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Key Performance Indicators
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Key Performance Indicators
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Key Performance Indicators

Smooth KPIs: e.g, The respond time of server, and page view
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Fig4: An example of Anomalies in page view

Intricate KPIs: e.g, The query per second and transaction per second

wndiy, Doe &, 955048
moniter_label_data_002%@kpl_00%: § 942.30566 I

|

Fig5: An example of Anomalies in database




Existing Method

. Statistical

— Anomaly detectors based on traditional statistical models
[INFOCOM2012]

= Supervised

— Supervised ensemble learning with above detectors —
Opprentice[IMC2015]

- Unsupervised
— Unsupervised anomaly detection based on VAE — Donut [WWW2018]

They can only work
on smooth KPIs.



Smooth KPIs
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Intricate KPlIs
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Intricate KPIs
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Intricate KPIs
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Intricate KPIs
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Donut
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Donut

- Arecent future of W data points at time t is called a window at
time t. Donut tries to model the distribution of normal windows by
VAE(Variational Auto Encoder) and find anomalies by likelihood.

= The training objective of VAE, is the evidence lower bound of
likelihood(ELBO).

Loae = Ep(x) [Eq, (alx)[10g po(x|2)] — KL [g4(2[x) || po(2)] ]

« In Donut, py(x|z) is diagonal multivariate gaussian distribution
and it works well on seasonal smooth KPIs.
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Donut

« Element-wise posterior:
— Inpg(x|z) = X; Inpg(x;]2)

« It 1s useful for smooth KPIs but not for Intricate KPIs.
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Out of Expectation

« Donut assumes that the data is seasonal smooth with diagonal
gaussian noise but the intricate KPIs are not.

- VAE will only learn the mean and variance locally.
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Figl2: Reconstructed element-wise Fig13: Original curve
gaussian distribution
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Challenges

/. .\ Dataset is too intricate ‘
for VAE to learn
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Challenges

(. .\ Element-wise gaussian .
posterior is not appropriate

(. .\ Dataset is too intricate ‘ ‘
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Challenges

Element-wise gaussian
posterior is not appropriate

® |
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Reconstruction loss Is too
hard to learn

| ‘ Dataset is too intricate ‘
for VAE to learn
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Challenges

Loyge = Ep(x) [Eq¢(z|x) [logpg(x\z)] — KL [QQS(Z‘X) ||p9(Z)]]

« Eux) |Eq,(21x)[log po(x|2)]] is called reconstruction loss.

« ELBO Is a trade-off and when the reconstruction loss Is
hard to learn (nearly no gradient from it), our model tends
to learn another term.

21



Challenges

Element-wise gaussian
posterior is not appropriate

Dataset is too intricate
for VAE to learn

The limit of training method

j‘> Reconstruction loss Is too
hard to learn
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Element-wise gaussian
posterior is not appropriate

Reconstruction loss iIs too
hard to learn

The limit of training method
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Choose another posterior
which is not element-wise

Relax the constraint of
reconstruction loss

Use adversarial training
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Choose another posterior
which is not element-wise

1 _llx—
po (x|2) :me Allx=G(2)|l

G (z) Is the generative network and A is a learnable
variable.

« Z(A) can be simply calculated when A is fixed.

It Is easy to check that it is not element-wise.
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Relax the constraint of
— reconstruction loss
= Introduce a new notion: Partition
= Divide the whole KPI into several partitions, whose length

are all L
| J \ J \ )
L ' | \ y J \ y J
Partition 1 Partition 3 Partition 5 Throw away
Partition 2 Partition 4 Partition 6 the redundant
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Partition and Window
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Partition and Window
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Partition and Window

L=6

Y Window 3

- W=4

Figl4: Partition and Window



Partition and Window

L=6

G H
/ Window
D F G |
y

\ }

Y Window 4

30 Figl4: Partition and Window W=4



Partition and Window

L=6

Y Window 5
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Partition and Window
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Match

- In a partition, we regard the reconstruction loss as
distance between reconstructed window and original

window.
Reconstruct Match
Window 1 ‘ Reconstructed Window 1 ‘ Window 1
Window 2 ‘ Reconstructed Window 2 ‘ Window 2
Window 3 ‘ Reconstructed Window 3 ‘ Window 3
Window 4 ‘ Reconstructed Window 4 ‘ Window 4
Window 5 ‘ Reconstructed Window 5 ‘ Window 5
Window 6 ‘ Reconstructed Window 6 ‘ Window 6
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Match

- We relax the reconstruction loss by following way: we permit
each reconstructed window to match one window In this partition
and compute the sum of the distance between each pair.

Reconstruct Match
Window 1 ‘ Reconstructed Window 1 ‘ Window 2
Window 2 ‘ Reconstructed Window 2 ‘ Window 1
Window 3 ‘ Reconstructed Window 3 ‘ Window 3
Window 4 ‘ Reconstructed Window 4 ‘ Window 4
Window 5 ‘ Reconstructed Window 5 ‘ Window 5
Window 6 ‘ Reconstructed Window 6 ‘ Window 6
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Whole Process

Window 1 Window 2
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35 Figl5: Reconstruction and Match Reconstructed window 1



Relationship

« It Is easy to see that match reconstruction loss Is less
than reconstruction loss (just trivial match).

« Reconstruction loss is the special case: L=1

. Understand it intuitively: L is our tolerance. We tolerate
some errors of reconstruction.
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{ @ Use adversarial training

- Agenerative adversarial network (GAN) is a class of
machine learning systems. Two neural networks contest
with each other in a zero-sum game framework.

- It works very well in image generation.
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Wasserstein distance

Wasserstein distance used by WGAN[ICML2017].

vyeEl'y

— p(x|w)dx — d
Li}fg};ﬂ{/ f(x)p(x|w) /f )pa(y|w) y}

P(x|w) Is the distribution of windows in Partition w

P.(y|w) Is the distribution of reconstructed windows in
Partition w

y represents the matches

WP (x|w)|[ Pa(y|w)] = inf /X Iyl
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raining
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WP | Pa(ylw)] = inf [ Ix=yldrxy

= sup </f p(x|w) dX—/f PG(y,w)dY}

Lip(f)<1

We train another network D(x) to find the optimal f

above, with a penalty on the gradient norm for random
samples (WGAN-GP[NIPS2017]).

Decrease the size of each partition during training.
We complete an adversarial training algorithm of VAE.



Review
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1-Wasserstein Distance Exponential
posterior distribution
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Detection

Reconstruct Repeat for
the last point K times

Window x ‘ Window x'’ ‘ Window X
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Experiments
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Experiments
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Figl7: Loss and ELBO

The fact that ELBO increases during the training, indicates
that our model maximizes the ELBO indeed.



Conclusion

« The first unsupervised anomaly detection algorithm via deep
generative model on intricate KPIs

- The first adversarial training method for VAE, based on partitions
analysis

« Our deduction build the bridge between VAE and Wasserstein
Distance
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