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Abstract—Trajectory data has been widely collected via mobile
devices and publicly released for academic research and commer-
cial purposes. One primary concern of publishing such a dataset
is the privacy issue. Previous protection schemes mainly focus on
preventing re-identification attack, which utilizes the uniqueness
of trajectories. However, the correlation between trajectories,
which has not been given much attention to before, could also
give rise to serious privacy leakage. Recent studies have proved
that it is possible to identify social relationship, de-anonymize
trajectories or even infer user’s locations by analyzing the
correlation between users’ trajectories. We identify the serious
privacy problem of social relationship leakage caused by what
we call social relationship attack and aim to protect social
relationship information, which cannot be protected by existing
algorithms. We contribute to the design of a new privacy model
and an effective system to deal with social relationship attack
and re-identification attack simultaneously while maintaining
high data utility. We propose a SlidingWindow algorithm to
merge trajectories according to their social-aware distance, which
concerns both the spatiotemporal distance and social proximity.
Evaluations of two trajectory datasets under different scenarios
demonstrate that our system provides more than 1.84 times
privacy protection at the cost of only 2.5% data utility loss.

Index Terms—Privacy preserving data publishing, privacy,
trajectory, social relationship

I. INTRODUCTION

With the prevalence of mobile devices and localization
technologies, mobile user trajectories have been collected
through cellular network and applications running on mobile
devices. Various mobile user trajectory datasets have been pub-
lished [1–3] for academic research and industrial engineering.
The trajectory information is valuable in many applications,
including intelligent transportation [4], urban computing [5]
and mobile service provisioning [6–10], etc. Especially for
the mobile service, we can provide better service with the
knowledge from data. For example, [7] offers services like
sharing life experiences and recommending travel and location
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by analyzing people’s trajectories. In the future, when we are
in an era of big data, utilizing information from trajectory
data to improve mobile service will be more and more
important. However, such data often discloses users’ privacy,
such as telling users’ preferred locations, mobility patterns, or
even their social relationships. Thus, the primary concern of
publishing such dataset is how to preserve users’ privacy.

Unfortunately, previous technologies concentrating on pre-
venting re-identification attack do not completely preserve
users’ privacy. Re-identification attack aims to re-identify
individuals from the anonymized dataset with additional in-
formation, i.e., spatiotemporal points. Due to the uniqueness
of individual trajectory, the attacker might be able to suc-
cessfully re-identify the individual by matching the additional
information with the trajectories in the dataset [11, 12]. [11]
shows that four unique spatiotemporal points are enough to
identify 95% of the users in a dataset with one million users.
To address this problem, k-anonymity, l-diversity and even
t-closeness [13–15] are proposed to diminish the uniqueness
of mobile users’ trajectories. Although these technologies do
prevent privacy leakage caused by releasing user’s unique
trajectory, the correlation between different trajectories could
also lead to serious privacy leakage. For example, some news
have noticed this privacy issue: "Cell phone tracking can reveal
our private associations and relationships with one another",
"make note of whenever people being tracked crossed path
or spent time together, showing who our friends, associates
and lovers are", "infers relationships based on mobile location
data", on the CNN [16] and Washington Post [17]. To make
matters worse, recent studies [18–25] have proven that by
analyzing the correlation among trajectories, it is possible to
infer social relationships of mobile users. For example, [18]
utilized spatiotemporal patterns in users’ physical proximity
and calling patterns to accurately infer the friendships of
mobile users with 95% accuracy.

Inferring social relationships by utilizing the correlation
of trajectories, we name as social relationship attack, is a
serious privacy breach. We spend most of our time with friends
and families. Consequently, it is easier to observe higher
correlations of our mobile trajectories with friends and families
than strangers’. Different from the online social network,
this kind of relationship is hidden in the trajectory dataset
and is not voluntarily disclosed by the user. Besides, it is
difficult for users to hide any of these friends because they are
inherent in trajectories. Therefore, the correlations extracted
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from the trajectory data have the potential of revealing social
relationships. Aware of such serious privacy leakage, it is
urgent to protect mobile users from social relationship leakage.
However, existing trajectory anonymization algorithms and
solutions, which only consider the uniqueness of trajectories,
do not consider the correlation of trajectories and as a result,
cannot prevent social relationship attack. Therefore, a new
privacy model to protect social relationship is desperately
needed.

We aim to propose a new privacy model to defend against
social relationship attack and re-identification attack when
publishing the trajectory data. It is a challenging problem
because of the following three reasons. First, different social
relationship attack methods use different features of cor-
relation to infer the social relationship. Thus, we do not
know what kind of correlation is the underlying reason for
social relationship leakage. Second, we need to make a trade-
off between reduced uniqueness and increased correlations
between trajectories. Preventing social relationship attack by
decoupling the correlation between trajectories will increase
the uniqueness of trajectories, which makes re-identification
attack easier. Finally, techniques to prevent social relationship
attack and re-identification attack will decrease the data utility,
which means that the value of the released data reduces.

In this paper, in order to prevent both the social relationship
attack and re-identification attack caused by the correlation
and uniqueness properties of trajectories, we define a new
uniform privacy model and formally formulate such privacy
preservation problem. By addressing the above three chal-
lenges, we propose a computationally efficient system to
protect the released data from social relationship attack and
re-identification attack. Our major contributions of this paper
can be summarized as the following three-folds:

• To the best of our knowledge, we are the first to propose
a novel privacy model for trajectory data publishing,
which considers both social relationship attack and re-
identification attack by satisfying k-anonymity at a spe-
cific relationship-preserving level.

• We propose a novel system to generalize trajectories,
which effectively reduces the correlation of trajectories
and the uniqueness as well. To the best of our knowledge,
this is the first system to protect trajectory data from
both social relationship attack and re-identification attack,
which on the other hand without disrupting data utility.

• We evaluate our system under two real-world scenarios of
mobility datasets releasing. The results demonstrate that
our system successfully protects social relationships while
preserving considerable utility, which provides more than
1.84 times privacy protection at the cost of only 2.5% loss
of data utility.

The rest of the paper is organized as follows. §II introduces
the limitations of achieving k-anonymity only considering
spatiotemporal closeness and describes the attack and privacy
model. §III defines the problem. §IV describes our anonymiza-
tion system for trajectory datasets. §V introduces the datasets
and presents the evaluation results. §VI summarizes the related
work and finally §VII concludes the paper.

II. MOTIVATION

Existing anonymizing technologies mainly achieve the
widely used privacy criterion k-anonymity only considering
spatiotemporal closeness, which is not enough to protect
data from social relationship attack. In this section, we first
introduce the attack model and two state-of-the-art imple-
mentations. Second, we briefly introduce k-anonymity and
its limitation with an experiment to confirm our judgment.
More privacy risk caused by the trajectory correlation is also
discussed. Finally, we introduce our privacy model.

A. Attack Model

In social relationship attack, the attacker intends to infer
real-world social relationships from trajectory data by utiliz-
ing properties of mobility trajectory. The attack model is a
classification of friends and non-friends, which means it is
a binary classification problem. Previous studies have shown
two specific and effective attacks.
• MLI (Modified LOC A Inference): LOC A [21] means

Location-Oblivious Co-location Attack. It is an algorithm
used to infer social relationship from trajectories without
physical locations. It first calculates the number of user
transitions between locations. More transitions between
two locations indicate that they are closer, which is in
contrast to the meaning of spatial distance. Then they
compute the interactions between user pairs by adding
up the location transitions in their trajectories and regard
the users with a large number of interactions as friends.

• CAI (Context-Aware Inference): It’s a method to identify
friendship from trajectories by combining spatiotemporal
context information with physical proximity [18]. It uti-
lizes two factors to capture most of the spatiotemporal
patterns of physical proximity: proximity at work during
the daytime labeled "in-role" and off-work proximity in
the evening and on weekends labeled "extra-role". Each
factor can be used to distinguish friends and non-friends.
For example, a pair of users with have high "extra-
role" means they have many off-work interactions and
are probably friends.

B. Limitations of only Considering Spatiotemporal Closeness

k-anonymity is a state-of-the-art criterion in protecting all
kinds of datasets from re-identification attack. It requires
that each user in a dataset must be indistinguishable from
at least k-1 other users in the same dataset. In the field
of trajectory dataset protection, some algorithms achieved k-
anonymity only considering spatiotemporal closeness to pre-
vent re-identification attack [26, 27]. The main idea is merging
spatiotemporal similar trajectories so that the attacker cannot
re-identify any of them and the data utility loss is minimum.

However, the correlation between trajectories reveals social
relationships among users even after k-anonymity achieved.
While achieving k-anonymity by considering spatiotemporal
closeness only, people with social relationships usually have
more similar trajectories and they are more likely to be
merged. Thus, the similarity of friends’ trajectories will not
decrease after anonymization.
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Fig. 1: Observed precision and recall of social relationship classification using two social relationship inference algorithms on original Wi-Fi
dataset and k-anonymized Wi-Fi dataset. (k=2,5 and m=8).

We experiment on a Wi-Fi trajectory dataset to confirm that
k-anonymity only considering spatiotemporal closeness cannot
prevent social relationship attack. The dataset contains users’
trajectories in campus and their social relationships. We utilize
MLI and C AI to infer social relationship from trajectories on
both the original dataset and the k-anonymized dataset. The
algorithm to achieve k-anonymity is a simplified version of
our algorithm with the social relationship part removed. The
details of the algorithm are described in section §IV. We use
precision and recall to measure the results of the attack. A
higher value of precision(recall) indicates the attack is more
successful. The details of the measurement are described in
section §III. The classification results are shown in Figure 1.
Although 2-anonymity already satisfies the indistinguishability
principle, higher values of k ensure higher privacy levels at
the cost of accuracy. [26] shows that the anonymized dataset
becomes hardly exploitable when k > 5. Thus we choose k
to be 2 and 5. From the results, we can observe that even
protected with 5-anonymity, there are still 20% pairs of users
whose social relationship can be inferred with a precision of
0.74 in the first algorithm and 10% of users whose social
relationship can be inferred with a precision of 0.61 in the sec-
ond algorithm. In addition, the results of 2-anonymized dataset
are very close to that of the original dataset, which means k-
anonymity doesn’t decrease the accuracy of social relationship
classification. Thus, the social relationship privacy leakage is
still serious after k-anonymized. In summary, anonymization
with k-anonymity, which only considers the uniqueness of the
trajectories and ignores their correlations, is not enough to
prevent social relationship privacy leakage.

In addition to the directly inferring relationship from trajec-
tories, there are more privacy risks from social relationship
attack. First, your friends will leak your locations. If the
attacker infers that two users are friends, one’s trajectory can
be utilized to improve the inference of the other’s since friends
tend to appear together. Many researchers have successfully
predicted users’ locations with the location information of
their friends [28–30]. Friends inferred from trajectory dataset
tends to have more co-occurrences and it is easier to predict
locations from each other. Second, the correlations of trajecto-

ries can be used to de-anonymize trajectories. [31] finds that
trajectories can be de-anonymized given an easily obtained
social network. The key insight is that the internal networks of
relationship in trajectory dataset can be structurally correlated
with a social network. 80% of users in the trajectory dataset
are identified precisely.

Thus, anonymizing trajectories without wiping off the social
relationship is not enough to prevent these attacks.

C. Privacy Model

The ultimate goal of our work is to achieve Privacy
Preserving Data Publishing (PPDP), i.e., the criterion for
the trajectory data publishing situation requiring that the result
should be both privacy-preserving and data utility keeping
[32]. It insists that each published record corresponds to an
existing individual in real life. Thus, our privacy model should
be consistent with the goal of PPDP while preventing both
social relationship attack and re-identification attack, which
can be summarized as the following two aspects.

First, in terms of privacy preserving, the anonymized tra-
jectory data should be able to prevent social relationship
attack, which indicates that the accuracy of the above attacks
on the anonymized dataset should be low enough such that
the attacker can only infer very limited social relationships.
Low inference result means the correlations between friends
are decoupled and the attacker cannot apply de-anonymizing
attacks either. In trajectory data, the key factor of correlation
is co-occurrence. In additional, re-identification attack should
also be prevented, which means each trajectory should not be
distinguishable with other trajectories.

Second, according to PPDP, we need to maintain truthful-
ness at the record level, i.e., spatiotemporal points in each
mobile trajectory must map to locations actually visited by
the user at that time. Randomized, perturbed, permuted, or
synthetic data does not satisfy this requirement. Therefore, we
only use generalization to anonymize the raw trajectory data,
which relies on reducing data spatiotemporal precision so as
to make points of different trajectories identical.

Overall, we seek a method to reduce social relationship
inference accuracy and prevent re-identification attack while
maintaining the truthfulness of trajectories.
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III. PROBLEM FORMULATION AND CHALLENGES

Now, we first formally introduce the privacy-preserving
trajectory data publishing problem, and then discuss the chal-
lenges need to be solved with respect to preventing social
relationship attack.

A. Problem Formulation

The input to this problem has two parts: a set of users’ tem-
poral discrete trajectories and the social relationships among
them, which needs to be protected. The trajectory dataset,
denoted as D, can be denoted as a matrix (Table I) with users
on the rows and time slots on the columns. Each trajectory has
M time slots during the same period of time. Each element
of the matrix is a specific location that the individual visited
at that time slot, with l ti denoting the t-th location of user i.
If there is no record at that time slot, the element is N/A.
The social relationships are presented as a graph (an example
in Figure 2) with vertices denoting users and edges denoting
their relationships (friends or non-friends). We represent the
graph as G = {U, R}, where U = {u1, u2, ..., uN } is the set of
user vertices and R = {r12, r13, ..., rNN } is the set of edges.
ri j = 1 means ui and u j are friends and ri j = 0 means they
are not friends.

TABLE I: A simple example of trajectory dataset with users ui and
u j with M time slots.

T1 T2 T3 ... TM

ui l1
i N/A l3

i ... lMi
uj l1

j l2
j l3

j ... lMj

Fig. 2: An example of social relationship graph with four nodes.

There are co-occurrences between different trajectories. For
example, for ui , u j and a set of time slots Tco , l ti = l tj, t ∈ Tco ,
where Tco counts all the time slots that ui and u j are in
the same location. The larger size of Tco means ui and
u j are stronger correlated. Besides, the semantic information
of time and location also delivers different information on
users’ relationship. The attacker only has access to the tra-
jectory dataset. By combining all the trajectory correlation
information, including the number and semantic information
of co-occurrences, the attacker can reconstruct a social re-
lationship network R′ which may be very close to the real
social relationship network R. Our goal is to decouple the
correlations between friends and make the obtained network
R′ by the attacker differs greatly from R so as to prevent
social relationship from being inferred. Through our specific
generalization method of preserving privacy, we are going to
achieve the following goals:

• To prevent social relationship attack, the social relation-
ship inference accuracy should be very low. Inferring
social relationship is a problem of binary classification,
which can be achieved by some existing classification
methods [18, 21]. Our goal is to make r ′i j = 0 in R′

where ri j = 1 in R as many as possible. To quantify it,
we use the precision of classification result defined as
follows,

Precision =
T P

T P + FP
, Recall =

T P
T P + FN

, (1)

where T P means True Positive representing the size
of {(i, j) |r ′i j = 1, ri j = 1}, FP means False Positive
representing the size of {(i, j) |r ′i j = 1, ri j = 0} and
FN means False Negative representing the size of
{(i, j) |r ′i j = 0, ri j = 1}. To consider both the precision
and the recall, we use the F1 score which is defined as
follows,

F1 = 2 ·
Precision · Recall
Precision + Recall

, (2)

A smaller value of F1 score means the better performance
of the protection method.

• To avoid re-identification attack, the generalized trajecto-
ries should meet the requirements of k-anonymity. To be
specific, each trajectory should be indistinguishable with
at least other k-1 trajectories. The value of k measures
the protection level. Obviously, larger k provides stronger
protection.

B. Challenges

Since the social relationship protection problem we formally
formulated has not been investigated before, it is challenging
to prevent both social relationship and re-identification attacks
while preserving data utility as required. Specifically, we face
the following three challenges.

First, in order to prevent social relationship leakage, we
need to decouple the correlation between friends’ trajec-
tories. However, selecting proper features for representing
trajectory correlation is not easy. Correlation in trajectory
is mainly revealed from co-occurrences of two trajectories,
which means they appear at the same location and time.
More co-occurrences between two trajectories usually indicate
they are more closely correlated. However, spatiotemporal
information, containing the location and time a co-occurrence
happens, also matters. For example, a co-occurrence at a
residential area at 1:00 am contributes more to indicate a social
relationship to that happening at a shopping mall at 1:00 pm.
The existing methods of social relationship inference are based
on different co-occurrence features. Most of them only utilize
the spatiotemporal distance between trajectories [19, 21],
which do not count the spatiotemporal information of co-
occurrences. Some of them use more features such as semantic
information of time and location[18]. As a result, there is
no prior knowledge to help us choosing correlation features
to prevent these different attack methods, which is the first
challenge we faced.

Second, preventing social relationship attack is contradictory
with preventing re-identification attack, thus preventing these
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Fig. 3: The designed system for social relationship protection and trajectory anonymization.

two attacks at the same time is even more challenging.
Preventing re-identification attack usually needs trajectories
to be similar, which increases the correlation between tra-
jectories and causes more severe social relationship leakage.
For example, two friends’ trajectories are made similar to
avoid being re-identified, but their friendships are more easily
to be inferred since their trajectories are stronger correlated
due to the similarity. Such operations decrease the probability
of attacks that identify users by exploiting uniqueness of
trajectories at the cost of increasing the probability of social
relationship attack based on the correlations. We need to
solve this contradictory by balancing these two factors when
designing our system.

Third, techniques to prevent social relationship attack and
re-identification attack will decrease the data utility. Gen-
eralization methods to diminish trajectory’s uniqueness to
avoid re-identification attack will reduce the spatiotemporal
granularity of trajectory data. Besides, if preventing social
relationship attack by avoiding merging friends’ trajectories,
data utility will be further reduced. Because merging strangers’
trajectories causes more utility loss. Existing anonymization
methods without considering social relationship attack will
be no longer useful. In other words, we have to strike a
balance between privacy protection and data utility to ensure
the utilities of data while preventing both social relationship
and re-identification attacks.

IV. ANONYMIZATION ALGORITHM

We address the above three challenges and design a
novel system for social relationship protection and trajectory
anonymization. We first present the key ideas of our system
at a high level and then introduce the detailed algorithms.
Figure 3 shows an overview of our system.

A. System Overview

As mentioned in the first challenge, the correlation between
trajectories does not have a uniform definition in different
attack methods. To identify proper features to represent the
correlation between trajectories, we extract the core idea of

different attacks, i.e., what is the difference between friends’
trajectories and strangers’ trajectories. First, since we target
at the scenario of individuals in a specific region, e.g., a
city, friends usually have more co-occurrences than strangers.
Second, friends meet each other publicly or privately while
strangers usually meet only publicly. Therefore, we calculate
the sensitivity of each co-occurrence and regard it as a weight
to the correlation. Sensitivity represents the diversity of users
at that time and location, which reveals how private the
co-occurrence is. In summary, the definition of correlation
includes both the number and sensitivity of two trajectories’
co-occurrences. The correlation module in Figure 3 computes
the correlation between two trajectories to measure the social
distance between them. It takes two inputs: co-occurrence sen-
sitivity and number. The former is the sensitivity of their co-
occurrences and the later is the number of their co-occurrences.
More details will be introduced in §IV-B1.

The second module, social-aware distance, is designed
to measure the distance between two trajectories concern-
ing both the spatiotemporal distance and social proximity.
As mentioned before, preventing social relationship attack
is contradictory with preventing re-identification attack due
to their opposite requirements. To solve this challenge, we
achieve both protection simultaneously by carefully choosing
trajectories to merge. Our goal is to merge spatiotemporally
closed trajectories of strangers, which will increase the corre-
lation between them, in other words, decrease the correlation
between friends. To this end, we propose a new distance
between trajectories: social-aware distance, which considers
both the correlation of friends’ trajectories and their spa-
tiotemporal distance. Further, the correlations of friends are
diverse. Some friends are closely correlated and easily to be
identified while others are not. Thus, we also consider the
intensity of social relationships, which means giving close
social relationships stronger protection. Overall, strangers with
close spatiotemporal distance tend to have short social-aware
distance. More details about this module will be introduced in
§IV-B2.

To deal with the utility loss, we design a SlidingWin-
dow algorithm to achieve km-anonymity rather than full-



1932-4537 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2019.2907542, IEEE
Transactions on Network and Service Management

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 6

…

m

User 1 

User 2 

User3

User N 

sub-trajectory

…

…

Fig. 4: The procedure of anonymizing the whole trajectory using
sliding window.

length anonymization. km-anonymity requires that for random
continuous m spatiotemporal points of a trajectory, there are
at least k-1 other trajectories sharing the same m points. If
a dataset achieves km-anonymity, attackers with background
knowledge of less than m continuous spatiotemporal points
are not able to re-identify users. We propose km-anonymity
as the privacy criterion to maintain more data utility, because
merging short trajectories causes less data utility loss than
merging long trajectories. The core idea of this algorithm
is that each time we achieve k-anonymity in sub-trajectories
in an m-length window (Figure 4). With short trajectories to
anonymize in each window, the data utility loss can be kept
low with some sacrifices of the privacy protection. The Slid-
ingWindow module in Figure 3 is to achieve km-anonymity by
SlidingWindow algorithm. Its input is the original trajectory
dataset and output is km-anonymized trajectory dataset, which
is the final result of our system. More details about this module
will be introduced in §IV-B3.

In summary, we design a novel system to prevent social
relationship attack and re-identification attack in Figure 3. The
primary process is generalizing trajectories via SlidingWindow
algorithm. At the top of the system, we first calculate the corre-
lation between trajectories and combine it with spatiotemporal
distance into the social-aware distance, which is utilized as a
distance metric in SlidingWindow algorithm.

B. Algorithm

1) Entropy-based Correlation: We first investigate the sen-
sitivity of each co-occurrence and then derive the correlation
between trajectories.

Since an individual’s movements usually have weekly pe-
riodicity, we only consider time slots within one week. Each
time slot Tt is mapped to a weekly periodic time slot Tw

t .
For example, each Monday 8:00∼9:00 during the time span
of the dataset is mapped to the same time slot: Monday
8:00∼9:00. Suppose there are two users a and b. We denote
La and Lb as their locations at this time slot, and denote
Lθ as the union of La and Lb , i.e., Lθ = {La, Lb }. Thus,
the co-occurrence is denoted as (Lθ,Tw

t ). So how to quantify
the sensitivity of the co-occurrence? Empirically, if there
are many different users visiting location Lθ at Tw

t , then
this location is not sensitive at this moment. This is very
similar to the definition of chaos, which can be well described
by Shannon Entropy. Since higher sensitivity means lower

chaos, we use Shannon Entropy’s reciprocal to define the
sensitivity. Shannon Entropy of a discrete random variable X
with possible values {x1, x2...} and probability mass function
P(X ) is defined as H (X ), which can be explicitly be written
as

H (X ) = −
∑
i

Pi log(Pi ). (3)

In our situation, the set of users who have visited Lθ at Tw
t is

denoted as ULθ,T
w
t

. For each user u ∈ ULθ,T
w
t

, we calculate
the proportion of the number of visits to the total visit times
of (Lθ,Tw

t ) as follows,

PLθ,T
w
t

(u) =
Vu∑

u∈ULθ,T
w
t

Vu
, (4)

where Vu denotes the number of visit times of user u at
(Lθ,Tw

t ). With each user’s proportion of visit times, we
calculate Shannon Entropy and use its reciprocal to represent
the sensitivity, denoted as sLθ,Tt , as follows,

sLθ,Tt =
1

−
∑

u∈ULθ,T
w
t

PLθ,T
w
t

(u) log(PLθ,T
w
t

(u))
. (5)

As an example in Figure 5 illustrated, at time slot Tw
1

and location L1, there are three distinct visitors who visited
this location three times, twice and once, respectively. Their
proportions of visit times are 3/6, 2/6 and 1/6. According to
(5), sL1,T1 = 0.6309.

Fig. 5: An example of co-occurrence sensitivity, where E(Lθ,Tw
t )

denotes the entropy of (Lθ,Tw
t ).

Then, we add up the co-occurrence sensitivity to represent
the correlation between the trajectories of a and b, defined as
Sab , can be expressed as follows,

Sab =
∑
t ∈Tco

sLθ,Tt , (6)

where Tco represents the time slots of co-occurrence between
user a and user b. Thus, Sab includes not only the number but
also the sensitivity of the co-occurrence. A large value of Sab
indicates that a and b’s trajectories are strongly correlated.

2) Social-aware Distance: In order to prevent social re-
lationship attack and re-identification attack simultaneously,
we use customized generalization methods, which means
merging carefully chosen trajectories. To this end, we propose
a new distance metric, i.e., social-aware distance, between
trajectories. First, we calculate the spatiotemporal distance
that is crucial for maintaining data utility while generalizing
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trajectories, because merging spatiotemporal close trajectories
brings less utility loss. Then, we introduce the correlation
between friends’ trajectories to the spatiotemporal distance,
which is the key point of social relationship protection.

Since the trajectory we discuss is temporal discrete, the
spatiotemporal distance between trajectories is the sum of
spatial distance of each time slot. Let us consider the t-th time
slot (Tt ) in the trajectories of user a and b. We utilize La and
Lb to denote their location sets at this time slot, and na and nb
represents the number of locations in La and Lb , separately. In
the original data, La and Lb only contain at most one specific
location. However, as the anonymization process continues, a
and b may already be a merged trajectory consisting of more
than one user, thus La and Lb contain more than one location.
Formally, the spatial distance between La and Lb is computed
as follows,

dt
a,b =

1
na · nb

·
∑

la ∈La,lb ∈Lb

B(la, lb ) , (7)

where B(la, lb ) is the Squared Euclidean Distance between la
and lb . Thus, the spatiotemporal distance between trajectories
is Da,b =

∑M
t=1 dt

a,b
.

Based on the spatiotemporal distance, we define the social-
aware distance. For each point in trajectory, higher sensitivity
indicates that the visitors are less diverse at (Lθ,Tw

t ). We don’t
want to merge these kinds of points of two trajectories when
they belong to friends. Thus, we add the sensitivity factor to
the spatiotemporal distance of two points. Formally, the social-
aware distance of points between user a and b at t-th time slot
is ωt

a,b
= (1+α ·sLθ,Tt ) ·d

t
a,b
, where α is the weight coefficient

of sensitivity. Now, we calculate social-aware distance of
trajectories by adding up point distance of all the time slots.
However, merging trajectories that belong to close friends
will not reduce the correlation between them. Thus, we add
the intensity of the social relationship, which is defined to
distinguish strong and weak relationships, to the social-aware
distance. For all the friend pairs, we calculate the intensity
of their relationship given their trajectories’ correlation using
Bayes’ theorem as follows,

P(F = 1|S) =
P(S |F = 1) · P(F = 1)

P(S)
, (8)

where F = 1 means they are friends and 0 means they are
not friends, S means the correlation between their trajectories
(see Equation 6). P(S) is the proportion of user pairs that have
trajectory correlation of S in all user pairs and P(S |F = 1)
is the proportion of user pairs that have trajectory correlation
of S in all friend pairs. Finally, we compute the trajectory
distance as

Ωa,b = (1 + β · P(F = 1|S)) ·
N∑
t=1

ωt
a,b, (9)

where β is the weight coefficient of relationship intensity.
Suppose a and b are friends. If their relationship is close,

their social-aware distance is larger and less likely to be
merged into one trajectory. The reason is that we add the
intensity of social relationship to trajectory distance and the
sensitivity to point distance. In this way, we combine users’

spatiotemporal distance and social distance together and then
we are able to prevent social relationship attack and re-
identification attack simultaneously.

3) SlidingWindow Algorithm: We propose a SlidingWindow
algorithm to generalize trajectories according to their social-
aware distance. Trajectory generalization will reduce data
utility. Especially after adding the trajectory correlation to the
distance, spatiotemporal similar trajectories of close friends
will have greater social-aware distance, which indicates that
they are going to merge with other trajectories and lead
to more utility loss. To tackle this challenge we design
a SlidingWindow algorithm to apply km-anonymity rather
than full-length k-anonymity to reduce data utility loss. The
key idea of SlidingWindow algorithm is that each time we
anonymize continuous m time slots of all the trajectories
and then move one time slot ahead, until the end of the
trajectories. It looks like moving a sliding window showing
in Figure 4. The advantage of SlidingWindow algorithm is
that at different windows, the trajectory can be merged with
different k-1 other trajectories. On the one hand, it causes
less utility loss because short-length trajectories have closer
distance than long-length trajectories. On the other hand, it
will not increase the correlation between friends’ full-length
trajectories, because friends are merged at a very limited
number of windows and at most windows they merge with
non-friends, respectively.

Fig. 6: An example of anonymizing two adjacent sliding windows.
A,B,C,D,E are different locations and location with a underline means
it is added after generalization (m=2, k=2).

One problem we need to consider is that anonymizing sub-
trajectories in a window will change the former m-1 adjacent
windows which have already achieved k-anonymity. Because
adjacent windows have overlapping time slots. We solve this
problem by only utilizing generalization as the anonymization
technique, which means we only add locations rather than
delete or change locations. Thus, a generalized location still
contains the original location and the sub-trajectories in former
windows are still k-anonymized. For example, in Figure 6, we
apply 22-anonymity on trajectories, which means the length of
the window is 2 and the size of each anonymous set should
be at least 2. Ti means the i-th time slot. We discuss the three
users in two adjacent time slots. At the i-th window, user 1
and user 2 are in the same anonymous set and the merged
sub-trajectory is [A, BC]. Then, at the next window, user 1 is
merged with user 3 and the sub-trajectory of user 1 and user 3
turns to be [BCDE, D], which results in that user 1’s location
(BCDE) at Ti+1 is no longer the same with user 2’s (BC).
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However, as we use only generalization method, they both
contain BC. Thus, if the attacker has the external information
of the victim’s (user 1) locations at Ti and Ti+1, i.e., [A, B],
he will obtain two users (user 1 and user 2) by matching the
records with the dataset, that is to say, he cannot uniquely
identify user 1.

Then we introduce the details of anonymizing sub-
trajectories in a sliding window. The algorithm framework
is detailed in Alg. 1, whose inputs are the sub-trajectory
dataset D and the value of k ,i.e., the target k-anonymity
level and output is the anonymized sub-trajectory dataset G.
The input dataset D contains a series of discrete trajectories.
Anonymized trajectories in the output dataset G have the same
time accuracy as the input trajectories. But each time slot
might have several nearby locations, which is a kind of spatial
generalization. There are three steps in the algorithm: #1)
calculate the social-aware distance of each sub-trajectory pair
according to (9) and store it in a matrix Ω (line 1-3), #2)
cluster no less than k nearest sub-trajectories together as k-
anonymous sets, whose details are shown in Alg. 2, and #3)
merge sub-trajectories in the same k-anonymous set into one
sub-trajectory and add it into the generalized dataset G. The
details are shown in Alg. 3.

In order to reduce utility loss when merging sub-trajectories,
we cluster close sub-trajectories together in Alg. 2. The
input is the social-aware distance matrix Ω and the output
is the k-anonymous sets. Since we have already calculated the
social-aware distance between each pair of sub-trajectories,
we propose an agglomerative clustering method to group sub-
trajectories with close trajectories. Agglomerative clustering is
flexible to stop when the cluster size reaches k. The size of
each anonymous set should not be too large, because merging
more sub-trajectories tends to cause larger utility loss. In
Alg. 2, we first initialize Clusters and FinalClusters to store
clusters with size less than k and larger than k, respectively.
The while loop runs until Clusters is empty, which means all
the clusters’ size is no less than k. At each iteration, the two
sub-trajectory clusters that have not yet been k-anonymized
and have the minimum distance are identified and combined
into θ (line 4,5). If the size of θ reaches k, θ is added to
FinalClusters (line 8). Otherwise, it is added to Clusters and
the distance between θ and other location sets in Clusters is
added to Ω (line 12). The distance between two clusters is the
average distance between their trajectories.

At the final step, we merge all the sub-trajectories in the
same cluster into one sub-trajectory. As shown in Alg. 3,
the inputs are a cluster c and sub-trajectory dataset, and the
output is the merged sub-trajectory. We initialize the merged
sub-trajectory as Mtra j (line 1). Then we merge the sub-
trajectories one by one. Since the sub-trajectories are temporal
discrete trajectories, we only need to merge locations in each
time slot in that window (T) while merging trajectories (line
4-8). If both locations of two sub-trajectories are not empty,
the merged location is the union of these locations. D[i][t]
means ui’s location at time slot Tt . However, if the location is
empty (N/A), this time slot will be filled with L∗ which is the
union of all locations. For example, if the dataset is collected
in a campus, then L∗ is the campus.

Algorithm 1 Anonymizing sub-trajectories

Input: Sub-trajectory Dataset D, Anonymity Criterion k
Output: Generalized Sub-trajectory Dataset G

1: for a, b ∈ D, a , b do . Calculating Social-aware
distance

2: Ω(a, b) ← getTra jDist(a, b)
3: end for
4: Clusters ← Clustering(Ω) . Clustering
5: G← {} . Merging sub-trajectories
6: for c ∈ Clusters do
7: add(G, Merging(c,D))
8: end for

Algorithm 2 Clustering close sub-trajectories

Input: Social-aware distance matrix Ω
Output: k-anonymous sets: FinalClusters

1: Clusters ← {{1}, {2}, {3}, ..., {N }}
2: FinalClusters ← {}
3: while size(Clusters) > 0 do
4: i, j ← argmin(Ω)
5: θ ← {Clusters[i], Clusters[ j]}
6: delete(Clusters[i]), delete(Clusters[ j])
7: if size(θ) ≥ k then
8: add(FinalClusters, θ)
9: else

10: add(Clusters, θ)
11: for Clusters[i] ∈ Clusters do
12: add(Ω, getClusDist(Clusters[i], θ))
13: end for
14: end if
15: delete(Ω, i), delete(Ω, j)
16: end while

In summary, we utilize a window sliding from the head
of a trajectory to the end to anonymize the whole trajectory
step-by-step. At each step, we first calculate the social-aware
distance between each pair of sub-trajectories and then cluster
the close sub-trajectories together as a k-anonymous set.
Finally, trajectories in the same set are merged into one. By
this way, anonymized trajectories meet the requirements of
both social relationship protection and km-anonymity, and
preserve more data utility.

Algorithm 3 Merging sub-trajectories in the same k-
anonymous set

Input: Cluster c, Sub-trajectory Dataset D
Output: Generalized Sub-trajectory: Mtraj

1: Mtra j ← (N/A, ..., N/A)
2: for i ∈ c do
3: for t ∈ T do
4: if Mtraj[t]!=N/A and D[i][t]!=N/A then
5: Mtraj[t] ← {Mtraj[t], D[i][t]}
6: else
7: Mtraj[t] ← L∗
8: end if
9: end for

10: end for
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C. Complexity Analysis
Assuming the dataset has N users and the length of the

trajectory is M . At each sliding window, the computational
complexity is from three steps of the algorithm. First, cal-
culating social-aware distance between every two trajectories
includes calculating the distance of m pairs of spatial points.
As there are N2/2 pairs of trajectories, the computational
complexity is O(N2). Second, as each step of clustering needs
to calculate the distance between the new cluster and the
others, the time complexity is O(N2). Third, merging every
two trajectories includes merging m dyads spatial points. Total
merging time is M , which means the time complexity is
O(M). Overall, the total time complexity is O(M N2), which
is linear in the trajectory length and quadratic in the number of
users. This complexity is competitive in the area of trajectory
dataset anonymization. For example in [26], the computational
complexity of the proposed protection method is O(N2 M2),
which only deals with the re-identification attack problem.

V. EVALUATION

We evaluate the performance of our social relationship
protection system under two different scenarios: social rela-
tionship of students on a campus which covers a small and
closed area, and social relationship of mobile users in a city
which covers a large and open area. Due to the difference of
spatial coverage and user groups, the underlying relationship
characteristics are different. In the campus, most of the users
are students who have close daily interactions, thus the main
relationship between them is friendship. While in a metropoli-
tan city, all the subscribers are citizens and they have complex
relationships. Therefore, we use the social tie to represent the
relationship among them. In these two scenarios, individual
trajectory data is collected from different networks: Wi-Fi
network and cellular network. Therefore, we call these two
datasets as Wi-Fi dataset and Cellular dataset, whose key
features are summarized in Table II. For both datasets, we have
taken the following steps to ensure the ethical considerations
to deal with such sensitive data: firstly, all mobile users’
identifiers are replaced with random sequences to achieve
anonymizations; secondly, we store all the data in a local
secure server; thirdly, only the core researchers regulated by
the strict non-disclosure agreements have access to the data.

To evaluate the effectiveness of our system in preventing
friendship and social tie leakage, we launch the most efficient
attack systems of MLI [21] and C AI [18] to evaluate the
accuracy of social relationship identification.

TABLE II: Major information and key features of two utilized
mobility datasets.

Datasets & Metrics Wi-Fi Dataset Cellular Dataset

Source Wi-Fi network cellular network
Location Tsinghua Univeristy, China Shanghai, China

Time Nov. 2015 - Feb. 2016 Apr. 2016
Duration sixteen weeks one week

User number 10,162 5.90 millions

A. Preventing Friendship Leakage
1) Wi-Fi Dataset and Metrics: This dataset is collected by

polling the device association and probing logs from 2699

access point (APs) in Tsinghua University via SNMP. The
detailed collection method is introduced in [33]. Since each
AP in the campus is carefully named using its semantic
location (building- f loor-room-AP), we can obtain the indi-
vidual’s location by analyzing the AP name. In addition, we
calculate the number of APs in the minimum area covering
two locations and regard it as the relative distance between
them. To obtain reliable friendship, we select 612 users whose
class and dormitory are both accessible, and regard classmates
and roommates as friends, which forms our groundtruth of
friendship. In addition, in order to adapt the dataset to our
system, we group all records in each hour time slot and extract
the most frequently visited location of every mobile user in
each time slot to form a temporal discrete trajectory dataset.

Generally speaking, for an anonymization algorithm, the
privacy level and data utility are two basic metrics to be
considered.
• We utilize parameter k of k-anonymity to indicate the

privacy level against re-identification attack and the
Precision-Recall Curve to show the friendship disclosure
risk, with Precision meaning the percentage of accurately
inferred friend pairs in all the inferred friend pairs and
Recall representing the percentage of accurately inferred
friend pairs in all the actual friend pairs.

• For data utility, since the temporal granularity does not
change after generalization, we only discuss the spatial
utility loss. For Wi-Fi dataset, the location granularity is
hierarchical (building- f loor-room-AP) and the original
spatial granularity is AP level. To better display the
output trajectories, if a trajectory point contains multiple
possible locations, they will be represented by a higher
level location that covers all of them. For example, if
one output trajectory point contains several APs in a
room then we use this room to represent its location.
Thus, through spatial generalization, the granularity of
some records may change to room level, floor level,
building level or even campus level. Therefore, we use
the percentage changes of records with different spatial
resolutions to measure the spatial granularity loss.

2) Results and Analysis: We evaluate the performance of
our system in friendship leakage risk and data utility preserv-
ing. We set k=4 and m=8, and compare with the performances
of only achieving k-anonymity. The k-anonymity algorithm is
the same as our algorithm without the social component.

We launch MLI and C AI with different extents of protec-
tion: raw data without any protection (original), anonymized
data protected by k-anonymity (k-anonymity) and anonymized
data protected by our system (our system). We plot the
Precision-Recall Curves in Figure 7(a) and Figure 7(b), re-
spectively. As shown in Figure 7(a), though both our system
and k-anonymity algorithm reduce the friendship identification
accuracy compared with the original data, the amount of de-
creased accuracy is quite different. Under different recall rates,
the precision rate of our system is much lower than that of the
original data. In addition, the average decreased precision rate
is almost 2 times when compared with k-anonymity algorithm.
Moreover, we find the maximum F1-scores of Precision-
Recall Curves, respectively, which represent the worst situation
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Fig. 7: Friend identification accuracy and data utility loss of our system compared with k-anonymity on Wi-Fi dataset (k = 4, m = 8).
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Fig. 8: The probability distribution of friends and non-friends’ scores calculated by MLI on the original Wi-Fi dataset and dataset under
different protection methods (k = 4, m = 8).

of friendship leakage in these three datasets. The F1-scores
shows that our system provides 1.84 (0.46/0.25) times better
friendship protection than k-anonymization even in the worst
case. Our system also shows great performance against C AI
in Figure 7(b).

In term of data utility represented by spatial granularity,
our system decreases the granularity slightly compared with
k-anonymity. Figure 7(c) shows the percentage change of
records with different spatial resolutions. From the results, we
can observe that we lose some fine-grained records and add
more coarse-grained records. Records at AP level decrease
0.6% and records at room level reduce 1.1% while records
at campus level increase 2.5% respectively, all the percentage
changes are very small. In other words, we only add 2.5%
coarse-grained records, leading to extra loss of data utility.
The strategy of decreasing the trajectory similarity of friends
and our flexible criterion of km-anonymity contribute to the
small loss of data utility in preventing friendship leakage.

We also compare the probability density function (PDF)
of correlation scores between friends and non-friends under
different protection schemes in Figure 8, which shows the

underlying reasons for the effectiveness of our system. In
original data, the scores of non-friends are highly concentrated
and close to zero, while the scores of friends are variant and
the distribution has a long tail. The attacker can distinguish
friends and non-friends since they have different distributions,
causing serious privacy leakage. After k-anonymity protection,
the long-tail effect of scores between friends eliminates but
its distribution is still quite different from that of non-friends.
However, our system makes the distribution of scores between
friends and non-friends very similar, thus the attacker cannot
tell if two users are friends based on this score.

Since our system meets the requirement of km-anonymity,
both k and m are key factors to influence the results. We
evaluate our system’s performance in preventing friendship
identification when k and m vary, respectively.

Influence of k. k is the minimum size of anonymity set
required to prevent re-identification. Larger k guarantees a
higher privacy level. In order to evaluate the influence of
k on friendship identification accuracy, we launch the same
attack to Wi-Fi dataset and compare the results of k-anonymity
and our system when k ranges from 1 to 5 as [26] showing
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Fig. 9: The influence of k on friend identification accuracy (m=8).
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Fig. 10: The influence of m on friend identification accuracy (k=2).
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Fig. 11: Social-tie identification accuracy and data utility loss of our system compared with k-anonymity on cellular dataset (k = 2, m = 8).

that the anonymized dataset becomes hardly exploitable when
k > 5. Note that the dataset refers to original data without
any protection when k=1. We show the results in Figure 9.
Figure 9(a) shows that the performance of our system against
MLI is outstanding and stable while that of k-anonymity is
greatly influenced by k. When k increases from 2 to 5, the
maximum F1 Score of k-anonymity only decreases from 54%
to 42%, but the maximum F1 Score of our system remains
a low level at 26%. Figure 9(b) shows similar results on
another relationship attack C AI, the maximum F1 score of
our system, representing friendship identification accuracy, is
much lower than k-anonymity with the same parameters. The
results indicate that larger k cannot provide extra friendship
protection. Thus only achieving k-anonymity is not enough to
prevent friendship leakage. That’s why a new privacy model
and algorithm are needed, and our system just meets such
requirement.

Influence of m. m is the number of continuous spatiotempo-
ral points in each sliding window, larger m guarantees higher
privacy level. In order to evaluate the influence of m on
friendship identification accuracy, we do the same experiment
when m ranges from 2 to 16 and the results on AP dataset are
shown in Figure 10. Figure 10(a) shows that increasing m can
effectively decrease the accuracy of friendship identification.
When m ranges from 2 to 16, the maximum F1 Score of
our system decreases from 48% to 25% while the maximum
F1 Score of k-anonymity decreases little and the accuracy is
still above 50% when m is 16. We can find similar results in
Figure 10(b). The results indicate that m has a great impact
on the performance of our system, the underlying reason may
be larger m makes trajectories between strangers more similar
and the attacker may mistake many strangers for friends, thus
greatly decreasing the accuracy of friendship identification.

In conclusion, our system shows outstanding performance
compared with the state-of-art algorithm in the campus sce-
nario. Our system greatly decreases friendship identification
accuracy and still preserves the data utility after anonymiza-
tion.

B. Preventing Social-tie Leakage

1) Cellular Dataset and Metrics: This dataset is collected
by a major mobile service provider in Shanghai, one of the
major metropolitan in China. When the user accesses the
cellular network, i.e., making phone calls, sending texts, or
consuming data plan, the connected base station and timestamp
are recorded. Each base station covers a polygonal area
generated by voronoi diagram. According to the friendship
attack (MLI) results on Wi-Fi dataset, we choose the same
percentage of pairwise friends with high scores on the cellular
dataset and regard them as our groundtruth. We perform the
same preprocessing on the cellular dataset with 30 minutes
time slots. Since the time duration of the cellular dataset is
one week, we use a higher sampling rate than Wi-Fi dataset
to obtain more spatiotemporal points in each trajectory. Since
many users only have very limited points in the trajectory, we
select five thousand active users from the dataset.

For the cellular dataset, the metrics of measuring privacy
level is the same with Wi-Fi dataset and as for the utility,
we also only consider spatial granularity loss. The location
of an original record in the cellular dataset is a base station.
As we perform spatial generalization by adding extra base
stations, the output location may contain several nearby base
stations. Thus, we measure the spatial granularity loss from
two aspects: the square root of area of the generalized lo-
cation and the generalized location deviates from its original
position, named as Spatial Granularity and Offset Distance,
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respectively. Obviously the coarser the spatial granularity and
the larger offset distance, the larger the data utility loss.

2) Results and Analysis: We launch MLI to the cel-
lular dataset and compare the privacy-preserving level of
anonymized data protected by k-anonymity and anonymized
data protected by our system. We plot the Precision-Recall
Curves in Figure 11(a). It shows our system greatly decreases
social-tie identification accuracy and provides considerable
protection against social relationship attack when compared
with k-anonymity. Under different recall rate, the precision
rate of our system is much lower than k-anonymity. When
the recall rate grows, the precision rate of our system drops
rapidly. When the recall rate is 25%, the precision rate of
our system is only 17%, decreasing by 76% compared with
k-anonymity, whose precision rate is as high as 93%.

Besides social-tie identification accuracy, we also analyze
the changes in spatial granularity. We utilize spatial granularity
and offset distance to measure data utility loss, as shown
in Figure 11(b) and Figure 11(c) respectively. Apparently,
coarser spatial granularity and larger offset distance mean
larger data utility loss. From the figures, our system only
causes a little more utility loss than k-anonymity algorithm. In
Figure 11(b), compared with original data, both k-anonymity
and our system cause some spatial granularity loss due to
spatial generalization to meet privacy protection requirements.
In addition, the CDF of different grained records of our
system is very close to that of k-anonymity algorithm, which
means we effectively limit extra granularity loss to meet the
requirement of social-tie protection. In Figure 11(c), 60% of
the records have an offset distance within 1355 m, only 307 m
larger than k-anonymity, showing that our generalized location
is close to the original location and rather accurate. The results
indicate that our system also provides enough protection to
social ties, a major correlation between citizens, while still
preserves high data utility.

C. Summary

In summary, our system shows more than 1.1 times better
performance than the state-of-the-art algorithms that prevent
friendship and social ties from leakage. We demonstrate
two advantages of our system: 1) Adaptation: Wi-Fi and
Cellular dataset come from different sources with different
spatial resolution. However, a small modification is enough
to adopt our system, which provides considerable protection
to both the datasets. 2) Robustness: two different datasets
contain different groups of people and different underlying
relationships. In our evaluation, both friendship and social ties
are well protected by our system and the attacker can only infer
very limited information from our anonymized dataset through
two different relationship attacks. These show our system can
effectively prevent different kinds of relationship attack and
related privacy leakage.

VI. RELATED WORKS

In this section, we summarize the relevant works from
three perspectives − social relationship attack, mobility data
protection and differential privacy.

Social Relationship Attack: The first type of social rela-
tionship attack is directly inferring social relationship from
trajectories, which has attracted significant attention in the
past decade, e.g., [18–25]. [19] infers friendships only from
users’ co-occurrence in time and space. [22, 23] consider more
factors of meeting events, such as location entropy and time
intervals. Others [18, 20, 21] utilize semantic information,
such as the location types, of co-occurrence to infer social
relationship from trajectories. More recent works [24, 25]
utilized advanced techniques. [24] presents a novel neural
network model which can jointly model both social networks
and mobile trajectories. [25] proposes to construct a user graph
based on their spatiotemporal interactions and employ graph
embedding technique to learn user representations, which can
well describe mobility relationship. However, all these studies
inferring social relationship based on trajectory correlations
which are decoupled by our algorithm. The other type of social
relationship attack is utilizing social relationship to do attacks,
i.e., [28–31]. [31] de-anonymizes trajectory dataset with a
social network utilizing the similar structure of these two
networks of users. [28] predicts the location of an individual
given the known locations of her friends. In summary, these
works all stand in the angle of an attacker, but we are in
the perspective of data publisher and try to prevent potential
privacy leakage caused by social relationship of users in the
trajectory dataset.

Mobility Data Protection: Mobility data privacy has been
discussed mainly in two different situations: location-based
services (LBS) and trajectory. A large number of studies have
targeted at user privacy in LBS. The goal is ensuring that single
georeferenced queries are not uniquely identifiable by utilizing
techniques like spatiotemporal generalization [34], encryption
[35], deception [36], etc. But protecting the whole trajectory
is more difficult than a single point. Trajectory anonymization
is an indispensable step of trajectory dataset publishing. Most
recent studies achieve k-anonymity on both spatial [37–40]
and spatiotemporal [26, 41, 42] trajectory. [42] achieves (k, δ)-
anonymity in trajectory dataset. It requires the whole trajectory
should be hidden in other k-1 trajectories with a spatial
threshold δ. However, it violates the principles of PPDP by
perturbing or permuting the trajectories. [39] achieves km-
anonymity, which is different from our definition of km-
anonymity. It deals with ordered lists of locations rather than
trajectories with timestamps. Their solution bases on a frequent
item set mining algorithm - apriori and the output satisfies
that each m-length sublist of locations should be contained
by at least k distinct users while our m means the length
of the SlidingWindow. Besides, due to its high complexity,
it only works on very short spatial trajectories of several
samples each, whereas trajectories typically include hundreds
of samples per week. [41] proposes a similar criterion kτ,ε-
anonymity in continuous spatiotemporal trajectory dataset to
protect trajectory from being re-identified. We have the similar
idea of merging trajectories partially but achieve it with
a different algorithm. These methods only consider the re-
identification attack by decreasing the trajectories’ uniqueness
but ignore their correlations, which is the main contribution of
our work. Some studies go beyond k-anonymity, for example,



1932-4537 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2019.2907542, IEEE
Transactions on Network and Service Management

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 13

[43] achieves k-anonymity, l-diversity and t-closeness, which
will be considered in our future work.

Differential Privacy: At the last remark, differential pri-
vacy [44] is a framework technique for privacy protection. It
demands that for a query in a dataset, adding or removing a
single record of a user does not cause a significant difference.
It is not suitable for trajectory data publishing scenario for
two reasons. First, differential privacy focuses on relational
data queries and only gives aggregated information [45]. Sec-
ond, differential privacy can be achieved only by randomized
mechanisms [46], e.g., adding noise, which is conflicting to
our targeted principle of preserving data truthfulness in PPDP.

VII. CONCLUSION

In this paper, we identify a serious privacy problem of social
relationship leakage due to the correlation between trajectories,
and recognize the need for preventing social relationship attack
at the scenario of trajectory data publishing. To the best of
our knowledge, we are the first to propose a privacy model
and an effective system to prevent both social relationship
attack and re-identification attack by reducing the correlation
of trajectories and their uniqueness as well. Based on two
real-world datasets, extensive evaluation demonstrates that
our system successfully protects social relationships while
preserving considerable utility in different scenarios, which
provides more than 1.84 times privacy protection at the cost
of only 2.5% data utility loss. We believe that this work opens
a new angle of protecting the privacy leakage caused by the
correlation between trajectories in mobility data publishing,
which paves the way to more advanced privacy preserving
mechanisms.
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