

Generic and Robust Localization of Multi-Dimensional Root Causes

Zeyan Li, Chengyang Luo, Yiwei Zhao, Yongqian Sun, Kaixin Sui, Xiping Wang, Dapeng Liu, Xing Jin, Qi Wang , Dan Pei

ISSRE 2019

Outline

Outline

Background

• KPI: key performance indicator

Multi-dimensional Data

- Cuboid: a way to slice the multi-dimensional data
- Attribute combination: elements in a cuboid

Cuboid Province

Multi-dimensional Data

- Cuboid: a way to slice the multi-dimensional data
- Attribute combination: elements in a cuboid

Multi-dimensional Data

• Cuboid: a way to slice the multi-dimensional data

• Attribute combination: elements in a cuboid

Problem Statement

The KPI of the whole cube is abnormal, but where is the root cause?

Root cause is a set of attribute combinations

Potential Root Causes

Challenge: Huge Search Space

Root Cause: a set of attribute combinations

How many potential root cause for a simple 2-d data?

 2^{2+14-1}

Algorithm	Root Cause Assumption				
Adtributor (NSDI, 2014)	single attribute				
Recursive Adtributor (Master Thesis, 2018)	none				
iDice (ICSE, 2016)	one or two attribute combinations				
Apriori (TON, 2017)	none				
HotSpot (IEEE Access, 2018)	all attribute combinations of the root cause in one cuboid				
Squeeze (ISSRE, 2019)	those which cause the same changes are in one cuboid				

Algorithm	Measure
Adtributor (NSDI, 2014)	fundamental & derived (quotient)
Recursive Adtributor (Master Thesis, 2018)	fundamental & derived (quotient)
iDice (ICSE, 2016)	fundamental only
Apriori (TON, 2017)	fundamental & derived
HotSpot (IEEE Access, 2018)	fundamental only
Squeeze (ISSRE, 2019)	fundamental & derived (quotient, product)

iDice and HotSpot rely on addition, thus cannot handle derived measures

Algorithm	Parameter Fine Tuning
Adtributor (NSDI, 2014)	no
Recursive Adtributor (Master Thesis, 2018)	yes
iDice (ICSE, 2016)	no
Apriori (TON, 2017)	yes
HotSpot (IEEE Access, 2018)	no
Squeeze (ISSRE, 2019)	no

Some approaches perform badly without parameter fine tuning

Algorithm	Time Cost
Adtributor (NSDI, 2014)	very short
Recursive Adtributor (Master Thesis, 2018)	short
iDice (ICSE, 2016)	very short
Apriori (TON, 2017)	always too long
HotSpot (IEEE Access, 2018)	sometimes long
Squeeze (ISSRE, 2019)	short

Some approaches cost too much time

Algorithm	Root Cause Assumption	Measure	Change Magnitude	Parameter Fine Tuning	Time Cost
Adtributor (NSDI, 2014)	single attribute	fundamental & derived (quotient)	significant	no	very short
Recursive Adtributor (Master Thesis, 2018)	none	fundamental & derived (quotient)	significant	yes	short
iDice (ICSE, 2016)	one or two attribute combinations	fundamental only	significant	no	very short
Apriori (TON, 2017)	none	fundamental & derived	any	yes	always too long
HotSpot (IEEE Access, 2018)	all attribute combinations of the root cause in one cuboid	fundamental only	significant	no	sometimes long
Squeeze (ISSRE, 2019)	those which cause the same changes are in one cuboid	fundamental & derived (quotient, product)	any	no	short

Design Goals

Root Cause Assumption	Measure	Change Magnitude	Parameter Fine Tuning	Time Cost

Squeeze has no impractical assumptions

handles both fundamental and derived measures

handles anomalies with any change magnitude

does not need parameter fine tuning

is consistently fast in all cases

Outline

Core Idea: Generalized Ripple Effect (GRE)

With idea from HotSpot[IEEE Access 2018], we propose generalized ripple Effect

Core Idea: GRE & Deviation Score

Core Idea: GRE in Real World Cases

successful orders drops down after an update

By manually analysis, root cause is *ServiceType*=020020

Their deviation scores are in the same bin, which supports GRE

Core Idea: GRE in Real World Cases

successful orders drops down

4 root cause attribute combinations

Case 2

The data shows that deviation scores of the same root cause are in the same bin

Generalized Ripple Effect

Does *GRE* holds for both fundamental and derived measures? **Yes**. Please see the details in the paper.

$$\begin{split} \Delta_{M_3}(e) &= \frac{f_{M_1}(e)}{f_{M_2}(e)} - \frac{v_{M_1}(e)}{v_{M_2}(e)} = \frac{\Delta_{M_1}(e)v_{M_2}(e) - \Delta_{M_2}(e)v_{M_1}(e)}{v_{M_2}(e)f_{M_2}(e)} \\ \text{similarly,} \quad \Delta_{M_3}(S) &= \frac{\Delta_{M_1}(S)v_{M_2}(S) - \Delta_{M_2}(S)v_{M_1}(S)}{v_{M_2}(S)f_{M_2}(S)} \\ & \because \text{ ripple effect,} \quad \therefore \Delta_{M_i}(e) &= \frac{f_{M_i}(e)}{f_{M_i}(S)} \Delta_{M_i}(S), i = 1, 2 \\ & \therefore \Delta_{M_3} \frac{f_{M_3}(e)}{f_{M_3}(S)} &= \frac{\Delta_{M_1}(S)v_{M_2}(S) - \Delta_{M_2}(S)v_{M_1}(S)}{v_{M_2}(S)f_{M_2}(S)} \frac{f_{M_2}(S)}{f_{M_1}(S)} \frac{f_{M_2}(S)}{f_{M_2}(e)} \\ &= \frac{\Delta_{M_1}(e) - \frac{\Delta_{M_2}(S)}{v_{M_2}(S)}v_{M_1}(e)}{f_{M_2}(e)} = \frac{\Delta_{M_1}(e) - \frac{\Delta_{M_2}(e)}{v_{M_2}(e)}v_{M_1}(e)}{f_{M_2}(e)} = \Delta_{M_3}(e) \quad \Box \end{split}$$

Core Idea: Generalized Potential Score

Evaluate how likely a set of attribute combination is the root cause

$$GPS = 1 - \frac{\operatorname{avg}(|\boldsymbol{v}(S_1) - \boldsymbol{a}(S_1)|) + \operatorname{avg}(|\boldsymbol{v}(S_2) - \boldsymbol{f}(S_2)|)}{\operatorname{avg}(|\boldsymbol{v}(S_1) - \boldsymbol{f}(S_1)|) + \operatorname{avg}(|\boldsymbol{v}(S_2) - \boldsymbol{f}(S_2)|)}$$

Core Idea: Generalized Potential Score

Overall Architecture

Squeeze

Top to Bottom: Search in each cluster

Bottom to Top: clustering for leaf attribute combinations

Clustering

Bottom-Up - Clustering: Sec IV.C Top-Down - Locating in Each Cluster: Sec IV.D

Clustering

Find attribute combinations affected by the same root cause

Find attribute combinations have similar deviation scores

local maxima: centroids

local minima: boundaries

Localize in Each Cluster

Localize in Cluster

Top-K items in this list with highest GPS

Beijing, GPS = 1, Root Cause

Outline

Experiment Setup

We use

- real KPI datasets from 2 companies;
- synthetic anomalies => 7 semi-synthetic datasets
- Moving average as the forecasting algorithm.

Effectiveness

Squeeze achieves relatively good F1-score on both fundamental & derived measures.

Two of Fundamental Measure Datasets

F1-score			(n_elements, cuboid_ayer)							
Dataset	Algorithm	(1, 1)	(1, 2)	(1, 3)	(2, 1)	(2, 2)	(2, 3)	(3,1)	(3,2)	(3, 3)
А	Squeeze	0.8632	0.7827	0.4932	0.7584	0.6361	0.4097	0.6441	0.5145	0.3618
	HotSpot	0.6856	0.4389	0.2158	0.5085	0.3433	0.2043	0.3988	0.2916	0.1768
	Adtributor	0.3892	0.0000	0.0000	0.4010	0.0000	0.0000	0.3857	0.0000	0.0000
	R-Adtributor	0.0180	0.0020	0.0016	0.0075	0.0049	0.0294	0.0081	0.0067	0.0410
	iDice	0.0000	0.0036	0.0425	0.0000	0.0065	0.0437	0.0000	0.0007	0.0172
	Apriori	0.1036	0.0580	0.0001	0.1427	0.0926	0.0019	0.1537	0.0882	0.0062
\mathcal{B}_0	Saueeze	0.9041	0.9327	0.9231	0.9604	0.9799	0.9333	0.9631	0.9371	0.9228
	HotSpot	0.9950	0.4928	0.1215	0.7588	0.3934	0.0577	0.5961	0.3043	0.0775
	Adtributor	0.3044	0.0000	0.0000	0.4226	0.0000	0.0000	0.4654	0.0000	0.0000
	R-Adtributor	0.0639	0.0000	0.0000	0.0114	0.0000	0.0000	0.0177	0.0000	0.0000
	iDice	0.0000	0.0517	0.0488	0.0000	0.0409	0.0618	0.0000	0.0228	0.0959
	Apriori	0.4430	0.5116	0.7523	0.8490	0.6853	0.7351	0.8743	0.8087	0.7368

Derived Measure Dataset

Efficiency

Squeeze is fast enough consistently in all cases.

Squeeze costs only ten to twenty seconds consistently in all cases.

Various Anomaly Change Magnitude

Squeeze performs well regardless of anomaly change magnitudes

0.4% and 12% are 25 and 75 percentile of change magnitudes

Various Forecasting Residual

Squeeze performs well under various residuals, and always outperforms others.

						· · · ·	· · · •			
		Name	n	d	#AC	Source	Measure	Residual]	
0.75.	•	\mathcal{A}	400	5	15324	\mathcal{I}_1	Fundamental	13.0%		
ere o		\mathcal{B}_0	100	4	21600	\mathcal{I}_2	Fundamental	0.80%	++	
ວິ 0.50 · ທ່	HotSpc	\mathcal{B}_1	100	4	21600	\mathcal{I}_2	Fundamental	3.19%	by Moving Ave	rade
뜐 0.25 ·		\mathcal{B}_2	100	4	21600	\mathcal{I}_2	Fundamental	6.37%		lago
0.00 -		\mathcal{B}_3	100	4	21600	\mathcal{I}_2	Fundamental	9.54%	*	
	BO	\mathcal{B}_4	100	4	21600	\mathcal{I}_2	Fundamental	13.0%	3 B4	
		\mathcal{D}	100	4	21600	\mathcal{I}_2	Derived	3.99%]e=1	

Outline

Summary

- Bottom-up & Top-down => Squeeze
- Contributions:
 - Generalized ripple effect
 - Squeeze algorithm.
 - Experimental study on real world data and semi-synthetic data show Squeeze is both effective and efficient.
- Future Works
 - focus on numerical attributes
 - show GRE for more types of derived measures

References

- Ahmed, F., Erman, J., Ge, Z., Liu, A., Wang, J., Yan, H. (2017). Detecting and Localizing End-to-End Performance Degradation for Cellular Data Services Based on TCP Loss Ratio and Round Trip Time IEEE/ACM Transactions on Networking (TON) 25()
- Bhagwan, R., Kumar, R., Ramjee, R., NSDI, V. (2014). Adtributor: Revenue Debugging in Advertising Systems.
- Lin, Q., Lou, J., Zhang, H., Zhang, D. (2016). iDice: Problem Identification for Emerging Issues 2016 IEEE/ACM 38th International Conference on Software Engineering (ICSE) <u>https://dx.doi.org/10.1145/2884781.2884795</u>
- *Rudenius, L., Persson, M.***Anomaly Detection and Fault Localization.** Master's thesis, 2018, goteborg : Chalmers University of Technology.
- Sun, Y., Zhao, Y., Su, Y., Liu, D., Nie, X., Meng, Y., Cheng, S., Pei, D., Zhang, S., Qu, X., Guo, X. (2018). HotSpot: Anomaly Localization for Additive KPIs With Multi-Dimensional Attributes IEEE Access 6(), 10909-10923.

https://dx.doi.org/10.1109/ACCESS.2018.2804764

Thank you. Q&A