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Abstract—Anomaly detection is critical for web-based soft-
ware systems. Anecdotal evidence suggests that in these sys-
tems, the accuracy of a static anomaly detection method that
was previously ensured is bound to degrade over time. It
is due to the significant change of data distribution, namely
concept drift, which is caused by software change or personal
preferences evolving. Even though dozens of anomaly detectors
have been proposed over the years in the context of software
system, they have not tackled the problem of concept drift. In
this paper, we present a framework, StepWise, which can detect
concept drift without tuning detection threshold or per-KPI
(Key Performance Indicator) model parameters in a large scale
KPI streams, take external factors into account to distinguish
the concept drift which under operators’ expectations, and help
any kind of anomaly detection algorithm to handle it rapidly.
For the prototype deployed in Sogou, our empirical evaluation
shows StepWise improve the average F-score by 206% for many
widely-used anomaly detectors over a baseline without any
concept drift detection.

Keywords-Anomaly detection; Concept drift; Software ser-
vice KPI; Web-based software system.

I. INTRODUCTION

With the booming development of web-based software
systems like search engine, online shopping and social
networks, careful analysis of monitoring data is becoming
increasingly important for software reliability. In general,
operators of the above systems monitor millions of Key Per-
formance Indicator (KPI, e.g. number of Page Views (PV),
number of online users, average response time) streams [1].
Diverse types of detectors can be used to detect KPI
anomalies, e.g., Moving Average (MA) [2] and Time Series
Decomposition (TSD) [3]. In order to accurately detect
KPI anomalies, operators carefully tune the parameters of
detectors based on their domain knowledge [1], [4]–[6].

Anecdotal evidence indicates that when there is a concept
drift, the accuracy of detectors is bound to degrade [7]. In
this work, “concept” means KPI stream distribution, and
the term “concept drift” means that KPI stream distribution
changes significantly [8]. In our scenario, a concept drift is
typically a level shift, e.g., a sudden drop in PV as shown
in Fig. 1, or a ramp-up/ramp-down, i.e., a deteriorating
condition [9]. A concept drift can be either unexpected

∗ Shenglin Zhang is the corresponding author.

or expected. An unexpected concept drift is an anomaly
situation which is beyond operators’ expectations. In order
to mitigate the losses imposed by unexpected concept drifts,
operators must immediately take actions, e.g., rolling back
software changes, stopping traffic shifting. After that, the
KPI stream distribution will return to what it was before
the concept drift. On the contrary, an expected concept
drift yields the KPI distribution change under operators’
expectations. In this case, the anomaly detectors designed
for the old concept before the concept drift are no longer
accurate in detecting the KPI anomalies of the new concept
after the concept drift.

Operators usually conduct software changes, namely soft-
ware upgrades, on-demand scaling up, migration and config-
uration changes, in order to deploy new features, fix bugs, or
improve system performance [10]. For example, if operators
deploy a software service on more servers, the PV recorded
by each server will drop significantly because the total PV
remains stable. Apparently, this is an expected concept drift:
operators expect that the PV on each server will witness a
prominent drop in a short time (e.g., within five minutes).
Suppose that operators use TSD for anomaly detection [3],
and the parameters of TSD are trained based on the old
concept (trend and the standard deviation of noise) before
this concept drift. As Fig. 1 shows, since the data distribution
has changed dramatically, TSD will generate a lot of false
alarms for a long time (the periodicity of KPI stream, say one
day) because it uses one period of historical data to predict
the upcoming “normal” data. Then, it will gradually catch
up with the trend of the new concept, but still cannot adapt
to the standard deviation of the noise in the new concept.
That is to say, TSD “believes” that most of the KPI data
points in the new concept are anomalous, while operators
consider these points as normal. In this work, we try to
adapt anomaly detection methods to avoid the long period
of accuracy loss after expected concept drifts.

There are several interesting challenges:
1. High frequency of expected concept drifts. In web-
based software systems, software upgrades and configuration
changes occur thousands of times every day [9], which leads
to a great number of concept drifts in KPI streams. For
example, in the studied company Sogou, a top-tier search
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Figure 1: A toy example of concept drift. KPI data beyond
the detection boundary will trigger alarm.

engine in China, there are more than 3000 concept drifts of
KPI streams per day, more than 80% of which are expected
ones. Manually tuning the parameters of anomaly detectors
to adapt to such a large number of expected concept drifts is
infeasible, thus an automatic concept drift adaption approach
should be provided.
2. Huge amount of KPI data. In large web-based software
systems, tens of software systems are deployed on tens
of thousands of servers [9]. Degradation of a software
service KPI on (recorded by) a specific server may indicate
that the service provided by this server is affected. As a
result, anomaly detectors and their concept drift adaption
(detection) approach must monitor the service KPIs on every
server. In addition, typically tens of types of KPIs are
monitored for a single software system. That is, the concept
drift adaption approach should continuously detect concept
drifts on millions of KPI streams. It will take operators a
lot of time if the parameters of the concept drift adaption
(detection) approach have to be tuned manually for each KPI
stream on each server.
3. Diverse types of detectors. Since no anomaly detector is
perfectly suitable for all types of KPI streams, it is a common
practice that each KPI stream is assigned to a specialized
anomaly detector or even a specialized combination of
multiple detectors [1]. Therefore, the concept drift adaption
approach should be generic so that it can accommodate to
various types of detectors.
4. Rapid adaption. A burst of false alarms usually appear
soon after a concept drift, because the anomaly detector
(or the combination of detectors) trained before the concept
drift cannot quickly adapt to the new concept. Therefore, the
concept drift adaption approach must detect concept drifts
and help anomaly detectors adapt it in a rapid manner.

To tackle the above challenges, we propose a concept drift
adaption framework for software KPI anomaly detection,
called StepWise, to robustly and rapidly adapt anomaly
detectors in order to accurately detect KPI anomalies after
concept drift. Based on the KPI streams from Sogou, we
made the following two main observations. First, in general
system, KPI streams are strongly seasonal (a periodicity
can be by the hour/day/week/month) because it is heavily
affected by the periodic user behavior. Second, distributions

before and after a concept drift are statistically correlated,
namely, having a significant linear correlation.

Based on the above observations, StepWise has three
components to adapt anomaly detectors in a robust and
rapid manner. (1) detection: StepWise adopts an iSST-EVT
method to detect concept drift for a large number of KPIs,
without tuning detection threshold or model parameters per
KPI stream. The Extreme Value Theory (EVT) is used
for the first time in the literature to set threshold for
change score (the output of concept drift detection model)
automatically, to the best of our knowledge. All model
parameters can use model-wide empirical value which is
shown to be robust in practice. (2) classification: StepWise
takes into account external factors, namely software changes
and traffic shifting, to determine expected concept drifts
from unexpected ones (with operators’ confirmations). (3)
adaption: taking advantage of the significant statistical
correlation between the old concept and the new one,
StepWise applies a novel concept drift adaption algorithm
to automatically adapt anomaly detectors to accurately detect
anomalies after concept drift (in terms of both trend and the
width of detection boundaries). The only work of operators
is to determine whether the concept drift is expected or
unexpected.

Our contributions are summarized as follows:
• To the best of our knowledge, there are no related

works on concept drift adaption methods for software
anomaly detection in the literature. This paper is the
first one to identify the problem of robustly and rapidly
adapting anomaly detectors to the new concept after
concept drift, and its research challenges in terms of
scalability, robustness, and adaption delay.

• We implement a prototype of StepWise which addresses
the above challenges and integrate it in the operation
platform of Sogou. StepWise adopts a concept drift de-
tection method that does not require parameter tuning or
threshold for change score, tells apart expected concept
drift from unexpected ones using external factors, and
employs a novel concept drift adaption method based on
the statistical correlation between the old concept and the
new one.

• To demonstrate the performance of StepWise, we have
conducted extensive evaluation experiments using the KPI
data collected from hundreds of servers over six months
from Sogou. The results show that StepWise can rapidly
and robustly improve the performance of most anomaly
detectors by helping them rapidly adapt to new concepts.
Our evaluation shows that StepWise improves the average
F-score by 206% for many widely-used anomaly detectors
over a baseline without any concept drift detection.

II. BACKGROUND

In this section, we provide a brief introduction to software
service KPI anomaly, concept drift, and anomaly detection.
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Figure 2: A toy example of how software service KPI
measurements are collected.

Software Service KPI: In this work, we collect KPI
streams from Sogou. Sogou is the second largest search
engine and the fourth largest Internet company of China,
with more than 511 million monthly active users and more
than 1 billion queries per day (in September 2017). In
Sogou, there are tens of thousands of servers providing
various types of software systems. Each software service
runs on one or more servers with a specific process on
each server. Operators deploy an agent on each server to
continuously monitor the status of each process and collect
the KPI measurements of all processes, including PV, search
response time (SRT), error rate (ER), etc. For example,
immediately after a process serves a user’s search request,
the PV is incremented and an SRT is recorded. Figure 2
shows a toy example of how a software service KPI is
collected. Suppose that one of the search engine services
is deployed on server 1 to server n, and each server runs
a process (process 1 to process n) of the system. The
monitoring agent on each server collects KPI (PV, SRT, ER)
measurements of process 1 to process n.

After collecting KPI measurements of processes, the agent
on each server delivers the measurements to a distributed
Apache Hbase database. The database also provides a
subscription tool for other systems [11]–[13], to periodically
receive subscribed measurements. A data collection interval
is typically one minute. Within one second, the measure-
ments subscribed by StepWise are pushed to StepWise.
Typically, the KPI measurements of a process constitute a
KPI stream, with a format of (time, value) for each time
bin.

In this work, we focus on software service KPIs instead
of resource KPIs, e.g., CPU utilization, memory utilization.
For a resource KPI, operators usually care about whether it
reaches the threshold indicating the upper bound of physical
ability. Instead, they do not care about concept drifts in
resource KPIs.

KPI Anomaly: An anomaly in the KPI stream is typi-
cally a sudden spike, a jitter, or a dip, etc., which indicates
an unexpected pattern of KPI. It is usually a short-term or
spasmodic change, but it can also be an unexpected level
shift or ramp up/down. In general, operators deploy anomaly
detectors which are based on their domain knowledge to
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Figure 3: Relationship between concept drift and anomaly.

identify KPI anomalies [1]. Nevertheless, this knowledge is
difficult to be precisely defined by some pre-defined rules
and needs many rounds of time-consuming iterations [3].

Concept drift: The data distribution can change over
time due to dynamically changing and non-stationary envi-
ronments [8], leading to the phenomenon of concept drift. A
concept drift in a KPI stream is typically an immediate level-
shift, a ramp up or a ramp down [9], which can be caused
by a software upgrade, a configuration change (e.g. shifting
traffic from one data center to another one), seasonality (e.g.,
Christmas or Lunar New Year), a network breakdown, a
malicious attack, a flash event (e.g., breaking news), or a
change in a peer company, etc. As Fig. 1 shows, there is a
traffic shifting at 17:40 on August 2nd. The the distribution
of PV changed significantly within 5 minutes and remained
unchanged for over three days.

As shown in the Venn diagram in Fig. 3, there are
expected concepts drift and unexpected ones. An unexpected
concept drift in a KPI stream is the one beyond opera-
tors’ expectation. In order to mitigate loss imposed by an
unexpected concept drift, operators must immediately take
actions, e.g., rolling back the software change, stopping
traffic shifting. After that, the distribution of the KPI
stream will return to what it was before the concept drift.
On the other hand, an expected concept drift is the one
under operators’ expectation. When it occurs, anomaly
detectors usually cannot adapt to the new concept rapidly,
generating a lot of false alarms or false negatives (see §V for
details). Consequently, it is very necessary to adapt anomaly
detectors immediately after a concept drift.

Fig. 3 shows the similarities and differences between
concept drift and KPI anomaly. Both concept drift and
KPI anomaly include unexpected concept drift. However, an
expected concept drift is an expected pattern of KPI stream,
while an anomaly is an unexpected one.

Anomaly detection algorithm: Recently, an increasing
number of studies have paid attention to anomaly detection
algorithms. An anomaly detection algorithm is a single
anomaly detector, e.g., Static threshold [14], TSD [3],
Diff [1], MA [2], Weighted MA [15], EWMA [15], Holt-
Winters [16], or a combination of two or more detectors,
e.g., Opprentice [1]. In Sogou, operators have deployed the
above seven detectors to detect anomalies in KPI streams.

The basic schema of an anomaly detector works in
the following way. When an anomaly detector receives an
incoming KPI value, it internally produces a forecast value.
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Figure 4: A concept drift in original KPI stream (marked by
red circles) is successfully detected by iSST-EVT because
the corresponding iSST change score is higher than the
threshold automatically set by EVT (§IV-A).

If the absolute difference between the incoming value and
the forecast one surpass a given threshold, an anomaly alert
will be triggered. The threshold is manually set by operators
with domain knowledge. For example, the threshold of TSD
is set by operators based on the underlying distribution of
noises. However, if a concept drift occurs, the distribution
of noises will change dramatically. Therefore, the trained
TSD is no longer accurate in detecting anomalies after the
concept drift. In addition, most detectors are parameterized
and have a set of internal parameters. For example, Holt-
Winters has three parameters: α,β, γ. These parameters are
also set based on the distribution before a concept drift, and
thus should be re-trained after it.

III. INTUITION BEHIND STEPWISE

This section presents the domain-specific insights we
use to help address the challenges mentioned in §I. We
need to detect concept drifts in KPI streams in order to
rapidly adapt to the expected concept drifts. The first insight
is that concept drift detection can be converted into a
spike detection problem in the change score stream. After
an expected concept drift, the performance of anomaly
detectors degrades. It is difficult to tune parameters and
the severity threshold for the anomaly detectors manually.
Fortunately, we leverage a second insight that distributions
before and after concept drift are statistically correlated. We
conclude this section by concluding the two challenges in
applying these insights in a practical system.

A. Concept Drift Detection Algorithm

There are many previous works on time series concept
drift detection (also known as change point detection), but

their models need either parameter tuning or the change
score threshold tuning for each KPI stream, which are not
affordable in our scenario due to the large number and
variety of KPI streams. Therefore, our goal for concept drift
detection algorithm is the one that does not require per-KPI
parameter tuning or change score threshold tuning.

Previous studies on time series concept drift detection
typically slide two adjacent (but non-overlapping) windows
along time dimension on the KPI stream and compute the
absolute or relative difference between the behavior of time-
series in these two windows [6], [17]–[20]. The output of
these detection algorithms is the change score (indicating
the severity level of the change) on each time interval rather
than concept drift directly. Most of these models need either
parameter tuning or change score threshold tuning for each
KPI stream. On the one hand, the internal parameters in
some models (e.g., CUSUM [18]), kernel-based model [20],
SST [21], EGADS [6]) need to be tuned on a per-KPI basis
based on operators’ domain knowledge. On the other hand,
the change score detection thresholds for some models (e.g.,
CUSUM [18], Multiscale Robust Local Subspace (MRLS)
[19], improved Singular Spectrum Transform (iSST) [9])
need to be tuned on a per-KPI basis so that the change
is severe enough to the operators. However, neither tuning
model parameters nor tuning detection thresholds on a per-
KPI basis is affordable in our scenario due to the large
number and variety of KPIs.

After studying all these methods, our first insight is that
the spike of change score stream indicates the time of
concept drift. We can summarize the intuition as follows:

Insight 1: Concept drift detection can be converted into a
spike detection problem in the change score stream.

For instance, we can use the iSST [9] algorithm to
calculate the change score, as Fig. 4 (a) shows. There is
a spike in the iSST change score stream on 2 ∼ 3 August,
at the time of concept drift. iSST [9] is a recent concept drift
detection approach which is robust and rapid in that it can
use model-wide empirical values for model parameters, thus
does not need model parameter tuning on a per-KPI basis.
However, for different KPI streams, the threshold of change
score may be different, which is one remaining challenge.
Inspired by Insight 1, we design a spike detection approach
in §IV-A which do not need to tune per-KPI change score
threshold.

B. Measurement Study

For the KPI stream from web-based software systems,
we discover that concept drift, if happening, almost always
corresponds to concept drift caused by software changes.
According to our statistics of concept drifts from Sogou,
95% of concept drifts are caused by software changes (62%
by traffic shifting and 33% by code update), and the other
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Figure 5: (a) The comparison of median value for each daily time slot in new concept and old concept. (b) Each data point
(old-concept, new-concept) is from the two Y-values of the same time of day in (a), and the color of the point indicates the
time of day (X-value in (a)). The dotted line is the linear regression. (c) Three one-hour intervals picked from (b).

5% are caused by holiday impact. We believe this is not rare
in Web-based software systems.

The data distribution before a concept drift is considered
as old concept, while the data distribution after is considered
as new concept. Fig. 4 shows an example where new
concept looks similar to old concept. Fig. 5 (a) provides
a more intuitive look. We take 10 days of old concept and
new concept data, and then calculate the median value for
each daily time slot (e.g., 20:00, 20:01...). The median value
can eliminate impact of the potential anomalous value. The
comparison in Fig. 5 (a) shows that in this example the
new concept is a “shrunk version” of the old one. Fig. 5
(b) shows a more quantitative comparison, where each data
point (old-concept, new-concept) is from two Y-values of
the same X-value in Fig. 5 (a), and the color of the point
indicates the time of day.

Insight 2: The relationship between new concept and old
concept can be almost perfectly fitted by linear regression.

Note that this KPI with concept drift is randomly picked
among 288 KPIs, we observe that new concept and old
concept consistently have a linear relationship with little
variance across all 282 expected concept drifts recorded in
our dataset. This suggests that the liner model is a promising
direction for concept drift detection in that we can “predict”
the new concept with the old concept given the linear
relationship.

C. Practical Challenges

There are two issues in the practical system design.

• How to detect spikes in the change score stream? This
is challenging because the amplitude of spikes vary both
across different KPIs and over time [9], and it is infeasible
to manually configure the threshold of change score for
each KPI stream.

• How to estimate the parameter of the linear model in
real-time? More specifically, we observe that the points
of continuous time are clustered in Fig. 5 (b) and this
phenomenon is more clearly shown in Fig. 5 (c). If
concept drift happens at 6 ∼ 7 am (see Fig. 5 (c)),
there are too few data points to do the linear fitting,
thus we cannot estimate the relationship between the old
concept and the new concept in real-time (within one
hour). As aforementioned, concept drift is always caused
by sporadic software changes, which may happen at any
time. This phenomenon brings a great challenge to design
the adaption algorithm.

IV. STEPWISE DETAILED DESIGN

We propose a practical framework, StepWise, for robust
and rapid adaption for concept drift in software anomaly
detection. As Fig. 6 shows, our framework has three main
components: detection, classification, and adaption. First,
in §IV-A we propose a concept drift detection method that
does not require tuning model parameters or tuning change
score threshold. Second, in §IV-B we classify concept drifts
into expected vs. unexpected ones. We apply causal impact
analysis to make this classification semi-automatic. Third, in
§IV-C, we propose a robust and rapid adaption algorithm.
Our main contributions focus on the detection and adaption
components.

A. Concept Drift Detection without Tuning Model Parame-
ters or Detection Thresholds

Recall that the first practical challenge is to detect spikes
in the change score stream without tuning per-KPI threshold.
We design an Improved Singular Spectrum Transform with-
out Thresholds (iSST-EVT) algorithm which take advantage
of both iSST and Extreme Value Theory.

1) Improved Singular Spectrum Transform without
Thresholds (iSST-EVT): As aforementioned in §III-A,
we use iSST to calculate the change score on each time
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Figure 6: Framework of StepWise.

interval. Our core idea is to apply EVT to the change score
stream because EVT is a powerful spike detection method.

We provide a brief description of the theoretical back-
ground of EVT. Extreme Value Theory (EVT) [22] can set
the threshold of data stream in an automatic fashion without
making any assumption about the data distribution. The goal
of EVT is to find the law of extreme value. These extreme
value (spikes) have the same kind of distribution, regardless
of the original one. According to experiments from [7], the
maximums of KPI streams from several fields (network,
physics, finance) have almost the same distribution although
the distributions of the KPI streams are not likely to be the
same.

For a random variable X , F is cumulative distribution
function: F (x) = P (X ≤ x). We denote F̄ (x) as the “tail”
of this distribution. This extreme value distribution has the
following form:

Gγ : x → exp(−(1 + γx)−
1
γ ), γ ∈ R, 1 + γx > 0.

However, γ is the extreme value index which is hard to
estimate efficiently in this original formula. To make EVT
more practical, Pickands-Balkema-De Haan theorem [23],
[24] (also called second theorem in EVT) is proposed as
follows:

Theorem IV.1 (Pickands-Balkema-De Haan). F converges
in distribution Gγ , if and only if a function σ(t) exists, for
all x ∈ R s.t. 1 + γx > 0:

F̄t(x) = P (X − t > x|X > t) ∼ (1 +
γx

σ(t)
)−

1
γ .

This theorem shows that the excess over a threshold t,
denoted as X− t, follows Gγ with parameters σ, γ. t is the
initial threshold, whose value is not paramount except that
it must be “high” enough.

As Fig. 4 (b) shows, we apply the Pickands-Balkema-
De Haan theorem to detect the spikes in the change score
stream output by iSST (instead of the original KPI stream),
an extreme value of which can indicate a concept drift in the
original KPI stream. Based on domain experience and [7],
we suggests that the model-wide empirical parameter t is
set to a high empirical percentile (say 98%). Then σ and γ
can be estimated by Maximum Likelihood Estimation, and
these model-wide empirical values for EVT parameters are

shown to work well in detecting spikes, which are the right
time of concept drifts.

In this way, the threshold for concept drift detection is
automatically set by EVT. To the best of our knowledge,
this paper is the first work to apply EVT to change score
stream to automatically set the detection threshold for base
concept drift detection including but not limited to iSST.

Our proposed new concept drift detection approach, called
iSST-EVT, has the following desirable properties: no detec-
tion threshold to tune, no per-KPI-stream model parameters
to tune, and all model parameters can use model-wide
empirical values which are shown to be robust in practice.

2) Model-wide empirical parameter values in iSST-EVT:
Although both EVT and iSTT still have model parameters,
these parameters have model-wide empirical values that can
be applied to all KPI streams, without having to be tuned
per KPI stream. The model parameter t for EVT is set to a
high empirical percentile (98%) [7] and then σ and γ can be
estimated by the maximum likelihood estimation. For iSST,
there is only one parameter to be set. According to [9], for a
system that needs quick mitigation on concept drift, window
size ω can be set to a small value such as 5. For a system
that needs more precise assessment of concept drift, ω can
be set to a large value such as 15. Empirically we set the
window size of 6 (minutes) in StepWise to declare a change
in KPI stream as a concept drift.

B. Concept Drift Classification

After a concept drift is detected, we need to classify
whether concept drift is expected or unexpected. For external
events (e.g., sales promotion) that cause the expected concept
drift, there might not be reliable data feeds, but when we do
have reliable event data feeds (e.g., software upgrade, con-
figuration change, Christmas or Lunar New Year holidays),
we can apply causal impact analysis [25] to conduct semi-
automatic classification. Causal impact analysis [25] is the
process of drawing a conclusion about a causal connection
based on conditions of the occurrence of an effect. In this
paper, we adopt the methodology similar to that used in
FUNNEL [9], namely Difference in Differences (DiD) [26],
to automatically analyze whether a concept drift is caused
by a software change (e.g., code deployment, configuration
change, traffic shifting) whose event logs are available as



data feeds. If the causal analysis result indicates that a
concept drift is indeed caused by the software change, the
final classification still has to be done manually by the
operators since some software changes are not supposed
to cause concept drift but might have done due to bugs or
misconfiguration. If unexpected, the software change will
be rolled back. Otherwise, the concept drift adaption will
be triggered because of the expected concept drift. Given
only the final confirmation is done manually, we call this
classification semi-automatic. For adaption to concept drift,
which we mentioned later, is only the expected one.

C. Concept Drift Adaption

Anomaly detection is vital for managing the service
performance of web-based software systems. The best pa-
rameters and thresholds of a given anomaly detector often
highly depend on actual data in a given KPI, thus they are
very time-consuming to be tuned. In practice, operators take
a long time to gradually do so. However, after the expected
concept drift, the performance of anomaly detectors signif-
icantly degrade sharply. It is infeasible for the operators to
manually tune the parameters and thresholds again in a very
timely manner.

From the measurements in Fig. 5, we learn that it is
reasonable to model the relationship between the old concept
and the new one with linear regression. A simple and
effective idea is to use linear transformation to change
the magnitude of new concept to be the same as old
concept’s. This enables anomaly detectors to be still useful
in new concept, even though there are not many data points
available yet in the new concept alone.

Note that we choose not to do it the other way around
(i.e., transforming old concept to new concept) for the
following reasons. Our proposed method changes the input
of anomaly detectors, rather than changes any part of
anomaly detectors which are introduced in §V-B. Should we
choose to transform the old concept instead, the parameters
and thresholds of anomaly detectors should be re-trained.
As more points become available in the new concept, the
distribution becomes more stable. Thus we have to keep
doing re-training, which is not only difficult but also time-
consuming. In addition, if there are real anomalies in the new
concept and they are used as the basis to train the anomaly
detector, the transformation becomes inaccurate.

We design a robust and rapid adaption algorithm. The
input of the algorithm needs a concept drift time c to separate
the KPI stream as Kold and Knew. Note that Knew changes
as time goes by with t as the timestamp of the latest data
points. Other inputs are an empirical value of iSST window
size ω, and a KPI periodicity T which is used as the
step-by-step adaption terminate time. The algorithm can be
summarized as the following four steps.

(1) The window size of iSST ω gives the first part of
data list, denoted by A (in green color). As Fig. 7 shows, n

}

Expected Concept Drift Time: c

Present Time: t

Median Value for 
Every Time Bin

A

B

f = RLM(B ~ A)
A’ = f (A)
Anomaly Detection 

Using A’

07-29 07-30 07-31 08-01 08-02 08-03

Figure 7: The core idea of the adaption algorithm. X-axis is
Time (Month-Day).

samples within the same time range as A are extracted from
the Kold. Since the KPI values vary and there are even some
anomalies in the past, we use the median value for every
time bin of these samples which is a robust estimation [27],
denoted as B (in purple color).

(2) A and B are fitted by Robust Linear Model (RLM)
[28] with the output of the linear function f . There are
many linear regression methods, like LSE (least squares
regression). However, LSE is highly sensitive to (not robust
against) anomalies. This is because a squared error penalizes
deviations quadratically, so points far from the line have
more effect on the fitting than the points close to it. We want
to get rid of the impact of anomaly data points by using the
RLM. The way to achieve robustness against anomalies is to
replace the Gaussian distribution for the response variable
with a distribution that has heavy tails, which will assign
higher likelihood to anomalies, without having to perturb the
straight line to “explain” them. More details of the RLM is
out of the scope of this paper.

(3) As soon as we get the linear model, we start a linear
transformation to the current point A′[t], which is fed into
anomaly detectors.

(4) However, the RLM might not be exactly accurate when
there are not sufficient data points in the new concept. For
example, in Fig. 5 (c), the color in the continuous time
slot is constant and clustered, and the slopes of each of the
three hours are slightly different from each other and also
different from the global slope in Fig. 5 (b). Thus we keep
re-fitting the linear relationship (by repeating steps 1, 2) as
more new data points in the new concept become available.
Fig. 8 shows how the average anomaly detection F -scorea
(defined in §V-B) of StepWise gets higher and higher as
more and more data points after the concept drift become
available. This re-fitting will continue until the adaption
termination time T after concept drift. T is set empirically to
be one day since Fig. 5(b) indicates that one day is sufficient
to have a very good linear fitting. From Fig. 8 we can see
that a good linear fitting can be achieved before one day
(e.g., the average F -scorea gets to 0.60 by 6 hours after the
concept drift).
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Figure 8: The average F -scorea of anomaly detectors (for
the new concept) as time goes by after concept drifts.

Table I: Summary of datasets.

Datasets Up-shift Down-shift

# KPIs 288
# Unexpected concept drifts 14 38
# Expected concept drifts 107 175
# Total data points 175680 110880
Anomaly data points (ratio to the total) 3316 (1.89%) 3808 (3.43%)

Old concepts
Total data points 87485 55775
Anomaly data points 1810 (2.07%) 1804 (3.23%)

New concepts
Total points 88195 55105
Anomaly data points 1506 (1.71%) 2004 (3.64%)

V. EVALUATION

StepWise is designed to rapidly and robustly adapt to the
expected concept drift for anomaly detection algorithms. We
deployed a prototype of StepWise in Sogou, a search engine
company. In this section, we evaluate the performance
of StepWise. We first evaluate the overall performance
of StepWise in terms of how it robustly improves the
accuracy of anomaly detectors, as shown in §V-B. Then
we compare our concept drift detection method with FUN-
NEL [29] in §V-C. We show the adaption lag of StepWise
at the end of this Section.

A. Datasets

Cooperating with operators, we have deployed a prototype
of StepWise in Sogou. To evaluate the performance of
StepWise, we have collected a large volume of KPI data. The
dataset consists of 288 KPI streams in a six-month period
with a one-minute sampling interval, which is randomly
picked from the search engine systems by operators, as
Table I shows. In addition, we classify concept drifts into
up-shift (Fig. 10 (a)) and down-shift (Fig. 10 (b)), for
the reason that an anomaly detector performs differently
during up-shift and down-shift. We list the number of total
data points and anomaly data points labeled by operators.
Although KPI anomaly occurs in a very low frequency,
the six-month period is long enough to cover almost all
types of anomalies, and this is sufficient for evaluating the
performance of StepWise.

Note that all anomalies and all concept drifts in our
dataset are manually verified by operators, which can be

0 0 1 1 1 0 0 1 1 1Truth

0.6 0.4 0.3 0.7 0.6 0.5 0.2 0.3 0.4 0.3Score

1 0 0 1 1 1 0 0 0 0Point-wise Alert

1 0 1 1 1 1 0 0 0 0Adjusted Alert

Figure 9: A toy example of how adjusted alerts of KPI
anomaly are generated. The first row is the truth with 10
contiguous points and two anomaly segments highlighted in
the shaded squares. Detector scores are shown in the second
row. The third row shows point-wise detector results with a
threshold of 0.5. The fourth row shows the detection results
after adjustment. We shall get precision 0.6, and recall 0.5.

Table II: Basic detectors and sampled parameters. Some
abbreviations are Diff (Differences), TSD (Time Series
Decomposition), MA (Moving Average), EWMA (Exponen-
tially Weighted MA), TSD (Time Series Decomposition).

Detector Sampled parameters

Static threshold [14] none
TSD [3] period = 1 day
Diff [1] period = 1 week
MA [2] window = 30 points
Weighted MA [15] window = 30 points
EWMA [15] α = 0.1

Holt-Winters [16] α = 0.5, β = 0.1, γ = 0.3

served as the ground truth of our evaluation experiments.
We plan to release the dataset to the public. Although the
KPI data is collected from the search engine systems, we
believe that they are representative of the KPI data of most
types of web-based software systems, e.g., social media,
online shopping. As for future work, we will conduct more
evaluation experiments with data collected from other types
of software systems.

B. Evaluation of The Overall Performance

In this section, we try to evaluate how StepWise can
robustly improve the accuracy of anomaly detectors without
tuning parameters for each detector.

An anomaly detector’s capability to detect anomaly is
usually assessed by three intuitive metrics, i.e., precision,
recall, F-score. Following [30], we apply the improved
anomaly detection metrics, because in general operators do
not care about the point-wise alerts. Instead, they prefer
to trigger an alert for any time interval in a contiguous
anomalous segment. Fig. 9 shows a toy example of how
adjusted alerts of KPI anomalies are generated. If any point
in an anomaly segment in the ground truth can be detected
(over a given threshold), we say this segment is detected
correctly, and all points in this segment are treated as they
can be detected. Comparing the truth points (the first row
in Fig. 9) and the adjusted alert points (the fourth row
in Fig. 9), we label an anomaly detector’s outcome as



Table III: The Precisiona, Recalla, and F -scorea of anomaly detectors in the Old concept, in the New concept without
StepWise, and in the new concept with StepWise. Improvement rate (↑) is calculated by (StepWise - New) / New.

Drift type Up-shift Down-shift
Metrics Precisiona % Recalla % F -scorea % Precisiona % Recalla % F -scorea %
Algorithms Old New Step- (↑)

Wise
Old New Step- (↑)

Wise
Old New Step- (↑)

Wise
Old New Step- (↑)

Wise
Old New Step- (↑)

Wise
Old New Step- (↑)

Wise
Column No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Threshold 97 2 38 (1800) 41 100 64 (-36) 57 5 48 (860) 44 0 38 (-) 29 0 67 (-) 35 0 48 (-)
TSD 73 26 75 (188) 40 100 84 (-16) 52 41 79 (93) 75 67 46 (-31) 88 50 98 (96) 81 57 63 (11)
Diff 31 8 24 (200) 52 98 83 (-15) 38 16 37 (131) 71 7 64 (814) 72 31 72 (132) 72 12 68 (467)
MA 49 12 50 (316) 65 100 93 (-7) 56 22 65 (195) 63 90 61 (-32) 83 19 91 (379) 72 31 73 (135)
WMA 91 21 83 (295) 65 100 93 (-7) 76 35 87 (149) 94 92 89 (-3) 81 19 89 (368) 87 31 89 (187)
EWMA 94 24 86 (258) 66 100 93 (-7) 78 38 89 (134) 97 94 92 (-2) 81 19 84 (342) 88 31 88 (184)
Holt-Winters 87 21 63 (200) 90 100 93 (-7) 88 36 75 (108) 74 97 55 (-43) 100 40 97 (143) 85 57 70 (23)

a true positive (TPa), true negative (TNa), false positive
(FPa), and false negative (FNa). We calculated precision,
recall, and F-score as follows: precisiona = TPa

TPa+FPa
,

recalla = TPa

TPa+FNa
, F -Scorea = 2∗precisiona∗recalla

precisiona+recalla
.

1) Choices of Detectors and Parameters: In the studied
scenario, operators have deployed seven anomaly detectors
for the 288 KPI streams, as shown in Table II. All the seven
anomaly detectors are widely-used in web-based software
systems beyond the search engine [1]. Note that StepWise
is not limited to the seven anomaly detectors and instead
it can be applied to all anomaly detectors. In this paper,
our objective is to adapt to expected concept drifts for all
anomaly detectors, instead of improving the accuracy of
a specific anomaly detector by tuning its parameters. We
believe the set of the seven anomaly detectors is general
enough to represent other kinds of anomaly detectors.

For each KPI stream, operators have previously configured
the parameters of its anomaly detector best for F-score.
Without StepWise, the parameters of anomaly detectors
remain unchanged after the concept drift, resulting in a lot
of false alarms.

2) Evaluation Results and Analysis: As aforementioned,
although the parameters of anomaly detectors are carefully
tailored by operators before each concept drift, they are
no longer suitable for the new concept after the concept
drift, because the data distribution has greatly changed.
As Table III shows, without concept drift adaption, the
F -scorea of each anomaly detector degrades dramatically
after the concept drift, whether it is an up-shift or a down-
shift (see the 7th, 8th, 16th and 17th columns in the table).

StepWise improves the F -scoreas of all anomaly de-
tectors in the new concept by 206% on average (see the
8th, 9th, 17th and 18th columns in Table III), and makes
them comparable with those of anomaly detectors in the old
concept. The results are quite satisfactory to operators based
on an on-site investigation.

More specifically, with StepWise the precisions of
anomaly detectors increase dramatically after up-shifts
(see the 2st, 3nd columns in Table III). However,

Table IV: The number of false positives (#FPa) and false
negatives (#FNa) in the New concept without StepWise and
in the new concept with StepWise, respectively.

Drift type Up-shift Down-shift
False type #FPa #FNa #FPa #FNa

New Step-
Wise

New Step-
Wise

New Step-
Wise

New Step-
Wise

Column No. 1 2 3 4 5 6 7 8

Threshold 52678 1645 0 535 0 2519 2004 661
TSD 4144 418 0 230 414 2294 998 28
Diff 15308 3910 16 245 7847 1338 1371 544
MA 10360 1418 0 104 19 1202 1622 166
WMA 5514 282 0 104 13 212 1622 219
EWMA 4805 233 0 104 9 136 1622 312
Holt-Winters 5507 852 0 104 23 1599 1195 55

without StepWise the recalls of anomaly detectors witness
increases after up-shifts (see the 4th and 5th columns
in Table III), which are higher than those of anomaly
detectors with StepWise (see the 5th and 6th columns
in Table III). On the contrary, with StepWise the recalls of
anomaly detectors rise greatly after down-shifts (see the
14th, 15th columns in Table III). In addition, StepWise
decreases the precisions of most anomaly detectors (except
for Threshold and Diff) after down-shifts (see the 11th and
12th columns in Table III).

To explain the above results, for each anomaly detector
(after the concept drift), in Table IV we list the number
of false positives and false negatives, without StepWise
and with StepWise, respectively. As shown in the 1st
column of Table IV, after up-shifts each anomaly detector
generates a large number of false positives when without
executed StepWise. In this way, most anomalies are recalled.
That is to say, after up-shifts the anomaly detectors are so
sensitive that they successfully detect almost all anomalies
(see the 3th column of Table IV), which results in very high
recall ratios, at the cost of a large number of false alarms.
For example, as shown in Fig. 10 (a), the MA method
which is without the adaption of StepWise remains the same
sensitivity (in terms of the width of detection boundaries)
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Figure 10: The detection boundaries of MA during up-shift
and down shift, with and without StepWise, respectively.

after the up-drift. As a result, the method determines a lot
of normal KPI data points as anomalies. However, with the
adaption of StepWise, MA can quickly catch up with the
“correct” detection boundaries (§V-D). Similarly, we can
explain why StepWise decreases the precisions of anomaly
detectors after down-shifts, with the data listed in the 5th,
6th, 7th and 8th columns of Table IV and the example shown
in Fig. 10 (b).

C. Evaluation of Concept Drift Detection

As described in §IV-A, we propose a concept drift detec-
tion method, iSST-EVT, which does not require parameter
tuning or threshold of change score. To demonstrate the
performance of iSST-EVT, we compare it with iSST in
FUNNEL [29], which has been deployed and proved to be
efficient to detect concept drifts during software upgrades
and configuration changes in large web-based software
systems but need to tune threshold per-KPI-stream.

Similarly to the evaluation of overall system in §V-B, we
also use precision, recall and F-score which are intuitively
interpretative to evaluate the performance of iSST-EVT
and iSST. Note that concept drift detection is different
from anomaly detection, and thus we re-define precision,
recall and F-score for concept drift detection. Specifically,
a concept drift detection algorithm is a binary classifier,
which gives yes or no decisions. We use true positive (TPc),
true negative (TNc), false positive (FPc), and false negative
(FNc) to label the outcome of an algorithm. Based on

Table V: Comparison of precision, recall, F-score, and
threshold tuning time between iSST-EVT and iSST

Method iSST-EVT iSST

Precisionc 91.33% 91.09%
Recallc 90.29% 88.46%
F -scorec 90.81% 89.76%
Running time per time window 540.5µs 238.6µs

Avg. tuning time per KPI stream 0 ∼ 15 min

Table VI: Adaption lag of StepWise, which is the summation
of the delay of the concept drift detection and running the
RLM algorithm

Adaption lag Delay of the concept drift detection Delay of running RLM

∼ 360.015s ∼ 360s 0.015s

ground truth provided by the operators, the true positive is
the concept drift confirmed by operators and detected by
the algorithm. If the concept drift is labeled by operators
while the algorithm neglects it, we label the item as a false
negative. The false positive is the concept drift detected
by the algorithm but it is not a concept drift labeled by
operators. In the true negative, both operators and algorithm
decide that the item is not a concept drift. We calculate
Precisionc, Recallc, and F -scorec in the same way as
Precisiona, Recalla, and F -scorea of anomaly detection,
because they just have slightly different definitions on
counting true positive, true negative, etc..

Table V shows the comparison results of accuracy
between iSST-EVT and iSST, in terms of Precisionc,
Recallc, and F -scorec. For a fair comparison, the threshold
of iSST of every KPI stream is set as the best for accuracy
(F-score). We can observe that iSST-EVT and iSST achieve
very close precision, recall, and F-score.

As mentioned in §IV-A, the threshold of iSST has to
be manually tuned for every KPI stream. For each KPI
stream, it approximately takes fifteen minutes for operators
to tune its threshold. As millions of KPI streams should be
monitored to determine whether they are impacted by the
concept drift, tuning threshold for all KPI streams is almost
infeasible. Therefore, it is very important that thresholds
are automatically tuned for the sake of scalability and
deployability. Our proposed iSST-EVT does not need to
manually tune any threshold or parameter, and thus it is
appropriate in our scenario.

D. Evaluation of Adaption Lag

To see how “rapid” StepWise is, we evaluate the adaption
lag of StepWise, which is defined as the period between
when a concept drift occurs and when the anomaly detector
is adapted. Apparently, it is the summation of the delay of
detection and adaption components.

The delay of detecting the concept drift is dominated by
the window size of iSST, which is set to 6 in our scenario



according to §IV-A. Since the KPI data is sampled every
minute, for StepWise (iSST-EVT) the delay of detecting the
concept drift is at most six minutes (running time per time
window is 540.5 µs in Table V).

To calculate the average delay of running the RLM
algorithm, we implement the algorithm with C++ and run
the program on a Dell PowerEdge R420 server with an Intel
Xeon E5-2420 CPU and a 24GB memory. For each KPI
data point, the average delay of running the RLM algorithm
is 0.015s, which is negligible compared to the delay of
the concept drift detection. In this way, the adaption lag
of StepWise is ∼ 360.015s, which is quite acceptable by
operators based on the on-site investigation.

VI. RELATED WORK

Anomaly detection: Time series anomaly detection has
been an active research topic [31]. Considering the perfor-
mance after concept drift, anomaly detection methods can
be classified into the following three categories. However,
all of them are not satisfied to operators’ need of robust
and rapid adaption to the expected concept drift for online
anomaly detection. First, some of the anomaly detection
methods are designed for processing data in batches or
providing a historical analysis, e.g., Twitter’s S-H-ESD [4],
Netflix’s RPCA [5]. They are not suitable for the online sce-
nario. Second, based on supervised learning, Opprentice [1],
Yahoo’s EGADS [6] and Donut [30] train an ensemble
detectors or neural network offline and use this model for
online detection. However, they can mitigate the impact
imposed by concept drift after retraining the model. They
have high computational overhead and are not rapid for
real-time requirements. Third, some studies like [7], [32]
proposed methods that keep a short time detection memory
in order to quickly adapt to the concept drift, while they
cannot record the historical anomaly pattern which is not
robust to detect anomalies.

Change detection: Previous studies focused on the un-
supervised change detection are always parametric or have
high computational cost [17], for example, CUSUM [18],
MRLS [19], iSST [9], [33] and Yahoo’s EGADS [6].
However, all the above methods give the change score and
it is hard to determine above which score is a significant
change in order to apply on the large-scale KPI streams
automatically.

Concept drift adaption in other fields: The study of
concept drift in online classification scenario has attracted
considerable attention in recent years. [8] summarizes that
an adaptive learning algorithm can typically have four
components, i.e., memory, change detection, learning, and
loss estimation. The intuitive method of adapting concept
drift is to forget old information [34]. The change detection
component is always necessary for explicit drift detection in
such a rapid way [35]. The learning component means to
generalize from examples and update the predictive models

from evolving data, e.g., retraining the new data [36] or
incremental adaption updates of the model [37]. Supervised
adaptive systems rely loss estimation based on environment
feedback [38]. However, these methods are not suited for
the KPI anomaly detection scenario because the learning-
based algorithm needs the classification feedback in real-
time. Besides, we cannot forget the old concept but rather
make good use of it.

VII. CONCLUSION

In this paper, we present StepWise, a framework for
robustly and rapidly detecting concept drift and adapting
anomaly detection algorithms to the new concept after
concept drift. Our key observation is that most service
KPIs are strongly periodical, concept drift detection can
be converted into spike detection in the change score
stream and the distributions in the old concept and the
new one are statistically correlated. Based on that, StepWise
successfully addressed interesting challenges in the adaption
for concept drift in terms of scalability, robustness and
adaption delay through two novel approaches, iSST-EVT and
adaption algorithm. Specifically, there is no manual tuning
for threshold or parameter in the iSST-EVT. In addition,
StepWise rapidly adapts all types of anomaly detectors after
concept drift, instead of tuning parameters for a specific
anomaly detector. Our evaluation experiments demonstrate
StepWise that not only improves the F-score of anomaly
detectors by 206% over a baseline without any concept drift
detection, but also is rapid with a detection lag of around 6
minutes.
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