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ABSTRACT

Industry devices (i.e., entities) such as server machines, spacecrafts,
engines, efc., are typically monitored with multivariate time series,
whose anomaly detection is critical for an entity’s service quality
management. However, due to the complex temporal dependence
and stochasticity of multivariate time series, their anomaly detec-
tion remains a big challenge. This paper proposes OmniAnomaly,
a stochastic recurrent neural network for multivariate time series
anomaly detection that works well robustly for various devices.
Its core idea is to capture the normal patterns of multivariate
time series by learning their robust representations with key
techniques such as stochastic variable connection and planar
normalizing flow, reconstruct input data by the representations,
and use the reconstruction probabilities to determine anomalies.
Moreover, for a detected entity anomaly, OmniAnomaly can provide
interpretations based on the reconstruction probabilities of its
constituent univariate time series. The evaluation experiments are
conducted on two public datasets from aerospace and a new server
machine dataset (collected and released by us) from an Internet
company. OmniAnomaly achieves an overall F1-Score of 0.86 in
three real-world datasets, significantly outperforming the best
performing baseline method by 0.09. The interpretation accuracy
for OmniAnomaly is up to 0.89.
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1 INTRODUCTION

Anomaly detection has been an active research topic in SIGKDD
community with applications in graph [3, 12], log messages
[15, 23], time series [6, 9, 14, 22], etc. In this paper, we focus on
anomaly detection for multivariate time series [6]. Industry devices,
such as server machines [9, 14], spacecrafts [6], robot-assisted
systems [16, 17], engines [11], are typically monitored with multiple
time series metrics (also called telemetry data, sensor data, etc.) so
that each device’s behavioral anomalies can be timely detected
and later resolved. Multiple univariate time series from the same
device (or more generally, an entity) forms a multivariate time
series. Table 1 shows some example datasets about entities, and
Fig. 1 shows an example multivariate time series snippet with two
anomalous regions from the server machine dataset.

Table 1: Example datasets about entities

Entity Type NO. NO. of
and of metrics Metric Name
dataset entities| per entity
Server machine 28 38 CPU load, network usage,
[this paper] memory usage, efc.
Soil Moisture Active 55 25 Telemetry data: radiation,
Passive satellite [6] temperature,
Mars Science 97 55 power, computational
Laboratory rover [6] activities, etc.
Robot-assisted ~39 17 Sensor data: kinematic,
system [16, 17] visual, haptic, auditory, etc.
. Sensor data: accelerator,
Engine [11] - 12
torque, temperature, etc.

In general, it is preferred to detect entity anomalies at the entity-
level directly using multivariate time series [6, 11, 16, 17], rather
than at the metric-level using univariate time series, for a number of
reasons. First, in practice, operation engineers are more concerned
about the overall status of an entity than each constituent metric.
Second, it is labor-intensive to train and maintain an individual
anomaly detection model for each metric, given a large number of
metrics (e.g., 1485 (27*55) for Mars Science Laboratory rover in Table
1). Third, an incident (e.g., overload) at an entity typically causes
anomalies in multiple metrics. If we detect anomalies at the metric-
level, we would need to define rules based on extensive domain
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knowledge to process anomaly results of all metrics to determine
whether the entity is anomalous or not, which is challenging
to do. Forth, intuitively, modeling the expected value of one
univariate time series can benefit from the more information in
the multivariate time series of the same entity. In summary;, it is
more intuitive, effective and efficient to detect anomalies at the
entity-level than at the metric-level. Thus, in this paper, similar
to [6, 11, 16, 17], we focus on detecting the overall anomalies of the
multivariate time series of each monitored entity.
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Figure 1: An 8-metric 2-day-long multivariate time series
snippet from the server machine dataset, with two anoma-

lous regions highlighted in pink.

Entities under our study (servers, spacecrafts, efc.) are engi-
neering artifacts, which have software control logic and interact
with environment, human operators, and other systems in a very
complex way. As a result, their complex behaviors can exhibit
both stochasticity and strong temporal dependence. A previous
study [5] has shown that the stochasticity in speech sequence can
be more precisely captured by stochastic variables with properly
estimated probability distributions [5] than deterministic variables.
[24] shows that univariate time series in an online shopping website
can present complex temporal relationships. Therefore, ideally our
study should take a stochastic approach with temporal dependence
modeling. However, despite the rich literature in multivariate time
series anomaly detection in different areas [4, 6, 11, 16, 17, 20, 26, 27],
previous studies either take deterministic approaches [4, 6, 11]
to model time series, or take stochastic approach but ignore the
temporal dependence of observations in the time series [27].

Due to anomaly diversities and the lack of labels for train-
ing [6], our approach has to be an unsupervised one. Based on
our observation and intuition, anomalies are usually unexpected
instances significantly deviating from normal patterns formed by
the majority of a dataset. Thus, our core idea is to learn robust
latent representations to capture normal patterns of multivariate time
series, considering both the temporal dependence and stochasticity.
The more different an observation is from the normal patterns, the
more likely it is considered as an anomaly. There are two major
challenges for this idea.

The first challenge is how to learn robust latent repre-
sentations, considering both the temporal dependence and
stochasticity of multivariate time series. Previous work [5]
has shown that a stochastic model alone is hard to capture the
long-term dependence and complex probability distributions of
multivariate time series. Intuitively, it is advantageous to let the
deterministic hidden variable of RNN act as an internal memory for
stochastic models [5]. [16] made an attempt along this direction by
simply replacing the feed-forward network in a VAE [7] with LSTM

[6], but its stochastic variables are very simple, without temporal
dependence. Stochastic variables are latent representations of
input data and their quality is the key to model performance.
To learn robust representations of data, we propose a stochastic
recurrent neural network, with explicit temporal dependence among
stochastic variables modeled. Our approach novelly glues GRU [1]
(a variant of RNN) and VAE with the following two key techniques.
a) speech reconstruction literature [5] has shown that explicitly
modeling the temporal dependence among stochastic variables can
make these variables capture more information from historical
stochastic variables and represent the input data better. Inspired
by [5], to explicitly model temporal dependence among stochastic
variables in the latent space, we propose the stochastic variable
connection technique: Linear Gaussian State Space Model [8]
connection between stochastic variables, and the concatenation of
stochastic variable and GRU latent variable. b) To help stochastic
variables capture complex distributions of input data, we adopt
planar Normalizing Flows (planar NF) [18] which uses a series of
invertible mappings to learn non-Gaussian posterior distributions in
latent stochastic space. These techniques make our model capable
of learning salient representations from datasets with different
characteristics to achieve great robustness.

The second challenge is how to provide interpretation
to the detected entity-level anomalies, given the stochastic
deep learning approaches. The interpretation is to answer the
question of why an observation is detected as an anomaly. Anomaly
interpretation can help analyze the entity anomalies and speed
up troubleshooting, and thus is often required in practice [6].
However, it is challenging to interpret anomalies of multivariate
time series, and stochastic deep learning approaches make the
interpretation even harder. Our solution to this problem is based on
the following observation. In practice, when manually checking and
troubleshooting entity anomalies, operators typically look for the
top few individual metrics that deviate from historical patterns the
most. For example, if a server machine is suffering from network
slowdown, the metrics related to network would behave more
abnormally than other metrics. Thus, in our approach, a detected
entity anomaly can be interpreted by a few univariate time series
with the lowest reconstruction probabilities.

The contributions of this paper are summarized as follows:

e We propose OmniAnomaly, a novel stochastic recurrent
neural network for multivariate time series anomaly detec-
tion. To the best of our knowledge, OmniAnomaly is the
first multivariate time series anomaly detection algorithm
that can deal with explicit temporal dependence among
stochastic variables to learn robust representations of input
data, required by industry device monitoring.

e We propose the first anomaly interpretation approach for
stochastic based multivariate time series anomaly detection
algorithms that works with not only OmniAnomaly, but also
other algorithms such as [16]. The interpretation accuracy
for OmniAnomaly is up to 0.89.

o Our experiments show great effect of the four key techniques
in OmniAnomaly: GRU, planar NF, stochastic variable con-
nection, and an adjusted Peaks-Over-Threshold method for
automatic anomaly threshold selection.



o Through extensive experiments, we show that OmniAnomaly
achieves an overall F1-Score of 0.86 in three real-world
datasets, significantly outperforming the best performing
baseline model by 0.09, demonstrating the benefits of explic-
itly modeling the temporal dependence among stochastic
variables in the latent space. OmniAnomaly exhibits great
robustness in working with three datasets from different
devices, with F1-Scores all higher than 0.84.

e We publicly publish our code and server machine dataset
of experiments on GitHub! for better reproducibility of the
results of this paper.

2 RELATED WORK

Multivariate time series anomaly detection is an active topic.
Supervised learning methods [17, 20] need labeled data for model
training and can only identify anomaly occurrences for known
anomaly types [13]. As a result, supervised methods have limited
usage and unsupervised approaches are desirable. The state-of-
the-art unsupervised solutions to multivariate time series anomaly
detection in literature can be categorized into the following types:

e Deterministic models [4, 6, 11]. To detect spacecraft anom-
alies, [6] applies LSTM for multivariate time series prediction
and determines anomalies using prediction errors. Similar
to seq2seq models, [11] proposes an LSTM-based Encoder-
Decoder which aims at reconstructing “normal” time series
behaviors, and uses reconstruction errors for multi-sensor
anomaly detection. Although LSTM can deal with the
temporal dependence of time series, it is deterministic
without stochastic variables.

e Stochastic based models [16, 27]. [27] proposes a model
DAGMM which joints Deep Autoencoder (AE) and Gaussian
Mixture Model (GMM) simultaneously. It reduces the dimen-
sion of input observations to get latent representations by
AF, and estimates the density of the representations using
GMM. However, this method is designed for multivariate
variables (not multivariate time series), and ignores the
inherent temporal dependence of time series. Previous work
suggests that, in general, stochastic variables can improve
the performance of RNN, because they can capture the
probability distributions of time series [5]. [16] simply
combines LSTM and VAE by replacing the feed-forward
network in a VAE to LSTM, but ignores the dependence of
stochastic variables.

Compared with the above approaches, OmniAnomaly is a
stochastic recurrent neural network which glues VAE and GRU
such that the temporal dependence and stochasticity of time
series can be explicitly modeled. Moreover, OmniAnomaly applies
techniques such as stochastic variable connection to model the
temporal dependence between stochastic variables. As a result, the
stochastic variables can capture more information from historical
stochastic variables and represent the input data better, as will be
demonstrated in Section 5.

3 PRELIMINARIES
In this section, we present the problem statement of multivariate
time series anomaly detection in detail and introduce the overall
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structure of our model. In addition, we provide preliminaries about
GRU, VAE, planar NF, the key components of our model.

3.1 Problem Statement
A time series contains successive observations which are usually
collected at equal-space timestamps [10]. In our study, we focus on
multivariate time series, defined as x = {x1, X2, ..., XN}, where N is
the length of x, and an observation x; € RM is an M-dimensional
vector [6] at time ¢ (t < N): x¢ = [x},x%,...,xM] , and x € RMXN,
In Fig. 1, the observations are equally spaced by 1 minute, the total
number of observations is N = 2 % 24 * 60, and each observation
has a dimension of M = 8. We use x¢_1 (€ RM*(T+1) to denote a
sequence of observations {X¢_T, X¢_T+15 ---» Xt} from time ¢ — T to ¢.
For multivariate time series anomaly detection, the objective is to
determine whether an observation x; is anomalous or not. For time
series modeling, historical values are beneficial for understanding
current data. Therefore, a sequence of observations x;_T.t instead
of just x;¢ is used to calculate the anomaly result. Our anomaly
detection approach returns an anomaly score for x¢, and then the
anomaly result can be obtained by comparing against a threshold.

3.2 Overall Structure
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Figure 2: Overall Structure of OmniAnomaly. The solid
lines denote offline training and the dash lines show the
procedure of online detection.

As shown in Fig. 2, the overall structure of OmniAnomaly consists
of two parts: offline training and online detection. Data Prepro-
cessing is a module shared by both offline training and online
detection. During data preprocessing, the dataset is transformed
by data standardization, and then it is segmented into sequences
through sliding windows [21] of length T + 1. After preprocessing,
a training multivariate time series, usually spanning a period of
time (e.g., a couple of weeks), is sent to Model Training module
to learn a model that captures the normal patterns of multivariate
time series and outputs an anomaly score for each observation.
These anomaly scores are used by the Threshold Selection module
to choose an anomaly threshold automatically following the POT
method (see later in Section 4.4). This offline training procedure
can be conducted routinely, e.g., once per week or month.

The Online Detection module stores the trained model. A new
observation (e.g., x¢ at time t) after preprocessing can be fed into
Online Detection module to get its anomaly score. If the anomaly
score of x¢ is below the anomaly threshold, x; will be declared as
anomalous, otherwise, it is normal. If x; is detected as an anomaly,
we interpret it by estimating and ranking the contribution (i.e.,
reconstruction probability) of each dimension in x;.

3.3 Basics of GRU, VAE and Planar NF

RNN s [5] are able to represent the time dependence by adopting
deterministic hidden variables. Simple RNN could fail to learn the
long-term dependence in a sequence [1]. RNN variants, LSTM



and GRU [1], were invented to address this problem using gating
mechanisms. In general, the performance of GRU is as good as
LSTM (GRU performs even better than LSTM in some applications
[1]), and GRU is more suitable for model training when the datasets
are not very large because of its fewer parameters and simpler
structure [1]. Thus we apply GRU in OmniAnomaly to capture the
complex temporal dependence in time series.

VAE is a deep Bayesian model [7], and it has been successfully
applied to anomaly detection for seasonal univariate time series [24].
VAE represents a high-dimensional input x; to a latent representa-
tion z; with a reduced dimension, and then reconstructs x; by z;.
With a prior pg(z¢) for zt, X is sampled from posterior distributions
po(xt|zt). However, it is intractable to compute pg(x¢|z¢), and VAE
approximates pg(xt|2t) using an inference network g4 (z¢|xt), where
¢ and 0 are parameters of the inference net (i.e., gnet) and the
generative net (i.e., pnet), respectively.

Stochastic Gradient Variational Bayes (SGVB) [7] is a variational
inference algorithm often used in VAE to train the parameters ¢
and 6 by maximizing the evidence of lower bound (ELBO), L(x¢):

L(xt) = Bqy(z[x [l0g(po (xt120))] = D L[qg (2t %) [po (zt)] (V)
= Eg s (zlxp [ 108(po (Xt |21)) + log(pe (21)) — log(qy (z¢|xt))]

Monte Carlo integration [19] can be used to compute the above
()
t

expectation, as shown in Eq. 2, where z

from the g4 (z¢|xt).

L0~ 7 log(po(xlz) + log(po (") - og(as (2" b)) @)

In the gnet, g (z¢|xt) is often assumed to be diagonal Gaussian
[7], but this simple assumption would make the network under-
fit because qg(zt|xt) may not necessarily follow Gaussian. To
learn the non-Gaussian posterior density q,(z¢[xt), [18] proposed
a solution named planar NF which transforms qg(zt|xt) using
the invertible mappings. We first sample from qg(z¢|xt) to get

.1 =1,2...L is sampled

z?. Then through a chain of invertible mappings, we get ZF =
fK(fK_l(...fl(z?))), where fk(k = 1,2...K) are invertible map-
{‘_1 + utanh(vs/'Tzl‘_1 +b),u,wandb
are the parameters) [18]. In the gnet, we only take z{(, the final

ping functions (fk(Z¥_1) =z

output of planar NF, as our stochastic variable z; (i.e., z; = z{().

4 DESIGN OF OMNIANOMALY

In this section, we first present the network architecture of
OmniAnomaly, followed by offline model training, online anomaly
detection, anomaly threshold selection, and anomaly interpretation.

4.1 Network Architecture

The basic idea of OmniAnomaly is the following. First, it uses GRU
to capture complex temporal dependence between multivariate ob-
servations in x-space. Second, we apply VAE, a popular variational
algorithm for representation learning, to map observations (i.e.,
input observations in x-space) to stochastic (i.e., z-space) variables.
Third, inspired by speech reconstruction literature [5], to explicitly
model temporal dependence among stochastic variables in the latent
space, we propose the stochastic variable connection technique
(Linear Gaussian State Space Model (SSM) [8] connection between
stochastic variables, and the concatenation of stochastic variable
and GRU hidden variable). Forth, to help stochastic variables in

(al) qnet (a2) pnet

(a) Overall graphical model of OmniAnomaly which consists of two parts: (al)
gnet and (a2) pnet. Nodes correspond to different variables. At time ¢, x; is
the input observation and x; is the reconstruction of x¢, e; and d; are memory
variables in GRU cells which are deterministic, z; is a z-space variable which
is stochastic, and edges represent the dependence between variables.

Planar Normalizing Flow

By Ox

[Linear ] [Soﬁplus +e€ ]

(bl) Network architecture for qnet (b2) Network architecture for pnet

(b) Detailed network architecture of OmniAnomaly at time t.
Figure 3: Overall graphical model and detailed network
architecture of OmniAnomaly
the gnet capture complex distributions of input data, we adopt
planar NF [18] which uses a series of invertible mappings to learn
non-Gaussian posterior distributions in latent stochastic space.

The overall graphical model of OmniAnomaly is shown in Fig.
3(a), which is composed of a gnet and a pnet. In the pnet, it uses
a latent representation z;_t. (a set of probability distributions)
to reconstruct the input x¢_T.t. An accurate representation can
minimize the reconstruction loss. gnet is optimized to approximate
the pnet and obtain good latent representations.

The details of the gnet are shown in Fig. 3(b1). At time ¢, an input
observation x; and e;—1 (the hidden variable in GRU at time ¢ — 1),
are sent to a GRU cell to generate the hidden variable e; (Eq. 3a).
The deterministic et is critical for OmniAnomaly to capture long-
term complex temporal information between x; and its preceding
x-space observations. Then, e, concatenated with z;_1, enters the
dense layer to generate mean p,, and standard deviation oy, for the
stochastic variable z; (Eq. 3b and 3c). As a result, z-space variables
are now temporally dependent, as shown in Fig. 3(al). The gnet
can be formulated as follows:

e =(1—c¢f) o tanh(wex; +u®(rf o e—1) +b®) + cf oer1  (3a)

o =WPh? (1, e]) + M (3b)

0y =sof tplus(wrh?([z,1, e]) + b%%) + €% (30)

In Eq. 3a-3c, 1{ = sigmod(w™ x¢ + u® er_1 + b™) is the reset gate
determining how to combine a new input with the previous memory.

¢ = sigmod(w< x¢ +u eq_1 +b<) is the update gate deciding how
much previous memory need to keep.



As shown in Fig. 3(b1), [z¢-1, €] is the concatenation of z;_1 and
e. h? denotes the dense layer with ReLU activation function. Uz,
is derived from a linear layer and oy, is produced by the soft-plus
activation function with small € to prevent numerical overflow.
All the u*-s, w*-s, b*-s are the parameters of the corresponding
layers. The output of the gnet, z?, is diagonal Gaussian and sampled
from N (yz,, crzztl). To learn a non-Gaussian posterior distribution
of q4(zt|xt), we use planar NF to approximate z¢. As shown at the
top of Fig. 3(b1), z (i.e., z{() is obtained by passing the z? through a
chain of K transformations f k which are planar mappings [18].

The pnet, as shown in Fig. 3(b2), attempts to reconstruct x¢
with z; using a structure similar to the gnet. We utilize linear
Gaussian SSM [8] to “connect” z-space variables in gnet and make
them temporally dependent: z; = Og(Tgzi—1 + Vi) + €, where
Tg and Oy are transition and observation matrices [8], v and €;
are transition and observation noises. At time t, z¢, along with the
variable di—1 at time -1, is passed through a GRU cell to produce
the deterministic variable d¢ (Eq. 4a). Then dt is further processed
through the dense layer to generate the mean py, and standard
deviation oy, of variable x; (reconstruction of x¢) (Eq. 4b and 4c).

Similar to the gnet, the pnet can be formulated as follows:

di =(1 - ¢y o tanh(wiz + ud(rd o di1) + b + ¢ 0 di4 (4a)
px, =wHxRO () + b (4b)
ox, =sof tplus(wo*h%(d;) + %) + e (40)

d d d d
where rf = sigmod(w" z¢+u” d¢—1+b" ) and c? = sigmod(W® z¢+

u di—1 + bcd), which are the reset and update gate, respectively.
The reconstructed data xy is sampled from N(px,, cr,%tl) and
created from z;. If there is an anomaly at time ¢, x{ may vary
significantly from the original data x;. Therefore, we can detect
anomalies based on the reconstruction probability of x;.

4.2 Offline Model Training

The gnet and pnet in OmniAnomaly are trained simultaneously
by tuning the network parameters (u*-s, w*-s, and b*-s). Similar
to VAE models, we can train our model straightforwardly by
optimizing ELBO, as described in Section 3.3. The length of each
input sequence data (e.g., X;_7.t) in training dataset is T+1. For the
I-th sample Zil—)T:t’ where 1 < [ < L and L is the sample length, the
loss function can be formulated as:

Towr) = 7 . log(potenala )+ ©)

og(po (2, r,)) ~ 1og(q4 (7, xe-1:))]

For each sample, the first term of Eq. 5 is the negative reconstruc-
tion error: log(pg (Xt-T:t|2t-T:t)) = Zfzt_r log(pg (xilzi-T.1)), and
the posterior probability of x; can be calculated as: pg(xi|z¢—1.) ~
N(px;, a,%i I). The sum of the second and third terms is regulariza-
tion (i.e., Kullback-Leibler loss). The second term log(pg(zi_T4)) =
th.:th log(pg(zilzi-1)), where z; can be obtained by Linear Gauss-
ian SSM [8] initialized with the standard multivariate normal
distribution. The third term is to approximate the true posterior dis-
tribution of z; in the z-space in the gnet: — log(q(z¢-T:t|Xt-1t)) =
- zt‘:t—T log(q¢(zi|zi_1, Xt_T-i))- Zi (i€, z}() is transformed through
planar NF. z? = R(FK-1( (%)), where z? = py + &ioy,

&; ~ N(0,1), and the formulation offk can be seen in Section 3.3.

4.3 Online Detection

Now we can determine whether an observation at a time step
(say t, denoted as x{) is anomalous or not using the trained
OmniAnomaly model. Note that the input of OmniAnomaly is a
sequence data of length T+1. Thus, we take the sequence x¢_T4,
i.e., xt and T consecutive observations preceding to it, as an input
to reconstruct x¢. As suggested by [24], this reconstruction can
be evaluated by the conditional probability log(pg (xt|z¢—T.t)). This
reconstruction probability is used as the anomaly score in our model.
The anomaly score of x; is denoted as S¢, so S; = log(pg(Xt|z¢t—T:t))-
A high score means the input x; can be well reconstructed. If an
observation follows the normal patterns of time series, it can be
reconstructed with high confidence. On the other hand, the smaller
the score, the less likely the observation can be reconstructed and
thus it is more likely to be anomalous. Formally, if S; is lower than
an anomaly threshold, then x; is marked as anomalous; otherwise
x¢ is normal. Next, we describe how to automatically determine the
anomaly threshold offline.

4.4 Automatic Threshold Selection

As shown in Fig. 2, during offline training, with a multivariate
time series of N’ observations, we compute an anomaly score for
every observation. Then all anomaly scores form a univariate time
series {S1, S2, ..., Sy }. Next, we set the anomaly threshold thF offline
following the principle of Extreme Value Theory (EVT) [22].

EVT is a statistical theory whose goal is to find the law of
extreme values, and extreme values are usually placed at the
tails of a probability distribution. The advantage of EVT is that
it makes no assumption on data distribution when finding extreme
values. Peaks-Over-Threshold (POT) [22] is the second theorem
in EVT. The basic idea of POT is to fit the tail portion of a
probability distribution by a generalized Pareto distribution (GPD)
with parameters. We adopt POT to learn the threshold of anomaly
scores. Unlike classical POT applications which focus on “values
at the high end of a distribution”, anomalies in our analysis are
located at the low end of the distribution. So we adapt the GPD
function as follows:

F(s)= P(th—S > s|S < th)~(1+y7;)‘% ©)

where th is the initial threshold of anomaly scores, y and f are
shape and scale parameters of GPD, S is any value in {S1, Sy, ..., Sy }.
The portion below a threshold th is denoted as th — S, and it is
empirically set to a low quantile. Similar to [22], we estimate the
values of parameters y and ﬁ by Maximum Likelihood Estimation
(MLE). The final threshold thp is then computed by:

thp =~ th - g((?\?] )7 -1) @)

where g is the desired probabilit}fiio observe S < th, N’ is the
number of observations, and Nt’h is the number of S; s.t. S; < th.
For POT method, there are only two parameters (low quantile and
q) that need to be tuned. These two parameters are model-wide and
can be set empirically: low quantile (e.g., less than 7%) and q (e.g.,
107%) [22], seeing Appendix B.

4.5 Anomaly Interpretation

As described in Section 1, the goal of our anomaly interpretation
solution is to annotate the detected entity anomaly with the top few
univariate time series ranked by their reconstruction probabilities.



Thus, we have to obtain the reconstruction probability for individual
xf (the i-th dimension of x¢). However, in OmniAnomaly, the recon-
struction probability is calculated for the M-dimensional x;. For-
tunately, as presented in Section 4.2, pg(xt|z¢—1:t) ~ N(px, O’,%[ 1),
thus, pg(xt|zt—1.¢) = ]_[?/:I 1Po (x; |z¢_T.t). Therefore, the conditional
probability of x; can be factorized as:

log(po(xlzar) = Y log(pe(x} lze-t)) ®

Sy = Z?ﬁl S;, where S; = log(py (xg |z¢—T.t) and S; is the anomaly
score of x}. Note that S; benefits from the rich information in the
multivariate time series x;_T.t—1, thus its interpretation power is
higher than the anomaly score that is obtained by just utilizing
xi_T: ;1 (as in univariate time series).

For a detected anomaly x¢, we interpret it by estimating the
contribution (i.e., reconstruction probability) of each dimension
of x¢. We sort S; (1 £ i £ M) in ascending order and form the
list AS;. For x;, the higher ranked in AS;, the smaller S;, and the
greater contribution of x; to x¢. The ordered list is presented to the
operators as the anomaly interpretation, and hopefully the top few
dimensions can provide sufficient clues for operators to understand
and troubleshoot the detected entity anomaly.

Note that the factorization Eq. 8 holds as long as pg(xt|z¢—1.t) ~
N (yxt,o,%t I) holds. Therefore, our proposed anomaly interpre-
tation approach is applicable to other multivariate time series
anomaly detection algorithms such as [16].

5 EVALUATION

In this section, we first describe experimental datasets and perfor-
mance metrics. Then, we conduct many experiments to show the
effectiveness of our model.

5.1 Datasets and Performance Metrics

To demonstrate the effectiveness of OmniAnomaly, we conduct
experiments on three datasets: SMD (Server Machine Dataset),
SMAP (Soil Moisture Active Passive satellite) and MSL (Mars
Science Laboratory rover). More details can be seen in Appendix A.

We use Precision, Recall, F1-Score (denoted as F1) to evaluate
the performance of OmniAnomaly and baseline models: F1 =
2x Pre-ci.sion X Recall . where Precision= TP . Recall= TP )

Precision + Recall TP+ FP TP +FN
Some anomaly detection models provide methods to choose anom-
aly thresholds, and thus their F1 can be calculated based on the
selected thresholds accordingly. In case a model gives no specific
way to select thresholds, or we want to calculate a model’s best F1
in theory, we enumerate all possible anomaly thresholds to search
for the best F1, denoted as F1,;, in contrast with F1.

In practice, anomalous observations usually occur continuously
to form contiguous anomaly segments. It is acceptable if an alert
for anomalies is triggered within any subset of a ground truth
anomaly segment. Thus, a point-adjust approach was proposed
by [24] to calculate the performance. For any observation in the
ground truth anomaly segment, if it is detected as an anomaly,
we think this segment is detected correctly and all observations
in the segment are considered to have been correctly detected as
anomalies. The observations outside the ground truth anomaly
segment are treated as usual. We adopt the point-adjust way to
calculate the performance metrics in our paper.

5.2 Results and Analysis

5.2.1 OmniAnomaly vs. other approaches. To demonstrate the
effectiveness of OmniAnomaly, we first compare it with four
state-of-the-art unsupervised approaches for multivariate time
series anomaly detection: LSTM with nonparametric dynamic
thresholding (LSTM-NDT for short) [6], EncDec-AD [11], DAGMM
[27], and LSTM-VAE [16], which have been described in Section
2. Moreover, we select Donut [24], a state-of-the-art univariate
time series anomaly detection approach based on VAE, as another
baseline. To apply Donut [24] to multivariate time series anomaly
detection, we use a simple rule to define entity-level anomalies as
follows: for an M-dimensional entity, at time t, if there are at least
M (1 < M < M, where M’ can be tuned by different datasets)
univariate time series that are anomalous, then the entity is declared
as anomalous.

Table 2 shows the precision, recall, F1 of LSTM-NDT, DAGMM,
LSTM-VAE and OmniAnomaly on three datasets and Total dataset
(i.e., union of these three datasets). Each of these approaches pro-
vides a specific method for us to choose anomaly thresholds and F1
is calculated accordingly. OmniAnomaly outperforms all baselines
on MSL and SMD datasets, and its F1 is only slightly lower than the
best baseline on SMAP dataset. Also, OmniAnomaly exceeds the
best performing state-of-the-art method (i.e., LSTM-NDT) by 0.09
on the F1 for Total dataset. OmniAnomaly’s robustness is better than
baseline models in that the precision and recall of OmniAnomaly are
both higher than 0.74 for all three datasets, which is not achieved
by any baseline approaches.

[ Domat [& LSTM-NDT B EncDec-AD DAGMM LSTM-VAE [ OmniAnomaly

P

SMAP ASL SNID Total
Datasets

Figure 4: F1,,, of OmniAnomaly and all baseline models.

Since Donut [24] and EncDec-AD [11] provide no specific
methods for choosing anomaly thresholds, they are not shown
in Table 2. Instead, they are evaluated using F1,,;, as shown in Fig.
4. Again, OmniAnomaly excels all baseline models at MSL and MSD
datasets and is ranked the second at SMAP dataset. In particular,
OmniAnomaly outperforms the best performing state-of-the-art
method (i.e., LSTM-NDT) by 0.086 on F1,; (0.8871 vs. 0.8012) for
Total dataset. For those algorithms already listed in Table 2, there
is no significant difference between their F1 and F1,;.

Overall, these experimental results demonstrate the superiority
of OmniAnomaly compared with the state-of-the-art approaches.
Next, we analyze the performance of these methods in detail.

Donut [24] aims at univariate time series anomaly detection.
We use the aforementioned rule combining the anomaly result of
each univariate time series to do multivariate time series anomaly
detection. For each dataset, we enumerate all values to get the
M’ which can make Donut perform the best, and the values of
M’ for SMAP, MSL, SMD are 1, 10, 5 respectively. We can see
that, M’ varies by different datasets, because it heavily relies on
characteristics of the datasets. In reality, for each dataset, it would
be challenging and requires extensive domain knowledge to choose
a proper M’, and one specific rule may not be appropriate for all



Table 2: Performance of OmniAnomaly and 3 baseline approaches. F1;,,; of Donut [24] and EncDec-AD [11] are in Fig. 4.

Methods SMAP MSL SMD Total
P (Precision) | R (Recall) F1 P R F1 P R F1 P R F1
LSTM-NDT [6] 0.8965 0.8846 0.8905 | 0.5934 | 0.5374 | 0.5640 | 0.5684 | 0.6438 | 0.6037 | 0.7598 | 0.7794 | 0.7694
DAGMM [27] 0.5845 0.9058 0.7105 | 0.5412 | 0.9934 | 0.7007 | 0.5951 | 0.8782 | 0.7094 | 0.5835 | 0.9042 | 0.7093
LSTM-VAE [16] 0.8551 0.6366 0.7298 | 0.5257 | 0.9546 | 0.6780 | 0.7922 | 0.7075 | 0.7842 | 0.7782 | 0.7075 | 0.7411
OmniAnomaly 0.7416 0.9776 0.8434 | 0.8867 | 0.9117 | 0.8989 | 0.8334 | 0.9449 | 0.8857 | 0.7797 | 0.9586 | 0.8599

anomaly types because of the diversity of the faults. Donut performs
the worst on MSL, because MSL has more univariate time series
and anomalous types than SMAP and SMD. These observations
confirm our intuition that we should model the multivariate time
series as an entity, instead of examining each univariate time series
individually, to understand their behaviors.

LSTM-NDT [6] is a deterministic model without leveraging
stochastic information. Stochastic information can improve model
performance because it can learn the inherent stochasticity of
time series [5]. As a stochastic model, OmniAnomaly performs
better than LSTM-NDT. Moreover, LSTM-NDT is a prediction-based
model. However, some time series are inherently unpredictable
[11] due to external factors. As a result, the prediction of time
series may not be accurate and the prediction-based models may
not be appropriate. According to [6], for MSL, a wide variety of
behaviors with varying regularity make it hard to be predicted.
Some time series (e.g., TCP retransmissions, the second univariate
time series in Fig. 1) in SMD are also unpredictable because
of uncontrollable factors (e.g., complex and dynamic network
environment). Therefore, LSTM-NDT does not perform well on
these two datasets. OmniAnomaly is a reconstruction-based model
which aims at learning normal patterns of multivariate time series,
so it works well with both predictive and unpredictable time series.

EncDec-AD [11] is a seq2seq model based on encoder-decoder
reconstruction. This model uses the final hidden variable of its
encoder as the initial hidden variable of its decoder. When the length
or dimension of an input sequence is large, it is difficult for the final
hidden variable in the encoder to remember all the information
of the entire sequence such that the input can be perfectly
reconstructed. Thus it is not surprising that EncDec-AD performs
the worst on MSL, because the dimension of MSL is larger than
the other two datasets, and the final hidden variable in the encoder
may not be able to remember sufficient information. In addition,
EncDec-AD’s hidden layer is composed of LSTM units, which are
not able to handle stochastic information. This deterministic nature
perhaps also contributes to its inferior performance.

DAGMM [27] focuses on anomaly detection for multivariate
data without temporal information between observations. The
input of DAGMM is just one observation (i.e., multivariate obser-
vation) instead of a sequence of T+1 observations. However, for
multivariate time series, the temporal information is important
and necessary, because observations are dependent and historical
data is helpful in reconstructing current observations. For example,
without considering temporal information, the observation around
40-th hour in Fig. 1 would be easily mistaken as anomalous by
DAGMM and causes a false positive, because it has a low probability
among all multivariate observations. In our model, for both training
and detection, the input is a sequence of observations which

contains the temporal relationship in time series. As a result,
OmniAnomaly performs better than DAGMM.

LSTM-VAE [16] simply combines LSTM and VAE by replacing
the feed-forward network in a VAE with LSTM. As suggested by
[2], for sequential data modeling, in order to well represent the
input data, it is beneficial to include information coming from z_1
as part of z;. However, LSTM-VAE does not consider the temporal
dependence among stochastic (i.e., z-space) variables. This explains
its worse performance compared to OmniAnomaly.

Summary. Compared with deterministic approaches like LSTM-
NDT and EncDec-AD, OmniAnomaly is a deep Bayesian network
which extends the modeling capabilities of recurrent neural net-
works with stochastic variables. Moreover, OmniAnomaly is a
reconstruction based model that can work well regardless of the
predictability of the multivariate time series. Unlike DAGMM, Om-
niAnomaly works well with the temporal dependence of time series
data by GRU. Besides, compared with LSTM-VAE, OmniAnomaly
captures the dependence of the stochastic variables through the
z-space variable connection such that our z-space layer can better
represent the distributions of input data. Moreover, planar NF is
also helpful in constructing z-space variables in the gnet. The
effectiveness of z-space variable connection and planar NF will
be described shortly.

5.2.2  Effects of major techniques in OmniAnomaly. In this section,
we experimentally show the effects of four major techniques in
OmniAnomaly: (1) GRU; (2) z-space variable connection; (3) planar
NF; (4) POT method for automatic anomaly threshold selection.
We reconfigure OmniAnomaly to create four categories of
variants, denoted as C1-C4, described as follows. (C1) In this
category, the GRU in OmniAnomaly is replaced by a simple RNN,
denoted as “C1-RNN”, or by LSTM, denoted as “C1-LSTM”. (C2) The
z-space variables are connected in gnet only (denoted as “C2-qnet”),
in pnet only (denoted as “C2-pnet”), or in neither net (denoted as
“C2-no z connected”). (C3) Planar NF in gnet of OmniAnomaly is
replaced by Gaussian function (i.e., “C3-no planar NF”). (C4) Instead
of applying the POT method to set a threshold automatically, here
we enumerate thresholds to obtain F1,,. For fair comparison, the
results for variants in Categories C1-C3 are all evaluated by F1p,;.
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Figure 5: F1, ¢, of OmniAnomaly and the variants in C1-C3.



Effect of GRU. From Fig. 5, we can see that “C1-RNN” is inferior
to “C1-LSTM” and OmniAnomaly, because a simple RNN is not
able to capture long-term dependence of time series. Moreover,
OmniAnomaly is slightly better than “C1-LSTM”. This may be
possibly explained by the fact that GRU has fewer parameters and
simpler structure [1] than LSTM so it is easier for model training.
Thus, we choose GRU to capture complex temporal dependence of
multivariate time series (i.e., X-space) in our model.

Effect of z-space variable connection. Explicitly modeling the
temporal dependence of z-space variables is an indispensable
technique in our model, and it is critical for latent representations
to learn the normal patterns of input data. Fig. 5 shows the
performance of OmniAnomaly and its three variants in C2. We can
see that with z-space variable connection both in gnet and pnet, Om-
niAnomaly performs better than the other three variants. z-space
variable connection in gnet can help the stochastic variables in qnet
capture more information from historical stochastic variables so
that they can represent the input data better. Rather than simply
choosing N(0, 1) as the prior of z-space variables, OmniAnomaly can
fit the prior expectation of a data distribution better by applying
Linear Gaussian SSM for z-space variable connection in pnet. MSL
contains substantial one-hot encoded data and its anomalies involve
dramatic changes. As a result, it is easy to reconstruct the input
data and detect anomalies. Thus, the benefit of z-space variable
connection in MSL is not significant.

Effect of Planar NF. Planar NF can capture complicated data
patterns and help construct z-space variables in gnet. Fig. 5
compares OmniAnomaly and “C3-no planar NF”. We can see that,
the performance of OmniAnomaly is improved by using planar NF.
Instead of assuming the approximate posterior distribution in gnet
is Gaussian [24], planar NF transforms an initial distribution (e.g.,
Gaussian) with a sequence of invertible mappings, so it can capture
complex and flexible distributions of input data [18] and improve
the performance of our model. In MSL, the effect of planar NF is not
as significant as in the other two datasets, because simple z-space
variables can already represent its sparse input data.

Table 3: F1 obtained through POT vs. F1;,;.

Evaluation metrics for OmniAnomaly | SMAP | MSL SMD
F1 obtained through POT 0.8434 | 0.8989 | 0.8857
Flpest 0.8535 | 0.9014 | 0.9620

Effect of POT method. An effective method for anomaly threshold
selection is very necessary and useful in practical applications.
In OmniAnomaly, we apply the POT method to set the threshold
automatically. From Table 3, we can see that, F1 obtained through
POT is only slightly lower than Fl1,, (0.003~0.077), indicating
that POT method is effective for anomaly threshold selection.

5.2.3  Performance of anomaly interpretation. For a detected anom-
aly x¢, OmniAnomaly estimates the contribution (i.e. reconstruction
probability) of x¢’s each dimension to this anomaly and record
all dimensions into a list, AS;, ordered by their contributions. Let
GT; be the ground truth array containing the dimensions indeed
contributing to anomaly x¢. Since there exist no established metrics
to evaluate the interpretability of entity anomalies, motivated by
the idea of HitRate@K for recommender systems [25], we define

a new metric HitRate@P%= W, where|GTy| is the

length of GT; and P can be 100 or 150. Hit@P% equals the number
of overlapping dimensions between GT; (ground truth) and the
top |P% X |GT¢|] contributing dimensions in AS; suggested by
OmniAnomaly. We give a toy example to explain HitRate@P%. For
a 6-dimensional observation xt, its AS; is {2,3,6,1,5,4} and GT; is
{2, 6}. The result is 0.5 for HitRate@100% and 1.0 for HitRate@150%.

There is no ground truth provided for SMAP and MSL for
anomaly interpretation, thus we evaluate OmniAnomaly only on
SMD. The average interpretation accuracy for all detected anom-
alies is: HitRate@100%=0.8002 and HitRate@150%=0.8919, which
demonstrates that OmniAnomaly can give reasonable interpretation
for anomalies in practice. Similarly, we can also evaluate the
interpretability of entity anomalies detected by LSTM-VAE in
SMD dataset: HitRate@100%=0.5046 and HitRate@150%=0.6239.
OmniAnomaly achieves better anomaly interpretability than LSTM-
VAE, because our z-space variables can represent the input data
more robustly to improve reconstruction.

6 DISCUSSION

6.1 Visualization on z-space representations

In this section, we explain how OmniAnomaly works for anom-
aly detection through visualizing the z-space representations.
OmniAnomaly is a reconstruction-based model. For an input
observation, OmniAnomaly compresses it to a low dimension z-
space representation and then uses the representation to reconstruct
it. During model training, OmniAnomaly learns the representations
of normal behaviors of the training data. If an input observation is
anomalous, its z-space representation and the reconstructed value
are still normal, so the reconstruction probability is low.

0.1 0.08

02-01 0.10-0.04

Figure 6: (Left) The 3-dimensional z-space variables of SMD
by OmniAnomaly (where red points are from anomalous
class and blue ones are from normal class). (Right) Ran-
domly choose a normal observation x;, “x” denotes p, and
the ellipsoid denotes its 2-0, region; x; is set to zeros to

“,»

obtain an anomalous sample, denoted by “+” in z-space.

The left figure in Fig. 6 shows the 3-d z-space variables learned
from SMD by OmniAnomaly. All z-space variables are sampled
from qg(zt|x¢-1t). We find anomalous samples highly overlap
with normal samples, indicating that their z-space representations
are quite similar. Following [24], we randomly select a normal
observation and change its values to make it an anomaly, i.e.,
setting its values to all zeros, with a change magnitude equal to
385,069 times of x’s standard deviations. As shown in the right
figure in Fig. 6, the z-space variables of the original observation
and the manipulated one are still very close. This further demon-
strates that, despite anomalies, their z-space variables learned
by OmniAnomaly are still normal. These examples illustrate z-
space variables in OmniAnomaly capture the observations’ normal
patterns well.



6.2 Lessons Learned

In this study, we learned three lessons that are in general poten-
tially applicable to the robust modeling of those complex time
series/sequence data (e.g., speech, music, and monitoring) with
both temporal dependence and stochasticity. First, a combination
of stochastic deep Bayesian model and deterministic RNN model
is necessary. Second, the connection of stochastic variables is
necessary and effective. In particular, both the concatenation of
RNN hidden variable and z-space variable in gnetand the Linear
Gaussian SSM connection of z-space variables in pnet help learn
more information from historical stochastic variables, and thus
improves the quality of latent representations. Third, it is necessary
to assume non-Gaussian distributions in z-space, which can be
learned through flow models such as normalizing flows.

The lessons learned for multivariate time series anomaly detec-
tion are the following. First, reconstruction-based models are more
robust than prediction-based models, as the time series data in
practice could be unpredictable. Second, for reconstruction-based
models, it is critical to obtain robust latent representations which
can accurately capture the normal patterns of time series. Third,
reconstruction-based stochastic approaches (e.g., OmniAnomaly
and[16]) offer an opportunity to interpret the anomalies with
physical significance, based on the reconstruction probabilities
of the anomalous observation’s individual dimensions.

7 CONCLUSION

Entity-level anomaly detection can greatly help operation engineers
discover and troubleshoot abnormal behaviors of devices timely. In
this paper, we propose OmniAnomaly, a novel stochastic recurrent
neural network for multivariate time series anomaly detection
that works well robustly for various devices. We believe its key
techniques, such as stochastic variable connection, are applicable to
other time series modeling tasks. Moreover, OmniAnomaly provides
an intuitive and effective way to interpret detected entity anomalies,
based on reconstruction probability. Through extensive experi-
ments, OmniAnomaly outperforms state-of-the-art approaches on
three large datasets. OmniAnomaly’s excellent performance on
each dataset also demonstrates that it is a robust model and can be
applied to various devices such as server machines and spacecrafts.
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A DATASETS
SMAP (Soil Moisture Active Passive satellite) and MSL (Mars

Science Laboratory rover) are two public datasets from NASA [6].

Each dataset has a training and a testing subsets, and anomalies in
both testing subsets have been labeled [6]. SMD (Server Machine
Dataset) is a new 5-week-long dataset which was collected by us
from a large Internet company, and it was publicly published on
Github. We divided the SMD into two subsets of equal size: the

first half is the training set and the second half is the testing set.

Anomalies and their anomalous dimensions in SMD testing set
have been labeled by domain experts based on incident reports.

Table 4: Dataset Information

Dataset | No. of No. of Training | Testing | Anomaly
name entities | dimensions | setsize | setsize | ratio(%)
SMAP 55 25 135183 427617 13.13
MSL 27 55 58317 73729 10.72
SMD 28 38 708405 708420 4.16

The observations in these three datasets are all equally-spaced 1
minute apart. Table 4 shows the details of these datasets, including
name, the number of entities, the number of dimensions of each
observation, size (number of observations) of the training and
testing sets, and the ratio of anomalies in each testing subset.

B HYPER-PARAMETERS

We set the hyper-parameters of OmniAnomaly empirically in our
experiments as follows. The length of input data sequence is set
to 100 (i.e, T + 1 = 100). The GRU layers and dense layers have
500 units. The € in the standard deviation layer is set to 107%. The
dimension of z-space variables is fixed to 3. We have conducted
sensitivity analysis on the dimension in Appendix C. The length
of planar NF is 20. We set the batch size as 50 for training, and
run for 20 epochs with early stopping. We use Adam optimizer for
stochastic gradient descent with an initial learning rate of 10~3
during model training. When back-propagating gradients through
the network layers, gradient values may grow extremely large such

that some model parameters overflow (i.e., become NaN). To deal
with such “gradient explosion”, we use gradient clipping by norm
with 10.0 as the limit. We apply L2 regularization with a coefficient
of 107 to all layers of our model. During training, 30% of the
training data is held for validation. For POT parameters, ¢ = 107*
for all data sets, low quantile is 0.07 for SMAP, 0.01 for MSL, and
0.0001,0.0025 and 0.005 for three subsets of SMD. All experiments
in this study are conducted on NVIDIA GeForce GTX 1080 Ti 11GB
GDDR5X GPU. Using the above hyper-parameters, the training
time of our model for SMAP, MSL and SMD are about 48, 11 and 87
minutes per epoch respectively.
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Figure 7: F1p,,; of OmniAnomaly with different z-space
dimensions.

C IMPACT OF z-SPACE DIMENSION

Dimension of z-space is important for OmniAnomaly. A large
value would make dimension reduction have little effect so the
reconstruction probability fails to find a good posterior [24], and
too small of it may cause under-fitting.

Fig. 7 shows F1p,,; of OmniAnomaly by varying different z-space
dimensions. For our three datasets, their F1;,,; do not change
significantly when z-space dimensions are from 3~32, thus we
have a large room to choose the z-space dimension. We set z-
space dimension to 3 empirically for all three datasets. Automatic
selection of its value for other different datasets is difficult and not
be studied in our paper.
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