

Personalized Re-ranking for Recommendation

Changhua Pei, Yi Zhang, Yongfeng Zhang, Fei Sun, Xiao Lin, Hanxiao Sun, Jian Wu, Peng Jiang, Junfeng Ge, Wenwu Ou, Dan Pei

Outline

Formulation of re-ranking for recommendation

Model: How do we solve the formulated re-ranking problem?

Conclusion

Ranking is critical for Recommendation

News

ul 中国移动 ♀ く	上T12:48 Q. 在美食频道内搜索	84% ● + 84% ● + ③ 地图模式
附近▽	美食 - 智能排序 -	筛选 ▽
24小时营业	北京菜 中关村商圈 价格	50-100 T2A
	很久以前羊肉串(机场南平街	
	★★★★★ 363条 ¥113/人	连锁认证
	烤串 首都机场	3.2km
	首都机场赛食口味棱第1名 "串的味道	满分.尤其羊肉"
	营业至03:00	
中秋神思	把角儿+调炉蛙锅 🏅 🔜 💷	J 外 促
4140 536	■■■■■ 406条 ¥110/人	
	炭火锅 首都机场	3.4km
18 M	掌柜 c》:牛蛙鲜嫩爽滑,多种搭配	
	营业至02:00	
	8 95代100元,69代100元	
	☑ 200元2-3人餐,425元4-3人餐	
	喜茶(首都机场T2航站楼店)	
	1610条 ¥30/人	连锁认证
la an	茶饮果汁 首都机场	1.3km
A 1º	首都机场美食热门枝第2名 "机场有近	
	休息中 05:30营业	
	祁老大烤吧(西半街店) 🔝	
	祁老大烤吧(西平街店) □ □ □ □ □ □ □ □ □ □ □ □ □	

Restaurant

Learning to rank

Input

Feature Space

[0.11, 0.32, 0.43, ..., -0.2]

[0.05, 0.25, 0.45, ..., 0.0]

[-0.2, -0.2, 0.5, ..., 0.1]

[-0.1, -0.05, -0.1, ..., 0.5]

The scoring process is independent for each item!

Mutual Influences between Items

Redundancy

 $A \downarrow A \rightarrow A \downarrow$

\$180

\$190

\$200

The user's decision may be affected by the items placed alongside it! Either negative or positive

Supplement

Personalized Mutual Influences

 $\ddot{\mathcal{X}} \rightarrow \qquad \bigcirc \uparrow \qquad \bigcirc \checkmark \qquad \checkmark$

 $A \rightarrow A \rightarrow A \rightarrow$

\$190

\$180

\$200

Different people reacts differently for mutual influences!

Our Model

Learning to rank

$$\mathcal{L} = \sum_{r \in \mathcal{R}} \ell \Big(\{ y_i, P(y_i | \mathbf{x}_i; \theta) | i \in \mathcal{I}_r \} \Big)$$

 X_i feature vector of item click labels of item candidate sets of items

Re-ranking: act as a refinement of the learning to rank method.

Personalized Re-ranking

feature matrices of candidate items

vector

sorted list of the items generated by the initial ranker

Our Model

- Modeling item-dependency
 - Extend feature space
 - global representation
 - RNN-based
 - Modeling relationship directly between any two items
 - Attention-based

Personalized item-dependency

user context features

Pre-trained user preference vectors

Feature vector.

position

embedding

~	~	
Encoding	Output	Re-ranked
Layer	Layer	List

	γ
t	Re-ranked
•	List
2	LISU

(a) One block of Transformer encoder.

 $r \in \mathcal{R} \ i \in S_r$

Output Layer

11

hidden vector contains more information. Pre-trained model can utilize the user click history.

Loss function:

 $\mathcal{L} = \sum \left(y_i \log(P(y_i | \mathcal{H}_u, u; \theta')) \right)$ $+ (1 - y_i) \log(1 - P(y_i | \mathcal{H}_u, u; \theta')),$

- Evaluation datasets.
 - Yahoo Letor Dataset.
 - Our own dataset.
 - For personalization.

#Users #Docs/Iten #Records Relavance/

Table 2: Overview of the datasets.

	Yahoo Letor Dataset	E-commerce Re-ranking Dataset
		743,720
ms	709,877	7,246,323
	29,921	14,350,968
e/Feedback	{0,1,2,3,4}	{0,1}

We release this dataset to public!

https://github.com/rank2rec/rerank

- Baselines
 - SVMRank
 - LambdaMart
 - DNN-based LTR
 - DLCM (Re-ranking Method)
 - PRM: personalized re-ranking model.

Metrics

Offline metrics.

$$Precision@k = \frac{1}{|\mathcal{R}|} \sum_{r \in \mathcal{R}} \frac{\sum_{i=1}^{k} \mathbf{I}(\mathcal{S}_{r}(i))}{k}$$

$$MAP@k = \frac{1}{|\mathcal{R}|} \sum_{r \in \mathcal{R}} \frac{\sum_{i=1}^{k} Precision@i * \mathbf{I}(\mathcal{S}_{r}(i))}{k}$$

- **Research Questions:**

 - LTR approaches?
 - RQ2: What is the performance of our PRM model equipped with personalized module?
 - different aspects, for example, positions and characteristics of items?

RQ0: Does our PRM model outperform the state-of-the-art methods and why?

RQ1: Does the performance vary according to initial lists generated by different

RQ3: Can self-attention mechanism learn meaningful information with respect to

LTR approaches?

Trait Tint	Doronking	Yahoo Letor dataset.					
Init. List	Reranking	Precision@5(%)	Precision@10(%)	MAP@5(%)	MAP@10(%)	MAP(%)	
	SVMRank	50.42	42.25	73.71	68.28	62.14	
SVMDonle	LambdaMART	51.35	43.08	74.94	69.54	63.38	
SVMRank	DLCM	52.54	43.26	76.52	70.86	64.50	
	PRM-BASE	53.29	43.66	77.62	72.02	65.60	
	SVMRank	50.41	42.34	73.82	68.27	62.13	
LambdaMART	LambdaMART	52.04	43.00	75.77	70.49	64.04	
	DLCM	52.54	43.16	77.81	71.88	65.24	
	PRM-BASE	53.63+2	43.41	78.62	72.67	65.72 +0	

- 1. Our PRM-BASE achieves stable and significant performance improvements comparing with all baselines, regardless of the initial list.
- **Transformer.**

RQ0: Does our PRM model outperform the state-of-the-art methods and why?

RQ1: Does the performance vary according to initial lists generated by different

Table 3: Offline evaluation results on Yahoo Letor dataset.

2. The performance gain over DLCM mainly comes from the powerful encoding ability of

RQ3: What is the performance of our PRM model equipped with personalized module?

Table 5: Offline evaluation results on E-commerce Re-ranking dataset.							
Init List	Po ronking	E-commerce Re-ranking dataset.					-
Init. List	Re-ranking	Precision@5	Precision@10	MAP@5(%)	MAP@10(%)	MAP(%)	
	DLCM	12.21	9.73	29.32	30.28	28.19	-
DNN-based LTR	PRM-BASE	12.71	4 9.99	29.80	30.83	28.85	+2.3
	PRM-Personalized-Pretrain	13.58	+9.0% 10.52	31.18	32.12	30.15	+4.5

- 1. The performance gain on our E-commerce Re-ranking dataset is much larger than on Yahoo Letor dataset.
- 2. Our PRM-Personalized-Pretrain achieves significant performance improvements comparing with PRM-BASE.

Figure 2: Average attention weights related to items' attributes.

RQ4: Can self-attention mechanism learn meaningful information with respect to

Attention mechanism can successfully capture mutualinfluences in different categories or price-level.

Conclusion

- We proposed a personalized re-ranking model (PRM) to refine the initial list given by state-of-the-art learning to rank methods.
- We used Transformer network to encode both the dependencies among items and the interactions between the user and items.
- The personalized vector can bring further performance improvements to the re-ranking model.
- Both the online and offline experiments demonstrated that our PRM model can greatly
 improve the ranking performance.
- Our released real-world dataset can enable researchers to study the ranking/re-ranking algorithms for recommendation systems.

Thank You!

Our Model

Modeling item-dependency

Extend feature space

- Global representation
 - RNN-based
- relationship between any two items
 - Attention-based

The representation of manual features is limited!

 $\frac{\$190 - \$180}{\$200 - \$180}$

$$f_{\min} = \min_{\substack{1 \le j \le N}} f_l(j)$$
$$f_{\max} = \max_{\substack{1 \le j \le N}} f_l(j)$$
$$f_g(i) = \frac{f_l(i) - f_{\min}}{f_{\max} - f_{\min}}$$

Our Model

- Modeling item-dependency 44///
 - Extend feature space
 - **Global representation**
 - **RNN-based**
 - Modeling relationship between any two items

The feature information degrades along with the encoding distance.

1. directly model mutual influences. enable personalized re-ranking in a flexible way. 2.

(c) The pre-trained model to generate pv_i , $i = i_1, ..., i_n$.

different aspects, for example, positions and characteristics of items?

Figure 3: Average attention weights on positions in the initial list of two PRM models: w/o position embedding.

RQ3: Can self-attention mechanism learn meaningful information with respect to

Self-attention mechanism in our model can capture the mutual influences regardless of the encoding distances as well as the position bias in recommendation list.

RQ2: Which part of our model contributes most to the performance?

Table 4: Ablation study of PRM-BASE on Yahoo Letor datasets with the initial list generated by SVMRank. All the numbers in the table are multiplied by 100.

	Yahoo Letor dataset					
	P@5	P@10	MAP@5	MAP@10	MAP	
DLCM	52.54	43.26	76.52	70.86	64.50	
Default(b=4,h=3)	53.29	43.66	77.62	72.02	65.60	
Remove PE	52.55	43.56	76.11	70.74	64.73	
Remove RC	53.24	43.63	77.52	71.92	65.52	
Remove Dropout	53.17	43.42	77.41	71.80	65.17	
Block(b=1)	53.12	43.59	77.58	71.91	65.49	
Block(b=2)	53.19	43.58	77.51	71.86	65.49	
Block(b=6)	53.22	43.63	77.64	72.02	65.61	
Block(b=8)	52.85	43.32	77.43	71.65	65.14	
Multiheads(h=1)	53.17	43.67	77.65	71.96	65.55	
Multiheads(h=2)	53.29	43.60	77.68	72.00	65.57	
Multiheads(h=4)	53.20	43.61	77.72	72.00	65.58	

- **1.** The performance of our model degrades greatly after removing position embedding.
- 2. No significant improvements are observed for different number of attention heads.

