two public production log datasets
show that LogAnomaly outperforms existing log-
based anomaly detection methods.

1 Introduction

Today’s large-scale services are becoming increasingly more
agile and complicated. A single service anomaly can impact
million of users’ experience [Bu et al., 2018; Zhang et al.,
2015; Ma et al., 2018]. Accurate and timely anomaly de-
tection can help operators quickly mitigate losses [Zhang et
al., 2018b], which is crucial for these services. Large-scale
services usually generate logs, which describe a vast range
of events observed by them, to record system states at run-
time. Logs are one of the most valuable data sources for
anomaly detection [Satpathi er al., 2018; Lin et al., 2016;
Du et al., 2017; Khatuya et al., 2018; Nandi et al., 2016;
He et al., 2018; Meng et al., 2018; Zhang et al., 2018al.

*Shenglin Zhang is the corresponding author.

L;. 1537885119 IFNET/2/linkDown_active(l):CID=0x807a0405, alarmID=0x0852003; The
interface status changes.

L,. 1537885119 LACP/4/LACP_STATE_DOWN(l): CID=0x804804, PortName=40GE1/0/3;
The LACP state is down. Reason = The interface went down physically.

L. 1537885130 DEVM/3/LocalFaultAlarm_clear(l): CID=0x852003, clearType=
service_resume, The local fault alarm has resumed.

L. 1537885135 IFNET/2/linkDown_clear(l): CID=0x807a0405, alarmID=0x0852003; The
interface status changes. Physical link is up, mainName=Eth-Trunk104.

Ls. 1539139152 IFNET/2/linkDown_active(l):CID=0x807a0406, alarmID=0x0852007; The
interface status changes.

Le. 1539138152 LACP/4/LACP_STATE_DOWN(l): CID=0x804807, PortName=40GE1/0/3;
The LACP state is down. Reason = No LCAPDUs were received.

L7. 1539138164 DEVM/3/LocalFaultAlarm_clear(l): CID=0x852004, clearType=
service_resume, The local fault alarm has resumed

Lg. 1539138164 IFNET/2/linkDown_clear(l): CID=0x807a0406, alarmID=0x0852007; The
interface status changes. Physical link is up, mainName=Eth-Trunk104.

Figure 1: Switch logs of two normal link flappings

A large-scale service and its underlying machines are
often implemented/maintained by hundreds of develop-
ers/operators. Usually a developer/operator has incomplete
information of the overall system, and tend to determine
anomalous logs from a local perspective and thus is error-
prone. In addition, manual detection of anomalous logs is
becoming infeasible due to the explosion of logs. Keywords
(e.g., “fail”) matching and regular expressions, detecting sin-
gle anomalous logs based on explicit keywords or structural
features, prevent a large portion of log anomalies from be-
ing detected. These anomalies can only be inferred based
on their log sequences which contains multiple logs violat-
ing regular rules. For example, the first four logs in Figure 1
show two normal link flaps. If we apply keyword matching
to detect log anomalies, both L; and Lo, which contain the
keyword “down”, will trigger false alarms. However, it is
actually a normal event because the switch automatically re-
covers quickly as demonstrated in L4. Consequently, an auto-
matic anomaly detection method according to log sequences
is needed.

Generally, there are two categories of log sequence anoma-
lies: sequential and quantitative anomalies. Programs are
typically executed according to fixed flows, and logs are a
sequence of events produced by these executions. We say a



sequential anomaly occurs if a log sequence deviates from
normal patterns of program flows. Meanwhile, program ex-
ecution has some constant linear relationships, which can be
captured by the quantitative relationships of logs, should al-
ways hold true under different workloads. We say a quantita-
tive anomaly occurs if these relationships are broken for a col-
lection of logs. Existing automatic anomalous log sequence
detection approaches can be broadly classified into two cate-
gories: log message counter based approaches (e.g., PCA [Xu
et al., 2009], Invariant Mining [Lou et al., 2010], LogClus-
tering [Lin et al., 2016]) to capture quantitative anomalies,
and deep learning based approaches (e.g., DeepLog [Du et
al., 2017]) to learn sequential patterns from log sequences.
These mechods all take log template indexes as input, which
can often induce false alarms. For example, as shown in Fig-
ure 1, words with underlines are variables, and the remaining
parts are templates, each of which is usually indexed by a
numerical identifier. Suppose that the above methods have
been trained based on the normal log sequence, i.e., Ly to
L4. When a system generates Lg (the templates of Lo and Lg
are very similar but different, and L,/L3/L4 has the same
template with Ls/L7/Lg), the above methods will mistak-
enly think that the log sequence of L5 to Lg is anomalous,
based on the observation that Ly and Lg have different tem-
plate indexes. Above all, the anomalous log sequence detec-
tion problem faces the following three challenges.

1. Valuable information could be lost if only log template
indexes are used, because they cannot reveal the seman-
tic relations of logs. For example, some templates are
similar in semantics but different in template indexed,
and ignoring this similarity can induce false alarms.

2. Services can generate new log templates between two
adjacent periodic re-trainings, and existing approaches
cannot address this problem. For instance, manual feed-
back on large number of new log templates (as is done
by [Du et al., 2017]) is infeasible in practice.

3. Existing methods cannot detect sequential and quantita-
tive anomalies simultaneously.

We propose LogAnomaly, a unified data-driven deep-
learning framework for anomaly detection on unstructured
log streams. The core idea of LogAnomaly is that most
system logs are semi-structured texts “print”’-ed by certain
procedures of systems, and the intuitions and methods in
natural language processing can be applied or improved for
log anomaly detection. LogAnomaly tackles the above chal-
lenges as follows.

1. Inspired by word embedding, we design a simple yet ef-
fective template representation method, template2Vec,
to accurately extract the semantic and syntax informa-
tion from log templates. Clearly, template2Vec captures
not only word context, but also semantic information in-
cluding synonyms and antonyms (in our scenario, logs
with antonyms usually indicate different events). To the
best of our knowledge, this is the first anomaly detection
framework considering semantic information of logs.

2. We design a mechanism to merge new templates without
operators’ feedback between two adjacent trainings.

Logs:

L, Interface ae3, changed state to down
L, Vlan-intetface vlan2, changed state to down
L, Interface ae3, changed state to up.

L, Interface ael, changed state to down Ililap’i“:
L; Vlan-interface vlan2, changed state to up ~17 1.1
L, Interface ael, changed state to up =T,

. L,—T,
Templates (log keys): LT
T, Interface *, changed state to down 4 T1
T, Vlan-interface *, changed state to down =54
T, Intetface *, changed state to up L—T,

T, Vlan-interface *, changed state to up
Templates index sequence: T, T, T; T, T, T,

Figure 2: Logs and templates

3. We propose LogAnomaly, an end-to-end framework us-
ing LSTM network to automatically detect sequential
and quantitative anomalies simultaneously.

We evaluate LogAnomaly on two benchmark datasets in
log analysis scenarios, the HDFS dataset [Xu et al., 2009]
and the BGL dataset [Oliner and Stearley, 2007]. Our re-
sults show that LogAnomaly outperforms state-of-the-art log-
based anomaly detection methods.

2 Background

Large-scale systems usually record system runtime states us-
ing logs, generated using the “print” function with a string
template (normal text in Figure 1) and detailed information
as parameters (the underscored text in Figure 1). Typically,
these logs have to be properly parsed before they can be effec-
tively used for anomaly detection [He er al., 2016]. A com-
mon approach to parse logs is to mine and extract templates
from historical logs and then match logs to templates [Zhang
et al., 2017; Messaoudi et al., 2018]. As shown in Figure 2,
logs L3 and Lg are similar and their templates are both 75,
i.e., “Interface x, changed state to up”, which sketches
out the event that L3 and Lg represent. The remaining parts
of logs L3 and Lg (i.e., “ael” and “ae3”, respectively) are the
runtime parameters. Log parsing is beyond the scope of this
paper, thus in Section 3.4, we simply adopt FT-Tree [Zhang et
al., 20171, which is one of the state-of-art log parsing meth-
ods, achieveing high accuracy in template extraction and be-
ing incrementally retrainable when new types of logs emerge.

There are two dimensions to classify existing log anomaly
detection approaches: 1) detecting sequential anomalies or
quantitative anomalies; 2) supervised or unsupervised. For
those approaches designed to detect quantitative anomalies,
a time or session window is defined, and then the count of
each template index (regardless of sequence) within the win-
dow is used as the basis for anomaly detection. Supervised
approaches can be used to detect anomalies using various al-
gorithms: logistic regression and decision tree (in [He et al.,
2016]) and SVM (in [Liang et al., 2007]). Among unsuper-
vised approaches that detect quantitative anomalies, [Xu ef
al., 2009] uses PCA; [Lin et al., 2016] (LogCluster) uses clus-
tering; [Lou et al., 2010] (Invariants Mining) detects whether
some mined invariants (e.g., count(T1) = count(T3) for Fig-
ure 2) hold true within the window.

[Zhang et al., 2016] and DeepLog [Du et al., 2017] are
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Figure 3: The framework of LogAnomaly
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designed to detect sequential anomalies in an unsupervised
manner. They utilize LSTM to predict the next logs likely
to appear after seeing logs, and an anomaly is declared if the
actual log is unexpected according to the prediction.

Because anomaly labels are often unavailable in prac-
tice, thus unsupervised methods are much more practi-
cal in real-world service systems. As mentioned in Sec-
tion 1, existing unsupervised approaches suffer from some
common drawbacks. First, they detect anomalies based
on the log template indexes (i.e., using 3 to represent 13
“Inter face x,changed state to up”), which does not uti-
lize the semantic information in the logs. Second, they are
designed to capture either the sequential or quantitative pat-
terns of logs, but not both.

3 Design of LogAnomaly

3.1 Overview

The objective of LogAnomaly is to, in an unsupervised way,
automatically and accurately detect both sequential and quan-
titative log anomalies in real time.

After extensive investigations into real-world logs, we have
the following two observations: (1) A log template, which
is predefined using the “print” function by developers, typi-
cally characterizes the event that occurs in the system, with
its text representing the semantic information of the event.
(2) Program execution flows in a service system usually have
some patterns. Therefore, logs, which are generated by
these programs, have some patterns in types, temporal or-
ders, event count frequencies, and quantitative relationship
between counts of different events. Our core idea is then to
use deep learning to offline learn both sequential and quanti-
tative patterns of the logs, each of which is represented by its
template’s semantics (as opposed to just the index of the tem-
plate); in online detection, the realtime logs which violated
the learned patterns are considered anomalous.

The design of our proposed LogAnomaly is shown in Fig-
ure 3. In the offline learning component, LogAnomaly first
leverages FT-Tree (see Section 2 for more details) to extract
templates from historical logs and then match the historical
logs to these templates. Each template is a set of words
in semi-structured text. Inspired by word2Vec [Mikolov et
al., 2013], we propose a novel method, template2Vec, which
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Figure 4: Examples of template2 Vec.

distributedly represents templates. It effectively converts the
words in templates into word embedding vectors and calcu-
lates template vectors by combining word vectors. This way,
a log sequence is converted to a template vector sequence. In
the end, we extract the sequential and quantitative features
from this log sequence with an LSTM model. The offline
training is conducted periodically, e.g., weekly, so that the
newly appeared log templates can be periodically incorpo-
rated into the newly learned offline model.

In the online detection component, we first determine, for
a realtime log, whether it can be matched to an existing tem-
plate. If yes, we then convert it to a template vector. Other-
wise, we will “approximate” the“temporary” template vector
to an existing one based on the similarity of template vectors.
Consequently, each realtime log is matched to a template vec-
tor, and realtime logs are converted to (template) vector se-
quences. Based on the trained LSTM model in the offline
learning component, LogAnomaly determines whether a log
sequence is anomalous.

3.2 Template2Vec

Word2Vec is a popular distributed representation method for
words. It creates vectors that are distributed representations
of word features, such as the context of individual words.
However, it does not capture the semantic information of
words such as synonym and antonym. The words that have
similar or the same context in two log templates, in many
cases, can be antonyms, which makes the two templates very
different. For example, the word “down” in template 77
and the word “up” in template 7% in Figure 2, which are
antonyms, have the same context. Obviously, these two tem-
plates express the opposite meaning, and they should have
very different template vectors. Therefore, we try to capture
the semantic information when constructing vectors to repre-
sent templates.

We propose a novel word representation method, tem-
plate2Vec, which is based on synonyms and antonyms, to ef-
fectively represent the words in templates distributedly. As
shown in Figure 4, template2Vec includes three steps in the
offline learning stage: (1) Construct the set of synonyms and
antonyms. As shown in Table 1, universal synonyms and
antonyms can be found in WordNet [Miller, 1995], which is a
lexical database for English. Some domain specific synonyms
and antonyms, however, have to be added by operators based
on domain knowledge. Therefore, we first search synonyms
and antonyms of the words in templates in WordNet. After
that, operators can update synonyms and antonyms. (2) Gen-
erate word vectors. We apply dLCE [Nguyen et al., 2016],
which is a distributional lexical-contrast embedding model, to



Relations Word; Words Add Methods
Synonvms down low WordNet
ynonyms interface port Operators
Antonvms down up WordNet
ym powerDown  powerOn Operators

Table 1: Examples of synonyms and antonyms in logs
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Figure 5: The sequential and quantitative patterns of the templates
in Figure 2

generate word vectors that distributedly represent the words
in templates. (3) Calculate template vectors. For a given tem-
plate, we calculate its template vector, which is the weighted
average of the word vectors of the words in the template, to
represent the distribution of the template. In online detec-
tion stage, it will match a “temporary” template vector to an
existing one for new types of logs. Therefore, template2Vec
combines operators’ domain knowledge and dLCE model in
order to accurately generate template vectors.

3.3 Log Anomaly Detection

As aforementioned, programs, which generate logs using
the “print” function, are usually executed according to fixed
flows. Therefore, normal logs naturally have some sequential
patterns. In other words, for a given template (vector) se-
quence, its next template is predictable if no anomaly occurs.
Let ) = {vq, vy, ..., v, } be the whole set of distinct template
vectors. The sequence for detection is a sliding window of
the w most recent template vectors. For a log sequence S =
(51,82, ..., Sm), suppose that S; = (s, Sj41, .. Sjtw—1) 1S
one of its subsequences. Figure 5 (a) shows the sequential
pattern of the templates shown in Figure 2. For example,
the next vector of [vy, Vs, vs] is likely to be v;. Because
LSTM is a popular recurrent neural network architecture that
has been proved to robustly predict for sequences of data [Du
et al., 2017; Zhang et al., 2016], we apply LSTM to learn the
sequential pattern of logs. Then the template vector sequence
of Sj is Vj = (V(sj)7v(sj+l)’ ...,V(Sjeril)), where Vi(s;) %S
the template vector of s;, and Vis;) € ). Therefore, V; is
input into the LSTM model for S; in the training stage.

In addition to sequential patterns, a template (vector) se-
quence also has quantitative patterns. Usually, a normal pro-
gram execution has some invariants, and some quantitative
relationships always hold in logs under different inputs and
workloads. For example, each opened file will be finally
closed at some stage. Therefore, the number of the logs indi-
cating “open a file” should be equal to that of the logs show-
ing “close a file” in a normal condition. These quantitative
relationships in logs can capture the normal program exe-
cution behavior. If a new log breaks certain invariants, we
can determine that an anomaly occurs during the system ex-

ecution. Consequently, we learn the quantitative pattern of
logs as follows. For a log message s; € S;, we calculate
the count vector of the log sequence ($;—w+1, Si—w+2, -, Si)s
which is denoted as C; = (¢;(v1), ¢;i(va), ..., ¢i(vy)), where
¢;i(vy) is the number of v in the template vector sequence
Visi_wi1)r Visi—wia)r -+ V(s))» and vy € V.  Finally,

5, Cjt1, vy Cjpw—1 is input into LSTM to learn the quan-
titative pattern of S;.

In general, there are several branches in the fixed flows of
program execution. For instance, after a file is opened, it can
be read, written, or closed. Therefore, based on the sequen-
tial and quantitative patterns of program execution and logs,
there are several possibilities for the next template vector af-
ter a template (vector) sequence. For a log sequence, we sort
the possible next template vector based on their probabilities,
which is learned according to the LSTM model. If the ob-
served next template vector is included in the top k candidates
(or similar enough with them), we regard it as normal.

LogAnomaly learns the inherently sequential and quanti-
tative patterns of logs by learning the high dimensional de-
pendencies of template sequences. The combination of the
sequential and quantitative patterns, we believe, can improve
the accuracy, which is demonstrated in Section 4.2.

3.4 Template Approximation Between Two
Consecutive Trainings

In real-time systems, systems may generate new log tem-
plates online, but existing approaches cannot handle newly
generated template indexes. Manual feedback on large num-
ber of new log templates (as is done by[Du et al., 2017]) is
infeasible in practice. Although periodic retraining can al-
leviate the problems, we still have to deal with the new log
templates that appear between two consecutive offline train-
ings. Our approach is as follows.

In the online detection stage, for a log that cannot match
any existing template, we first apply FI-Tree to extract a
“temporary” template from the new log, and calculate its tem-
plate vector. After that, we match this “temporary” template
vector to an existing one based on the similarity among tem-
plate vectors. The intuition is that majority of the “new”
template is just minor variants of existing templates, instead
of brand new ones. Note that the template approximation is
aimed to deal with the newly appeared log templates between
two consecutive offline trainings. This is a better approach
than the labor-intensive manual feedback by operators (as is
in[Du et al., 2017)).

Therefore, the challenge imposed by new types of logs is
addressed without operators’ intervention. In this way, the
number of distinct template vectors remains constant, even
though new types of logs can emerge.

4 Evaluation

4.1 Experiment Setting

Datasets

We conduct experiments over the BGL dataset [Oliner and
Stearley, 2007] and the HDFS dataset [Xu et al., 2009], as
listed in Table 2. The detailed information of the two datasets
are described as follows:



Datasets ~ Duration # of logs # of anomalies
HDFS 38.7hours 11,175,629 16,838(blocks)
BGL 7 months 4,747,963 348,460(logs)

Table 2: Detail of the datasets

(1) BGL: The BGL dataset contains 4,747,963 logs. Each
BGL log was manually labeled as either anomalous or nor-
mal, and 348,460 logs were labeled as anomalous. The BGL
dataset was generated by the Blue Gene/L supercomputer,
which consisted of 128K processors and was deployed at
Lawrence Livermore National Laboratory (LLNL).

(2) HDFS: The HDFS dataset consists of 11,175,629 logs
collected from more than 200 Amazon EC2 nodes. A pro-
gram execution in the HDFS system, e.g., writing a file and
then closing it, usually involves a block of logs. There are
575,061 blocks of logs in the dataset, among which 16,838
blocks were labeled as anomalous by Hadoop domain ex-
perts [Du et al., 2017].

In the following experiments, from either dataset, we lever-
age the front 80% (according to the timestamps of logs) as the
training data, and the rest 20% as the testing data. Moreover,
because both of the above datasets were manually labeled, we
take these labels as the groundtruth for evaluation.

Baselines

We compare LogAnomaly with four unsupervised baseline
methods, i.e., LogCluster [Lin ef al, 2016], PCA [Xu et
al., 2009], Invariant Mining (IM) [Lou et al., 2010], and
Deeplog [Du et al., 2017] (see Section 2 for more details).
The parameters of these methods are all set best for accuracy.

Evaluation Metrics

Anomaly detection is a binary classification problem. A clas-
sification method’s capability is usually assessed by preci-
sion, recall, and F1 score. We label its outcome as a TP,
TN, FP, and FN. T'P are the anomalous logs (or blocks for
the HDFS dataset) that are accurately determined as such by
the method. T'N are normal logs (or blocks for the HDFS
dataset) that are accurately determined. If the method de-
termines a log (or a block for the HDFS dataset) as anoma-
lous, but in fact it is normal, we label the outcome as a F'P.

The rest are FN. Precision = ——, Recall = —&

2*Precision*Recall TP e
— Z2*Precision™Recall
F1 score = Precision + Recall *

Experimental Setup

We conduct all the experiments on a Linux server with In-
tel Xeon 2.40 GHz CPU and 64G memory. FT-Tree [Zhang
et al., 2017] is leveraged to parse logs. We implement
LogAnomaly and DeepLog with Python 3.6 and Keras 2.1.
As for Log Clustering, PCA and Invariant Mining, we use a
popular open-source toolkit implemented in [He er al., 2016].

4.2 Evaluation of The Overall Performance

In this section, we compare LogAnomaly with the four base-
line methods on the two datasets. The LogAnomaly in our
experiments has two LSTM layers with 128 neurons, and the
size (step) of window is 20 (1). Figure 6 and Figure 7 re-
spectively show the comparison results of LogAnomaly and
the four baseline methods on the BGL dataset and the HDFS

LogAnomaly w/o template vector sequence LogAnomaly w/o count vector
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Figure 6: Accuracy on the BGL dataset
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Figure 7: Accuracy on the HDFS dataset

dataset. Overall, LogAnomaly achieves the best accuracy

among the five methods, having an averaged F1 score of 0.96
on the BGL dataset, and 0.95 on the HDFS dataset. Both
PCA and LogCluster, however, have low F1 scores (< 0.80)
on the two datasets. Both Invariants Mining and Deeplog
achieve high recall on both the BGL dataset and the HDFS
dataset. For example, Invariants Mining and Deeplog have
recalls of 0.99 and 0.96 on the BGL dataset, respectively.
However, these high recalls are at cost of low precisions. For
instance, on the BGL dataset, Invariants Mining and Deeplog
respectively decrease precisions by 0.14 and 0.07 compared
to LogAnomaly, resulting that they generate 5.67 and 3.33
times false alarms, respectively. Generally, large service sys-
tems produce tens of millions of logs everyday. If a log
anomaly detection method generates too many false alarms
everyday, it will consume operators a large amount of unnec-
essary work. Both Invariants Mining and Deeplog leverage
the indexes of log templates, which ignore the semantic infor-
mation of templates, to learn the anomalous and normal pat-
terns. However, different templates having different indexes,
e.g., Ty and T in Figure 2, can share common semantic in-
formation. Ignoring the above common semantic informa-
tion results in that both Invariants Mining and Deeplog gen-
erate more false alarms than LogAnomaly. On the contrary,
LogAnomaly, which employs template2Vec to learn the se-
mantic information of log templates based on synonyms and
antonyms, effectively avoids these false alarms. That is be-
cause comparing the similarity of template vectors, which
LogAnomaly falls into, is tolerant to the small differences
of log templates, than comparing the similarity of template
indexes, where Invariants Mining and Deeplog fall.

In this work, for the first time, we learn both the quantita-
tive pattern and the sequential pattern of logs for anomaly
detection. To demonstrate the benefits of the combina-
tion of these two patterns, we calculate the accuracy of
LogAnomaly without (w/0) template vector sequence which
captures the sequential pattern of logs, as well as the accuracy
of LogAnomaly without (w/o) count vector extracting the
quantitative pattern of logs. As shown in Figure 6 and Fig-
ure 7, compared to LogAnomaly, LogAnomaly without (w/0)



#template in  # template in  # unmatched logs by
training logs  detection logs  training templates
257 503 299,174

Table 3: The detailed information of the BGL dataset for evaluating
the performance of LogAnomaly in online anomaly detection

Methods Precision Recall F1 score
DeepLog 0.3817 0.9768  0.5489
LogAnomaly 0.8039 0.9319 0.8632

Table 4: The accuracy of LogAnomaly and Deeplog in online
anomaly detection

template vector sequence has much low precisions on both the
BGL dataset (0.84) and the HDFS dataset (0.83) compared
to LogAnomaly (0.97 and 0.96 on the two datasets, respec-
tively). Therefore, the sequential pattern of LogAnomaly pre-
vents false alarms from disturbing operators. Similarly, the
quantitative pattern, which are represented with count vec-
tors, improves both precision and recall for LogAnomaly on
the two datasets.

4.3 Evaluation of Online Anomaly Detection

As described in Section 3.2, template2Vec not only improves
the accuracy of LogAnomaly by leveraging the semantic in-
formation of log templates, but also addresses the challenges
of new types of log messages by matching new templates to
existing templates. Usually, service systems often generate
new types of logs and thus new log templates, due to fre-
quent software or firmware updates aiming to introduce new
features or fix bugs of previous versions. If an anomaly detec-
tion method cannot cope with new templates, it will generate
false alarms, for the reason that the new templates can gener-
ate new patterns which match no historical normal pattern.

We evaluate the performance of LogAnomaly in address-
ing new types of logs at runtime as follows. As shown in
Table 3, the front 50% (according to the timestamps of logs)
of the BGL dataset is used as the training set, which includes
257 log templates, and the rest 50% involving 503 templates
is used as the testing set. More specifically, 299,174 logs
in the testing set cannot match any existing templates. Be-
cause both PCA and Invariant Mining are offline methods,
and LogCluster performs badly in offline scenario as shown
in Section 4.2, we compare LogAnomaly with Deeplog in this
section. Note that we do not provide any manual feedback to
Deeplog and LogAnomaly after they are trained.

Table 4 shows the accuracy of LogAnomaly and Deeplog
in online anomaly detection. Although Deeplog achieves
relatively high recall, its precision is much lower than that
of LogAnomaly. More specifically, Deeplog generates 3.15
times of false alarms compared to LogAnomaly, which brings
much unnecessary work to operators. With template2Vec,
LogAnomaly is able to match a new type of log message to
an existing template vector, and thus it is more accurate in
online anomaly detection.
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Figure 8: Timeline of switch anomaly case study

4.4 Case Study

To further evaluate the performance of LogAnomaly, we here
show a single anomaly case that happened on an aggrega-
tion switch deployed in a top cloud service provider from
15:00, Oct 13 2018 to 1:16, Oct 14 2018. LogAnomaly, In-
variants Mining, and Deeplog are deployed to detect anoma-
lies based on logs for this switch during Sep 25 2018 to Oct
19, 2018. More specifically, as shown in Figure 8, the traffic
forwarded by this switch dropped from 15:00, Oct 13 2018,
and the services provided by this switch were impacted from
22:15, Oct 13 2018, until the switch recovered at 1:16, Oct
14 2018. LogAnomaly generated 29 alarms, all of which be-
gan from 15:59, Oct 13 2018, and ended before 1:16, Oct 14
2018. Consequently, LogAnomaly successfully detected this
anomaly and generated no false alarm. DeepLog, however,
generated 43 alarms during its deployment period (Sep 25 to
Oct 19), 15 of which were false ones. Moreover, Invariant
Mining generated five alarms, and three of them were false.
We can see that, in real-world cases, LogAnomaly
achieved better accuracy than Invariants Mining and Deeplog,
for the following reason. There are more than 10, 000 log
templates in this cloud service provider. A large number
of log templates having different template indexes represent
very similar events. Neither Invariants Mining nor Deeplog
was able to leverage the similarities of log templates, whereas
LogAnomaly successfully extracted these similarities by us-
ing template2 Vec to learn templates’ semantic information.

5 Conclusion

Logs are one of the most valuable data sources for system
operation. In this paper, we propose LogAnomaly, a uni-
fied log anomaly detection system that leverages a novel tem-
plate2Vec method to extract the semantic information of log
templates and address the challenges posed by new types of
logs at runtime, and combines the sequential and quantita-
tive patterns of logs. Extensive experiments strongly demon-
strate LogAnomaly’s superior performance. The real-world
case study further shows that the novel template2 Vec method
successfully extracts the semantic information of logs.
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