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Fig1: Web Applications
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Fig2: From user to server
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Key Performance Indicators
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Fig4: An example of Anomalies in page view

Smooth KPIs: e.g, The respond time of server, and page view

Intricate KPIs: e.g, The query per second and transaction per second

Fig5: An example of Anomalies in database



Existing Method

 Statistical

– Anomaly detectors based on traditional statistical models 

[INFOCOM2012]

 Supervised 

– Supervised ensemble learning with above detectors –

Opprentice[IMC2015]

 Unsupervised 

– Unsupervised anomaly detection based on VAE – Donut [WWW2018]

7

They can only work

on smooth KPIs.



8 Fig6: Smooth KPI
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 micro-congestion

 fine granularity

 prevalent and 

important (e.g, 

database, server)

 little studied

9 Fig7: Intricate KPIs

Intricate KPIs



 non-Gaussian 

noises

 hard to model

10 Fig8: KPI A
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 non-Gaussian 

noises

 hard to model

11 Fig9: KPI B
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 non-Gaussian 

noises

 hard to model

12 Fig10: KPI C
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Donut
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Fig11: The Dataset of Donut



Donut

 A recent future of W data points at time t is called a window at 
time t. Donut tries to model the distribution of normal windows by 
VAE(Variational Auto Encoder) and find anomalies by likelihood. 

 The training objective of VAE, is the evidence lower bound of 
likelihood(ELBO). 

 In Donut, 𝑝𝜃 x z is diagonal multivariate gaussian distribution 
and it works well on seasonal smooth KPIs.
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Donut

 Element-wise posterior:

– ln 𝑝𝜃 x z = σ𝑖 ln 𝑝𝜃 x𝑖 z

 It is useful for smooth KPIs but not for Intricate KPIs.
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Out of Expectation

 Donut assumes that the data is seasonal smooth with diagonal 

gaussian noise but the intricate KPIs are not.

 VAE will only learn the mean and variance locally.  
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Fig12: Reconstructed element-wise 

gaussian distribution
Fig13: Original curve
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Element-wise gaussian
posterior is not appropriate

Reconstruction loss is too
hard to learn

The limit of training method

Challenges
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Dataset is too intricate
for VAE to learn
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Challenges

 is called reconstruction loss.

 ELBO is a trade-off and when the reconstruction loss is 

hard to learn (nearly no gradient from it), our model tends 

to learn another term. 
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Element-wise gaussian
posterior is not appropriate

Reconstruction loss is too
hard to learn

The limit of training method

Challenges
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Dataset is too intricate
for VAE to learn
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Element-wise gaussian
posterior is not appropriate

Reconstruction loss is too
hard to learn

The limit of training method

Choose another posterior 
which is not element-wise

Relax the constraint of
reconstruction loss

Use adversarial training

Ideas



 𝑝𝜃 x z =
1

𝑍(𝜆)
𝑒−𝜆 x−𝐺(𝑧)

 𝐺(𝑧) is the generative network and 𝜆 is a learnable 

variable.

 𝑍(𝜆) can be simply calculated when 𝜆 is fixed. 

 It is easy to check that it is not element-wise.

25

Choose another posterior 
which is not element-wise

Ideas



 Introduce a new notion: Partition

 Divide the whole KPI into several partitions, whose length 

are all L
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Relax the constraint of
reconstruction loss

Partition 1

Partition 2

Partition 3

Partition 4

Partition 5

Partition 6
Throw away

the redundant

Ideas
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Window 1

L=6

W=4 Fig14: Partition and Window

Partition and Window
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Window 2

L=6

W=4 Fig14: Partition and Window

Partition and Window
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Window 3

W=4

L=6

Fig14: Partition and Window

Partition and Window
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Window 4

W=4

L=6

Fig14: Partition and Window
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Window 5

W=4

L=6

Fig14: Partition and Window

Partition and Window
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Window 6

W=4

L=6

Fig14: Partition and Window

Partition and Window



 In a partition, we regard the reconstruction loss as

distance between reconstructed window and original

window.
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 We relax the reconstruction loss by following way: we permit 

each reconstructed window to match one window in this partition 

and compute the sum of the distance between each pair. 
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z

Reconstructed window 1

Window 1 Window 2

Match𝑞𝜑(𝑧|x)

𝐺(𝑧)

Fig15: Reconstruction and Match

Whole Process



 It is easy to see that match reconstruction loss is less 

than reconstruction loss (just trivial match). 

 Reconstruction loss is the special case: L=1

 Understand it intuitively: L is our tolerance. We tolerate 

some errors of reconstruction. 
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Relationship



 A generative adversarial network (GAN) is a class of 

machine learning systems. Two neural networks contest 

with each other in a zero-sum game framework.

 It works very well in image generation.
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Use adversarial training

Ideas



Wasserstein distance

 Wasserstein distance used by WGAN[ICML2017].

 𝑃(x|𝜔) is the distribution of windows in Partition 𝜔

 𝑃𝐺(y|𝜔) is the distribution of reconstructed windows in 

Partition 𝜔

 𝛾 represents the matches
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 We train another network 𝐷(x) to find the optimal 𝑓
above, with a penalty on the gradient norm for random 

samples (WGAN-GP[NIPS2017]). 

 Decrease the size of each partition during training.

 We complete an adversarial training algorithm of VAE.

39

Training



40

Use adversarial training
Choose another posterior 
which is not diagonal

Which

1-Wasserstein Distance Exponential 

posterior distribution
degenerate

Robust

metric

Review



Detection
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Window x

Likelihood

ln 𝑝𝜃(x)

Window x′

Reconstruct

the last point

Window ෤x
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K times

Likelihood

ln 𝑝𝜃(෤x)

Anomaly
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43 Fig16: Performance

Experiments
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The fact that ELBO increases during the training, indicates 

that our model maximizes the ELBO indeed.

Fig17: Loss and ELBO

Experiments



 The first unsupervised anomaly detection algorithm via deep 

generative model on intricate KPIs

 The first adversarial training method for VAE, based on partitions 

analysis

 Our deduction build the bridge between VAE and Wasserstein 

Distance
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Conclusion



Thank you
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Q&A
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