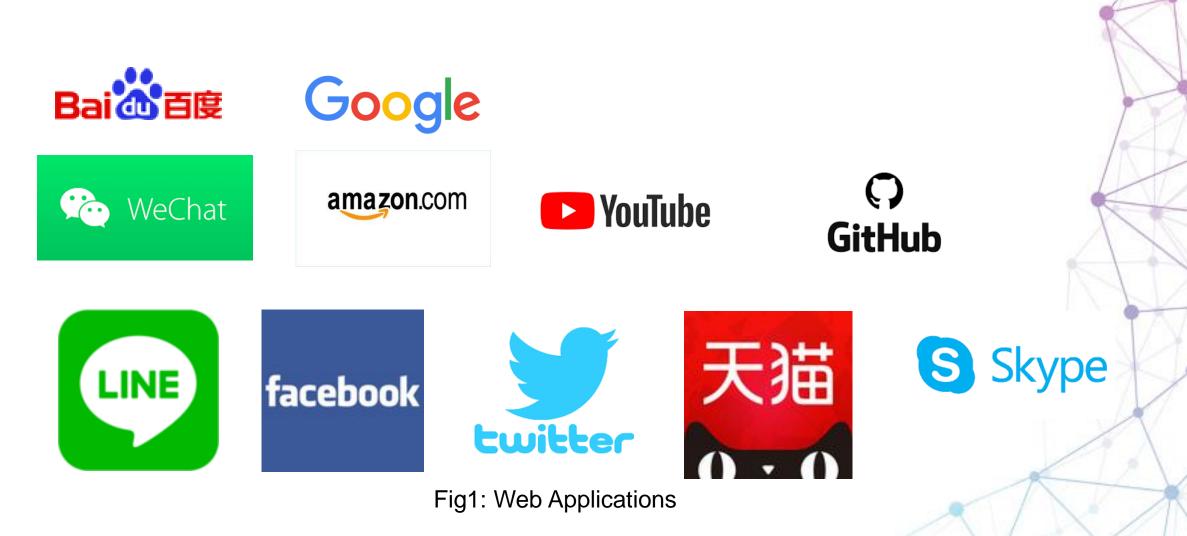
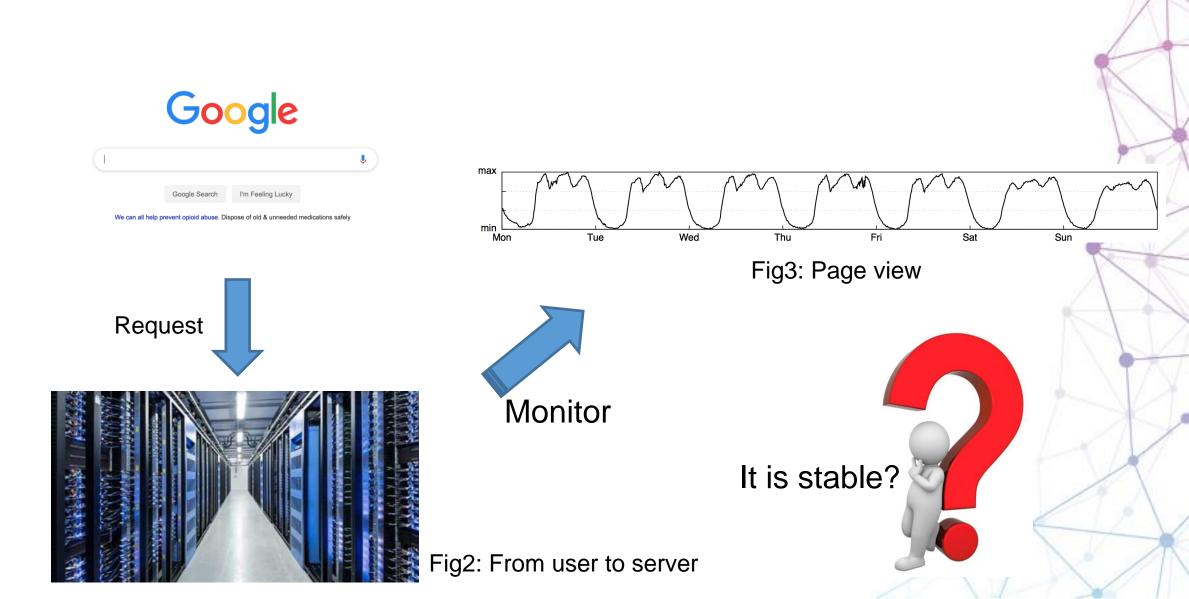
Unsupervised Anomaly Detection for Intricate KPIs via Adversarial Training of VAE

Wenxiao Chen, Haowen Xu, Zeyan Li, Dan Pei, Jie Chen, Honglin Qiao, Yang Feng, Zhaogang Wang

Tsinghua University



Key Performance Indicators



Key Performance Indicators

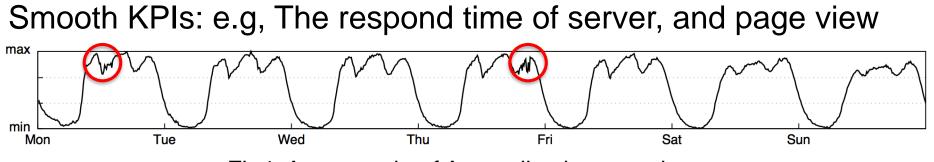


Fig4: An example of Anomalies in page view

Intricate KPIs: e.g, The query per second and transaction per second

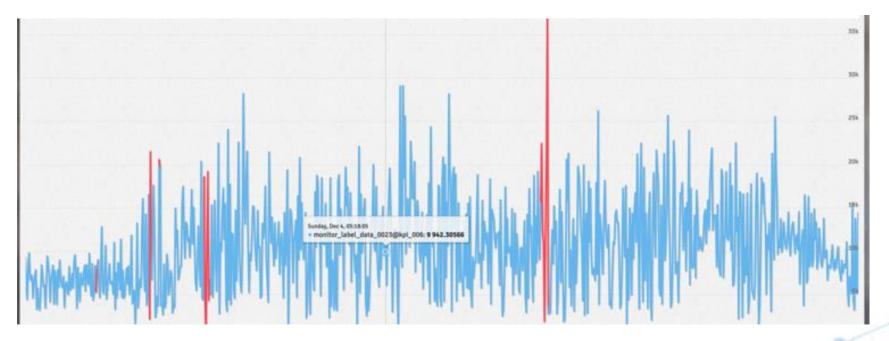
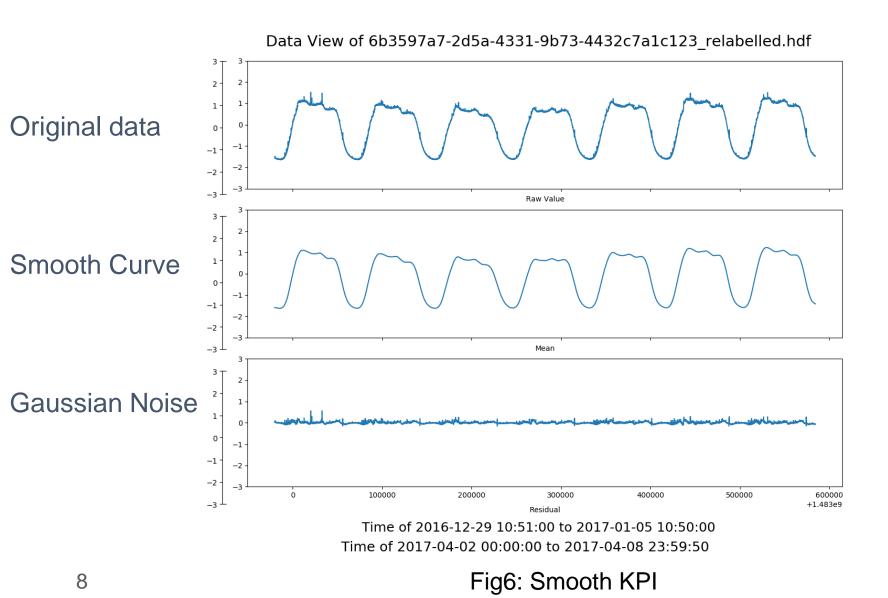


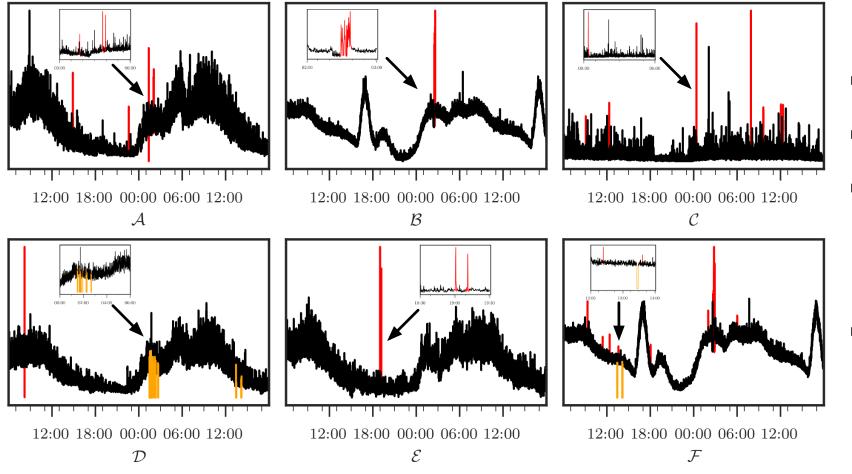
Fig5: An example of Anomalies in database

- Statistical
 - Anomaly detectors based on traditional statistical models [INFOCOM2012]
- Supervised
 - Supervised ensemble learning with above detectors Opprentice[IMC2015]
- Unsupervised
 - Unsupervised anomaly detection based on VAE Donut [WWW2018]

They can only work on smooth KPIs.

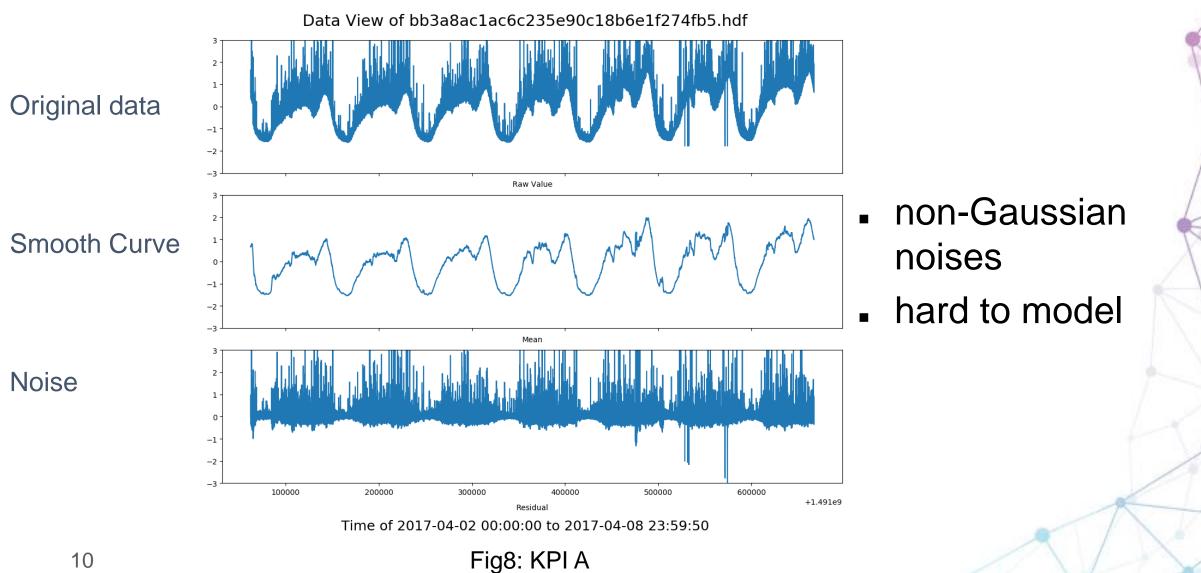
Smooth KPIs

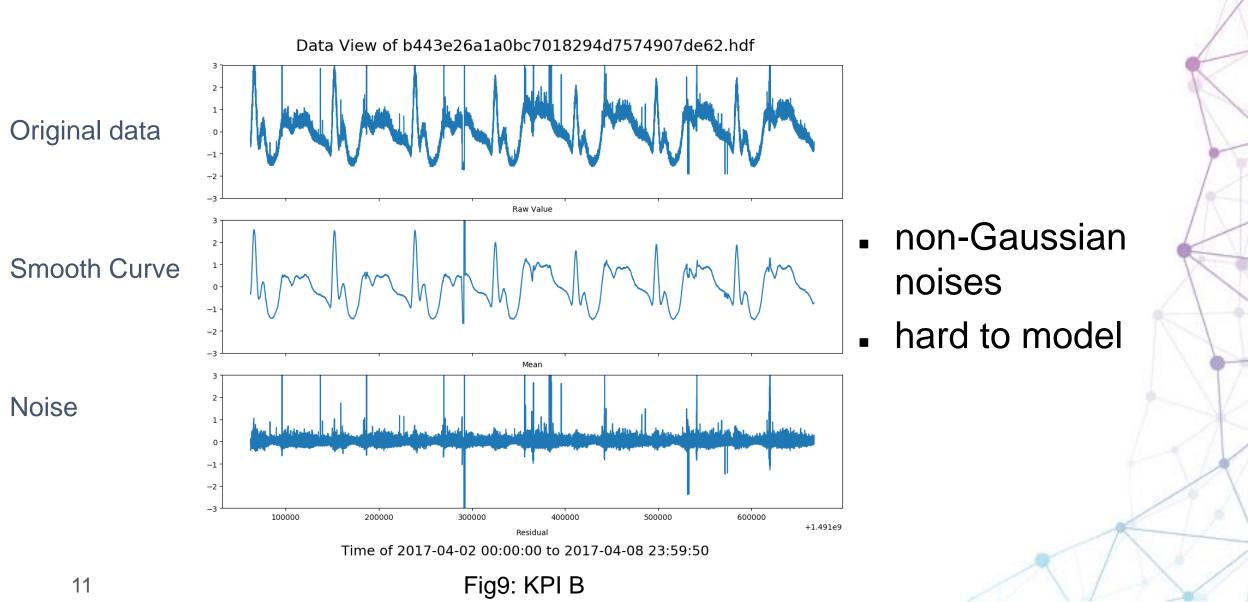




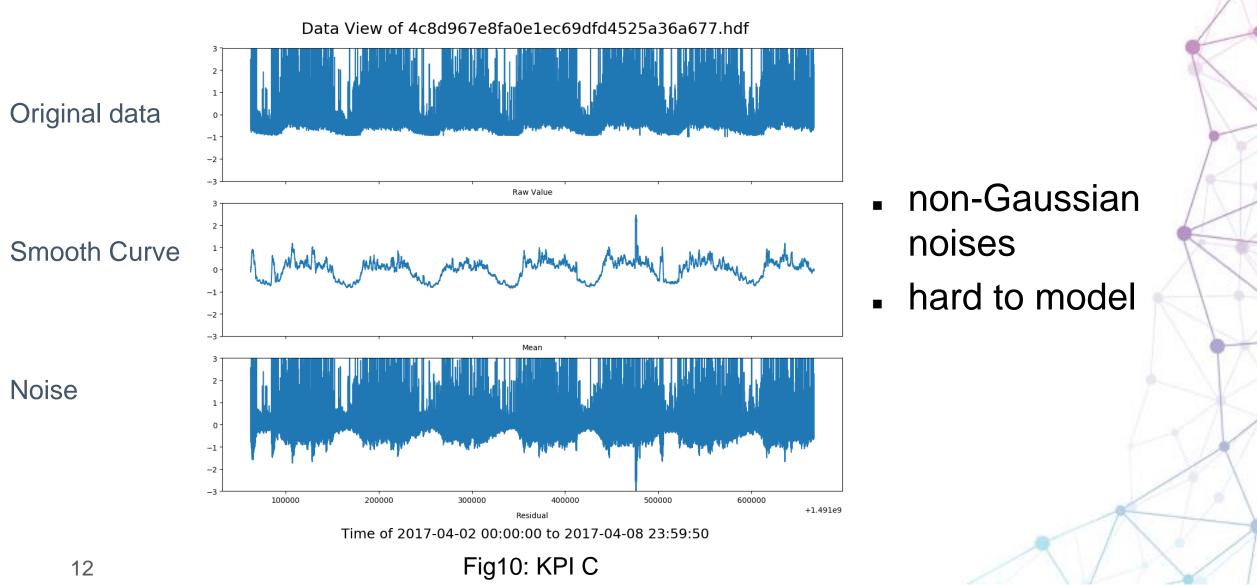
micro-congestion

- fine granularity
- prevalent and important (e.g, database, server)
- little studied





Intricate KPIs



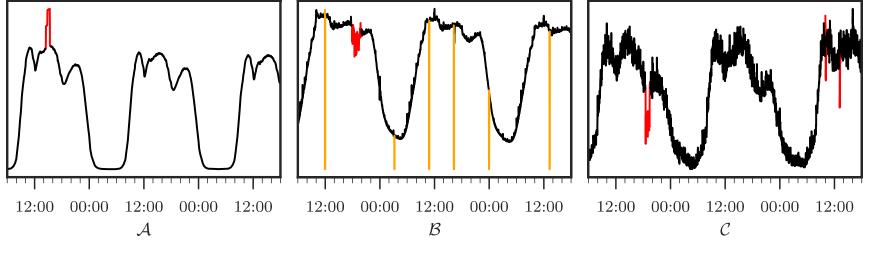


Fig11: The Dataset of Donut

Donut

- A recent future of W data points at time t is called a window at time t. Donut tries to model the distribution of normal windows by VAE(Variational Auto Encoder) and find anomalies by likelihood.
- The training objective of VAE, is the evidence lower bound of likelihood(ELBO).

$$\mathcal{L}_{vae} = \mathbb{E}_{p(\mathbf{x})} \left[\mathbb{E}_{q_{\phi}(\mathbf{z}|\mathbf{x})} [\log p_{\theta}(\mathbf{x}|\mathbf{z})] - \mathrm{KL} \left[q_{\phi}(\mathbf{z}|\mathbf{x}) \| p_{\theta}(\mathbf{z}) \right] \right]$$

In Donut, $p_{\theta}(\mathbf{x}|\mathbf{z})$ is diagonal multivariate gaussian distribution and it works well on seasonal smooth KPIs.

Donut

- Element-wise posterior:
 - $-\ln p_{\theta}(\mathbf{x}|\mathbf{z}) = \sum_{i} \ln p_{\theta}(\mathbf{x}_{i}|\mathbf{z})$
- It is useful for smooth KPIs but not for Intricate KPIs.

Out of Expectation

- Donut assumes that the data is seasonal smooth with diagonal gaussian noise but the intricate KPIs are not.
- VAE will only learn the mean and variance locally.

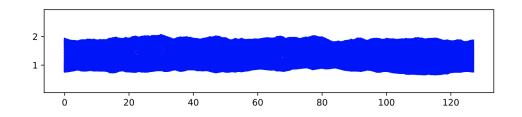


Fig12: Reconstructed element-wise gaussian distribution

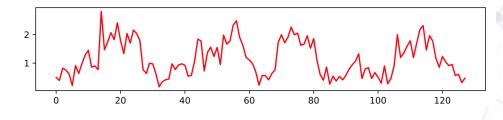
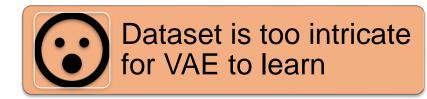
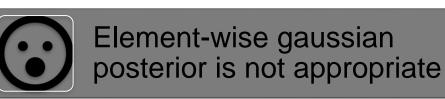
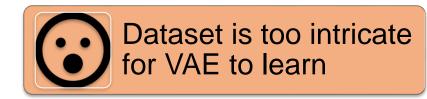


Fig13: Original curve



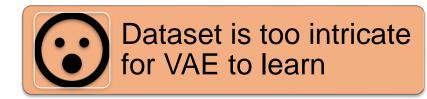


Reconstruction loss is too hard to learn



Element-wise gaussian posterior is not appropriate

Reconstruction loss is too hard to learn



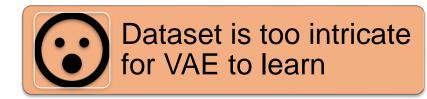
Element-wise gaussian posterior is not appropriate

Reconstruction loss is too hard to learn

$$\mathcal{L}_{vae} = \mathbb{E}_{p(\mathbf{x})} \left[\mathbb{E}_{q_{\phi}(\mathbf{z}|\mathbf{x})} [\log p_{\theta}(\mathbf{x}|\mathbf{z})] - \mathrm{KL} \left[q_{\phi}(\mathbf{z}|\mathbf{x}) \| p_{\theta}(\mathbf{z}) \right] \right]$$

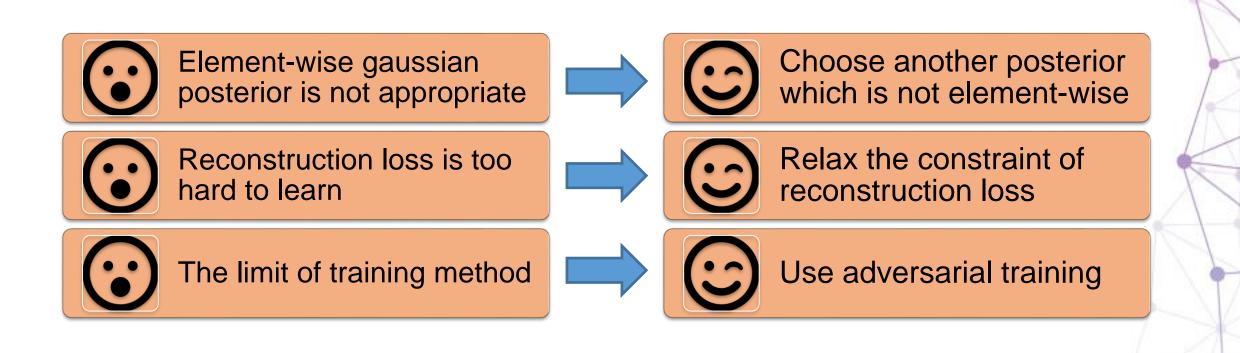
• $\mathbb{E}_{p(\mathbf{x})} \left[\mathbb{E}_{q_{\phi}(\mathbf{z}|\mathbf{x})} [\log p_{\theta}(\mathbf{x}|\mathbf{z})] \right]$ is called reconstruction loss.

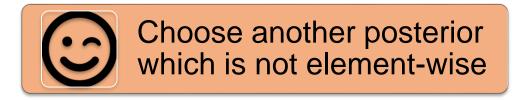
 ELBO is a trade-off and when the reconstruction loss is hard to learn (nearly no gradient from it), our model tends to learn another term.



Element-wise gaussian posterior is not appropriate

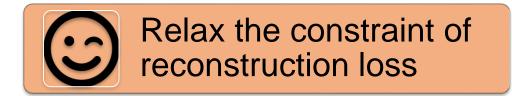
Reconstruction loss is too hard to learn



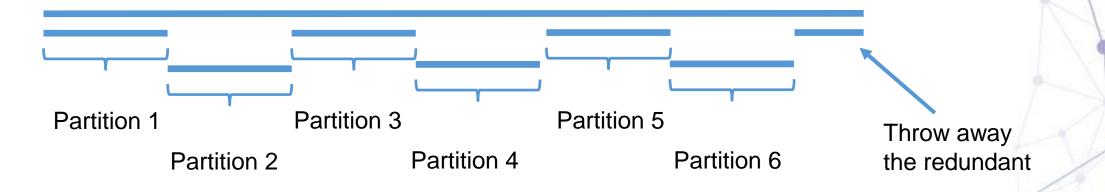


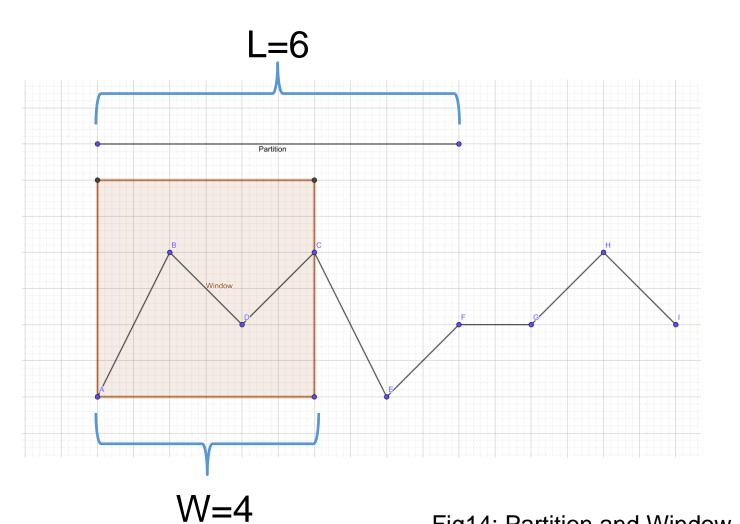
•
$$p_{\theta}(\mathbf{x}|\mathbf{z}) = \frac{1}{Z(\lambda)} e^{-\lambda \|\mathbf{x} - G(\mathbf{z})\|}$$

- G(z) is the generative network and λ is a learnable variable.
- $Z(\lambda)$ can be simply calculated when λ is fixed.
- It is easy to check that it is not element-wise.



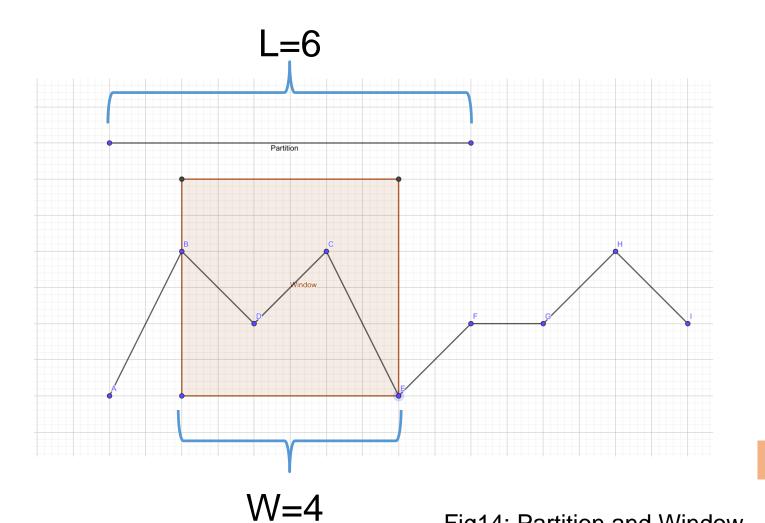
- Introduce a new notion: Partition
- Divide the whole KPI into several partitions, whose length are all L





Window 1

Fig14: Partition and Window



Window 2

Fig14: Partition and Window

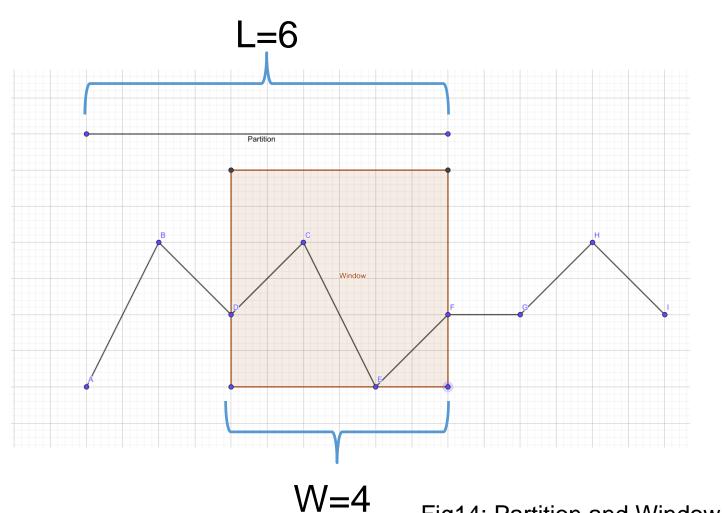
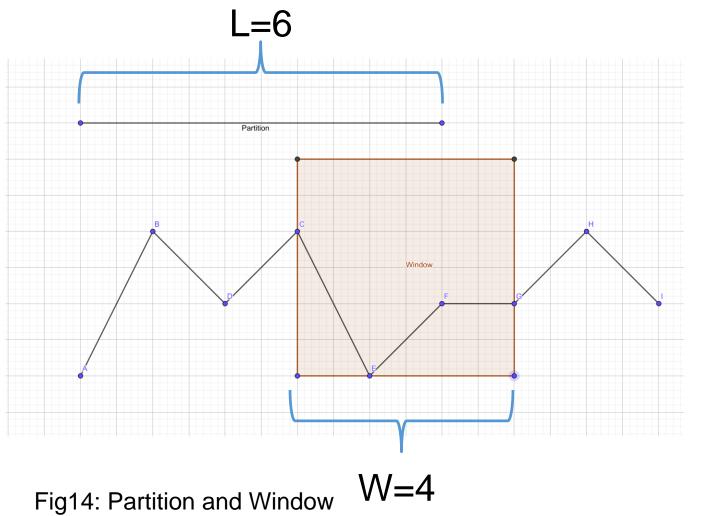


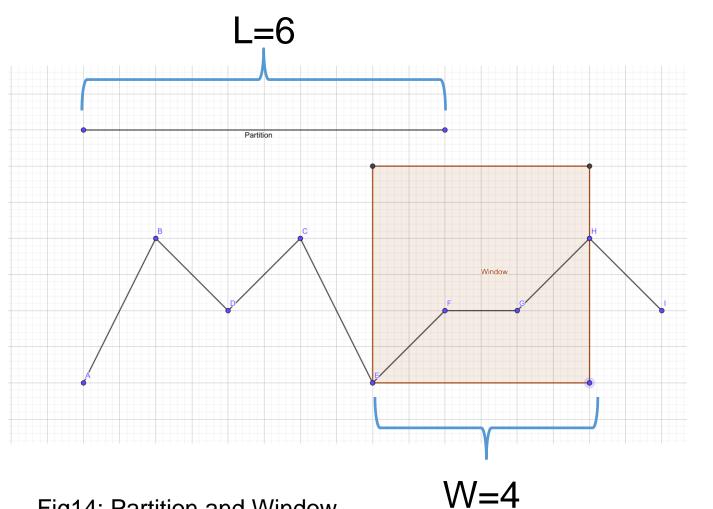
Fig14: Partition and Window

Window 3



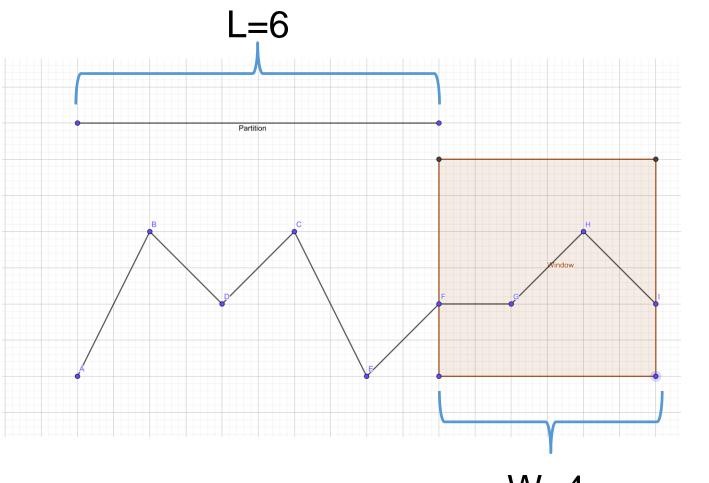
Window 4

30



Window 5

31 Fig14: Partition and Window



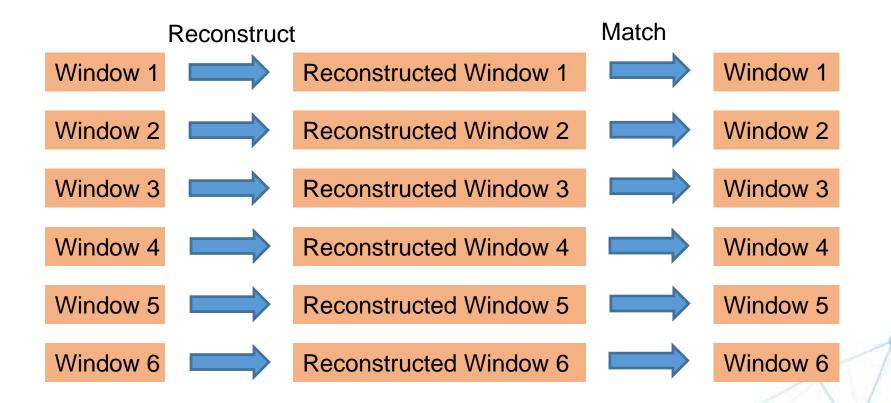
32 Fig14: Partition and Window

W=4

Window 6

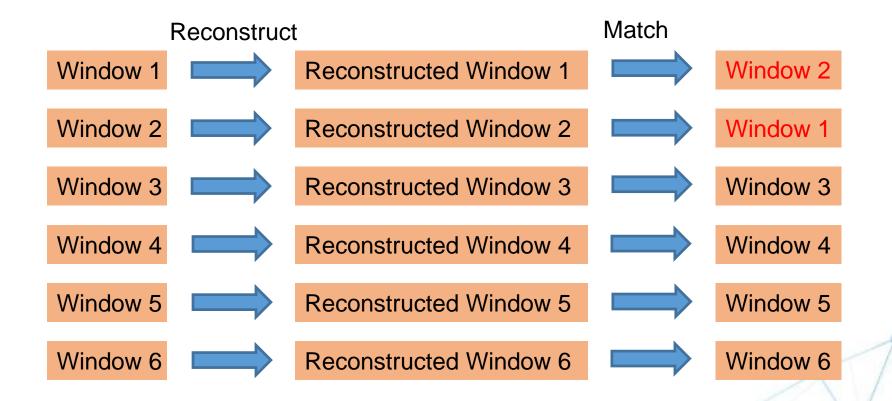
Match

 In a partition, we regard the reconstruction loss as distance between reconstructed window and original window.



Match

 We relax the reconstruction loss by following way: we permit each reconstructed window to match one window in this partition and compute the sum of the distance between each pair.



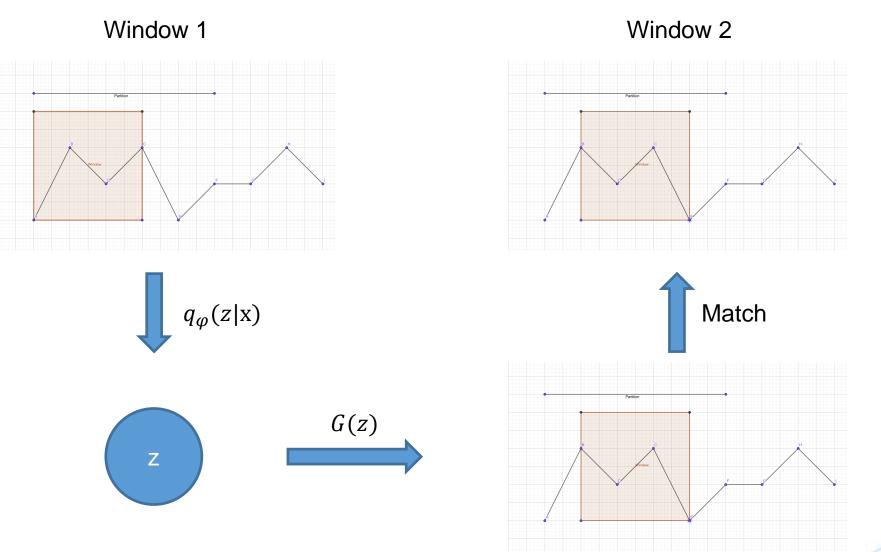


Fig15: Reconstruction and Match

Reconstructed window 1

- It is easy to see that match reconstruction loss is less than reconstruction loss (just trivial match).
- Reconstruction loss is the special case: L=1
- Understand it intuitively: L is our tolerance. We tolerate some errors of reconstruction.



- A generative adversarial network (GAN) is a class of machine learning systems. Two neural networks contest with each other in a zero-sum game framework.
- It works very well in image generation.

Wasserstein distance

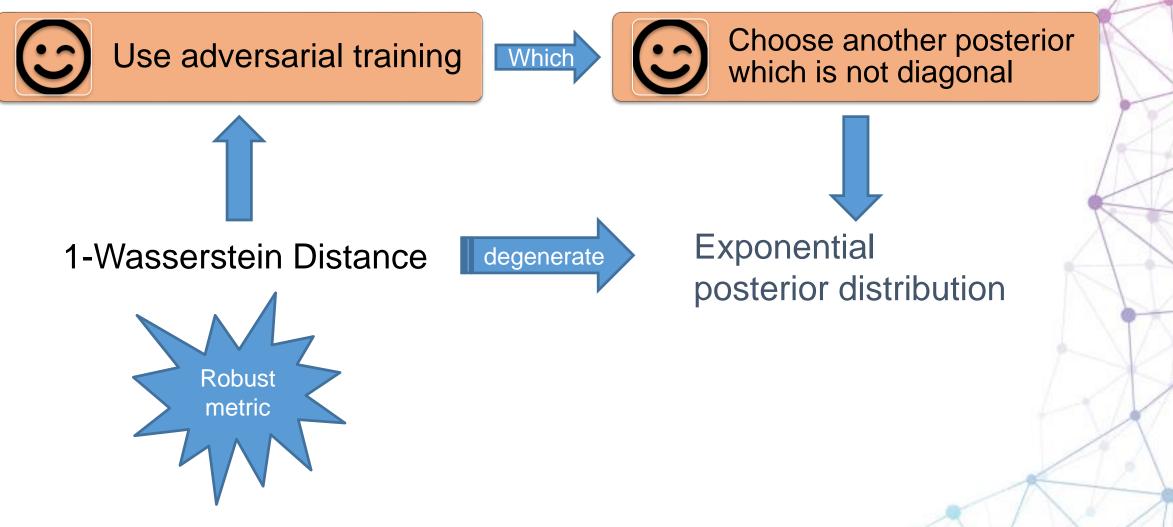
• Wasserstein distance used by WGAN[ICML2017].

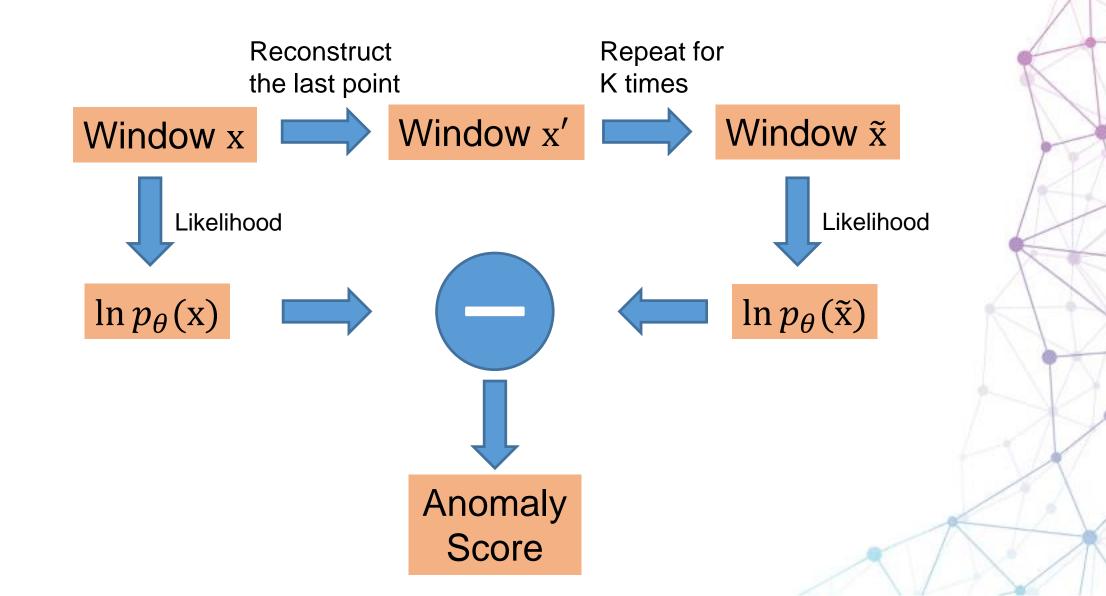
$$W^{1}[P(\mathbf{x}|w) \| P_{G}(\mathbf{y}|w)] = \inf_{\gamma \in \Gamma_{w}} \int_{\mathcal{X} \times \mathcal{X}} \|\mathbf{x} - \mathbf{y}\| d\gamma(\mathbf{x}, \mathbf{y})$$
$$= \sup_{Lip(f) \le 1} \left\{ \int_{\mathcal{X}} f(\mathbf{x}) p(\mathbf{x}|w) d\mathbf{x} - \int_{\mathcal{X}} f(\mathbf{y}) p_{G}(\mathbf{y}|w) d\mathbf{y} \right\}$$

- $P(\mathbf{x}|\omega)$ is the distribution of windows in Partition ω
- $P_G(\mathbf{y}|\boldsymbol{\omega})$ is the distribution of reconstructed windows in Partition $\boldsymbol{\omega}$
- γ represents the matches

$$W^{1}[P(\mathbf{x}|w) \| P_{G}(\mathbf{y}|w)] = \inf_{\gamma \in \Gamma_{w}} \int_{\mathcal{X} \times \mathcal{X}} \|\mathbf{x} - \mathbf{y}\| d\gamma(\mathbf{x}, \mathbf{y})$$
$$= \sup_{Lip(f) \leq 1} \left\{ \int_{\mathcal{X}} f(\mathbf{x}) p(\mathbf{x}|w) d\mathbf{x} - \int_{\mathcal{X}} f(\mathbf{y}) p_{G}(\mathbf{y}|w) d\mathbf{y} \right\}$$

- We train another network D(x) to find the optimal f above, with a penalty on the gradient norm for random samples (WGAN-GP[NIPS2017]).
- Decrease the size of each partition during training.
- We complete an adversarial training algorithm of VAE.





Experiments

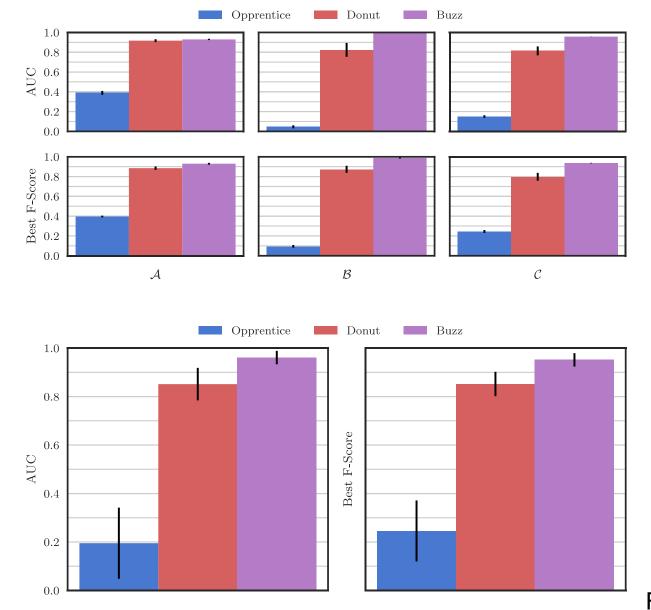
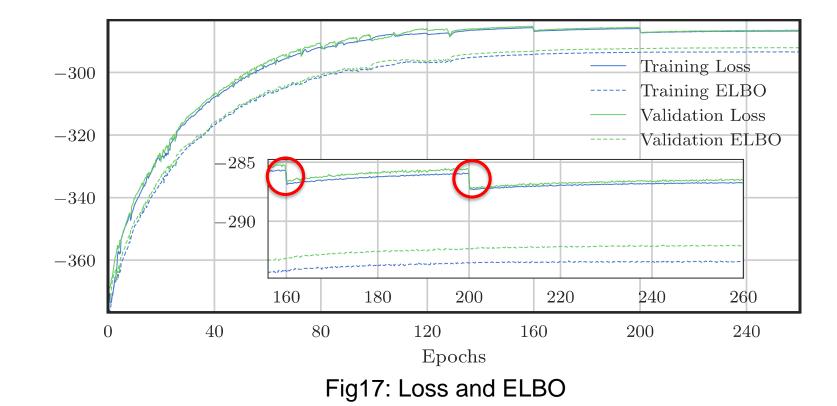


Fig16: Performance



The fact that ELBO increases during the training, indicates that our model maximizes the ELBO indeed.

- The first unsupervised anomaly detection algorithm via deep generative model on intricate KPIs
- The first adversarial training method for VAE, based on partitions analysis
- Our deduction build the bridge between VAE and Wasserstein Distance

Thank you

Q&A