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Abstract

Recent work on deep neural network pruning has shown there exist sparse sub-
networks that achieve equal or improved accuracy, training time, and loss using
fewer network parameters when compared to their dense counterparts. Orthog-
onal to pruning literature, deep neural networks are known to be susceptible to
adversarial examples, which may pose risks in security- or safety-critical appli-
cations. Intuition suggests that there is an inherent trade-off between sparsity
and robustness such that these characteristics could not co-exist. We perform an
extensive empirical evaluation and analysis testing the Lottery Ticket Hypothe-
sis with adversarial training and show this approach enables us to find sparse,
robust neural networks. Code for reproducing experiments is available here:
https://github.com/justincosentino/robust-sparse-networks.

1 Introduction

It is well known that neural network pruning techniques can drastically reduce the number of
parameters in trained networks without compromising accuracy, allowing for smaller and faster sparse
representations of the original network [11]. Recent work suggests that dense, over-parameterized
networks contain subnetworks whose architecture is responsible for the efficiency and accuracy of the
original model [4, 13]. Retraining these substructures in isolation results in competitive performance
and, at times, improved generalization.

In recent years, the problem of adversarial examples has gained more and more attention [19, 6].
Preliminary empirical studies imply that there is a trade-off between network sparsity and adversarial
robustness, but these studies do not attempt to take advantage of novel pruning techniques [21].
Aiming to determine the relationship between network architecture and adversarial robustness,
we question whether over-parameterization is required in order to train robust networks, or if
dense models also contain robust subnetworks responsible for the model’s overall robustness. We
conjectured that by using a pruning strategy similar to that proposed in the Lottery Ticket Hypothesis
[4], we could find subnetworks that may be responsible for the overall robustness of a model.

Orthogonal work has proven that there is an inherent tension between accuracy and robustness [20].
The authors also found that the loss gradients in the input space align well with human perception.
Not only are adversarially-trained gradients less noisy, but they appear to be more sparse, suggesting
that robust models may be well suited for retraining using sparse representations.

Deploying deep neural networks in embedded systems such as mobile phones, IoT devices, and smart
wearable devices, which have limited storage and computing resources, has become more and more
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common [3]. The use of overparametrized deep learning models in such scenarios poses several
challenges when greater compression is required and performance must be maintained. At the same
time, non-robust deep neural networks may deliver terrible results in critical applications. These
scenarios would benefit greatly if sparse, robust neural networks can be successfully trained and
deployed.

In these security-critical domains, the task of network verification is essential, i.e., the task of formally
proving that no small perturbations of a given input can cause it to be misclassified by the network
model. However, this process can be intractably slow even on small networks trained to classify tiny
datasets such as MNIST. Recent work has shown that sparser networks drastically decrease the time
taken to verify such networks, further motivating the need for robust, sparse representations [23].

We perform an extensive empirical evaluation testing the Lottery Ticket Hypothesis (LTH) as part of
the search for sparse, robust neural networks. We consider vision-centric classification tasks on the
MNIST Digits and Fashion datasets. For the sake of comparison, we obtain sparse representations
of the 300-100 Lenet architecture using different iterative pruning strategies. Adversarial training
is performed with the FGSM [6] and PGD attacks [14]. We then empirically show that the Lottery
Ticket Hypothesis can also find sparse, robust neural networks.

To summarize, our contributions are the following:

• We build on the LTH by incorporating adversarial training into the pruning process.

• We show that this process can also find sparse, robust neural networks that train faster.

• We perform and present an extensive analysis of our experiments comparing the results from
different levels of sparsity, pruning techniques, and adversarial attacks on the target datasets.

The rest of this paper is organized as follows. We first introduce necessary background regarding
network pruning and adversarial robustness in Section 2. Secondly, we outline related work regarding
the sparsity and robustness of neural networks in Section 3. We then describe our experimental design
in Section 4 and present our results in Section 5. Lastly, we present a discussion of the results, future
work, and conclusion in Section 6, Section 7, and Section 8 respectively.

2 Preliminaries

2.1 Network Pruning

The pruning of neural networks can reduce the parameter count of trained networks by over 90%,
which decreases storage requirements and improves the performance of inference without compro-
mising accuracy [11]. There are two types of strategies for pruning or making neural networks
sparser: structured and unstructured. The structured approach takes into account the architecture of
the model by defining the target, pruned architecture before pruning and then pruning at a layer or
convolution channels level. This way, original structures such as convolution layers are preserved and
it is not required to use specific libraries or hardware to realize pruning’s benefits. The unstructured
approach only looks at the weights level regardless of the architecture of the model. An example of
an unstructured approach is training using l0 regularization, which naturally yields a sparse model. In
our experiments we use unstructured pruning strategies as described in Section 4.1.

2.2 The Lottery Ticket Hypothesis

The Lottery Ticket Hypothesis states that a randomly-initialized, dense neural network contains a
subnetwork that is initialized such that—when trained in isolation—it can match the test accuracy of
the original network after training for at most the same number of iterations [4]. The lottery ticket
hypothesis predicts that there exists some mask m where commensurate training time is less than
the original network, commensurate accuracy is higher than the original network, and the masked
network has fewer parameters than the original. Winning tickets can be identified by iteratively
training a network and pruning its smallest-magnitude weights as described in the first strategy of
Section 4.1.

For consistency, we borrow notation from [4] for representing the sparsity of a mask m: Pm = ‖m‖0
|θ| .

For example, Pm = 25% when 75% of the weights are pruned.
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2.3 Adversarial Robustness

Though deep neural networks provide state-of-the-art results for most machine learning tasks, recent
work showed that these networks are vulnerable to adversarial examples: inputs that are nearly
indistinguishable from natural data to the human eye and yet misclassified by the attacked neural
network [19, 17]. The threat of adversarial attacks makes it difficult to deploy deep models in security-
or safety-critical environments without some verifiable or provable level of robustness. A growing
body of work [6, 16, 14, 2] shows the existence of white- and black-box attacks on neural networks,
giving rise to the question: how can we learn models robust to adversarial inputs?

Recent work also showed that models with higher capacity, i.e., number of parameters, tend to be
more robust to adversarial examples compared to lower capacity model of the same architecture [9].
The authors conjecture that increased model complexity helps build more robust models. Later work
suggests a similar phenomena, finding that to reliably withstand strong adversarial attacks, networks
require a significantly larger capacity than for only classifying benign examples [14]. They suggest
that a robust decision boundary is significantly more complicated than its benign counterpart.

In order to test these hypotheses, we select two popular adversarial attacks: fast gradient sign method
[6] and projected gradient descent [14]. We use each of these attacks to assess the robustness of
the pruned models with and without adversarial training, which is known as an effective defense
mechanism [9, 14].

2.3.1 Fast Gradient Sign Method

The Fast Gradient Sign Method (FGSM) [6] is a white-box attack method for generating adversarial
examples. Given a natural example, it adds an imperceptibly small noise vector whose elements are
equal to the sign of the elements of the gradient of the cost function with respect to the original input.

Let θ denote the parameters of a neural network, x be the input to the network, y be the labels
associated with x, and J(θ,x, y) be the cost used to train the network. FGSM linearizes the cost
function around the current value of θ, obtaining an optimal constrained perturbation for the given
input:

η = ε sign (∇xJ(θ,x, y)) .

Here, ε constrains the size of the perturbation: ‖η‖∞ < ε. We then perturb the original image by
adding this noise vector: xt+1 = xt + η.

2.3.2 Projected Gradient Descent

Projected Gradient Descent (PGD) [14] builds upon the aforementioned FGSM attack. Interpreting
the FGSM attack as a simple one-step scheme, PGD represents a multi-step variant:

xt+1 = Πx+S
(
xt + α sign (∇xJ(θ,x, y))

)
.

3 Related Work

Recent work [21] also studies the robustness of pruned neural networks under adversarial attack,
claiming that there exist trade-offs between standard classification accuracy, pruning rate, and
adversarial robustness. The key difference between our work and [21] is that we evaluate the
robustness of the pruning strategies used to find winning lottery tickets. We show that winning lottery
tickets preserve not only a model’s standard accuracy, but also adversarial robustness. We outline
other distinctions here.

Model [21] uses a 3-layer CNN, while we use a 300-100 Lenet architecture [10], similarly to the
fully-connected experiments in the Lottery Ticket Hypothesis [4].

Pruning Strategy [21] trains their model for 10 epochs, performs one-shot global weight pruning
[7, 18] or one-shot global filter pruning [12], and fine-tunes for another 10 epochs. We utilize the
iterative pruning process described in the Lottery Ticket Hypothesis and outlined in subsection 4.1.
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Adversarial Attacks Similarly to [21], we use the FGSM and PGD adversarial attacks to evaluate
the robustness of the pruned network. [21] also evaluates the model using a black-box attack [16]
and compares adversarially trained models on all attacks. We save this for future work.

4 Experimental Design

In order to evaluate the robustness of Lottery Ticket networks, we create three separate pruning
experiments, detailed in subsection 4.1. For each pruning strategy, we train the model with and
without adversarial training using either the FGSM or PGD attack for 20 pruning iterations. A single
pruning iteration consists of initializing the current iteration’s parameters according to the pruning
strategy, training for 50,000 iterations, and pruning some percent of the model to get an updated mask.
We evaluate the model on both natural and adversarial examples from the entire validation and test
set every 500 training iterations. Experimental results, unless otherwise noted, are averaged over five
trials of each experiment. Any error metrics denote standard deviation.

We implemented the Lottery Ticket experiment using TensorFlow [1], and we use the CleverHans
[15] library to perform adversarial attacks on our TensorFlow Keras models. We trained and evaluated
the models using NVIDIA GeForce GTX TITAN X GPUs.

4.1 Iterative Pruning Strategies

We examined three separate iterative pruning strategies in our experiments. “Iterative pruning with
resetting” refers the core pruning strategy from the Lottery Ticket Hypothesis. We use the “Iterative
pruning with random resetting” and “Iterative pruning with continued training” strategies as baselines
to show the importance of the initial weights in the pruning process. Let Dθ denote the distribution
of initial parameters.

Strategy 1: Iterative pruning with resetting In this strategy, we reset the network to its original
parameters θ0 ∼ Dθ after each training and pruning cycle.

1. Randomly initialize a neural network f(x;m� θ) where θ = θ0 ∼ Dθ and m = 1|θ| is a
mask.

2. Train the network for j iterations, reaching parameters m� θj .

3. Prune s% of the parameters, creating an updated mask m′ where Pm′ = (Pm − s) %.

4. Reset the weights of the remaining portion of the network to their values in θ0, i.e., let
θ = θ0.

5. Let m = m′ and repeat steps 2 through 4 until a sufficiently pruned network has been
obtained.

This pruning strategy is denoted “original” in the experimental results.

Strategy 2: Iterative pruning with random reinitialization In this strategy, we reinitialize the
network to random parameters θ′0 ∼ Dθ after each training and pruning cycle.

1. Randomly initialize a neural network f(x;m� θ) where θ = θ0 and m = 1|θ| is a mask.

2. Train the network for j iterations.

3. Prune s% of the parameters, creating an updated mask m′ where Pm′ = (Pm − s) %.

4. Reinitialize the weights of the remaining portion of the network to new random values
θ′0 ∼ Dθ, i.e., let θ = θ′0.

5. Let m = m′ and repeat steps 2 through 4 until a sufficiently pruned network has been
obtained.

This pruning strategy is denoted “random” in the experimental results.

4



Sparsity FGSM PGD

Natural Attack Natural Attack

100.0 98.33 ± 00.06 / 98.25 ± 00.11 08.79 ± 00.40 / 94.30 ± 00.84 98.37 ± 00.03 / 98.38 ± 00.09 02.31 ± 00.88 / 45.32 ± 00.20
51.3 98.35 ± 00.07 / 98.13 ± 00.06 09.32 ± 00.22 / 97.09 ± 00.24 98.39 ± 00.04 / 98.07 ± 00.12 02.01 ± 01.02 / 60.14 ± 00.99
16.9 98.08 ± 00.06 / 97.90 ± 00.08 11.50 ± 01.38 / 97.46 ± 00.16 98.13 ± 00.02 / 97.73 ± 00.26 00.74 ± 00.11 / 59.91 ± 00.81
08.7 97.84 ± 00.10 / 97.54 ± 00.14 08.09 ± 01.80 / 97.02 ± 00.21 97.85 ± 00.08 / 97.20 ± 00.14 01.93 ± 00.71 / 57.60 ± 00.25
03.6 97.12 ± 00.09 / 97.00 ± 00.10 07.42 ± 02.97 / 95.23 ± 00.75 97.14 ± 00.07 / 95.58 ± 00.78 02.16 ± 01.21 / 48.81 ± 00.98
01.8 95.88 ± 00.35 / 95.49 ± 00.34 04.17 ± 01.29 / 90.15 ± 01.45 95.47 ± 00.23 / 92.67 ± 01.62 04.16 ± 01.28 / 38.23 ± 02.33

Sparsity FGSM PGD

Natural Attack Natural Attack

100.0 89.04 ± 00.33 / 89.00 ± 00.28 08.51 ± 01.24 / 86.96 ± 00.26 88.91 ± 00.04 / 88.83 ± 00.11 03.78 ± 00.40 / 24.67 ± 00.71
51.3 88.93 ± 00.27 / 88.64 ± 00.29 09.03 ± 00.67 / 86.79 ± 00.34 89.11 ± 00.05 / 89.10 ± 00.12 04.44 ± 00.31 / 28.66 ± 00.57
16.9 88.45 ± 00.11 / 88.12 ± 00.16 08.79 ± 01.11 / 86.53 ± 00.34 88.40 ± 00.14 / 87.87 ± 00.32 04.99 ± 00.21 / 27.62 ± 00.97
08.7 88.02 ± 00.23 / 87.72 ± 00.25 09.85 ± 01.30 / 85.30 ± 00.35 87.50 ± 00.29 / 86.38 ± 00.96 05.44 ± 00.38 / 25.75 ± 02.20
03.6 87.41 ± 00.37 / 87.13 ± 00.25 09.37 ± 00.65 / 82.30 ± 00.69 87.19 ± 00.48 / 83.44 ± 01.33 05.69 ± 00.99 / 23.83 ± 01.00
01.8 86.13 ± 00.22 / 85.70 ± 00.20 08.96 ± 00.62 / 78.07 ± 01.40 86.21 ± 00.28 / 81.66 ± 01.35 05.22 ± 01.24 / 23.46 ± 00.79

Table 1: MNIST Fashion test accuracy of (normally trained / adversarially trained) using the Lenet
300-100 model pruned with the iterative Lottery Ticket approach on natural images paired with
FGSM and PGD adversarial attacks after 30,000 training iterations. Sparsity labels are Pm–the
fraction of weights remaining in the network after pruning. Values are the average and standard
deviation of five trials.

Strategy 3: Iterative pruning with continued training In this strategy, we never reset the network
to random parameters, continuing to train the current parameter set after each training and pruning
cycle.

1. Randomly initialize a neural network f(x;m� θ) where θ = θ0 and m = 1|θ| is a mask.

2. Train the network for j iterations.

3. Prune s% of the parameters, creating an updated mask m′ where Pm′ = (Pm − s) %.

4. Let m = m′ and repeat steps 2 and 3 until a sufficiently pruned network has been obtained.

This pruning strategy is denoted “continued” in the experimental results.

4.2 Hyperparameters

We use the following hyperparameters across all experiments. We keep these values as close to the
original Lottery Ticket Hypothesis paper as possible. We use a Lenet 300-100 MLP [10], which
consists of three fully connected layers of size 300, 100, and 10, resulting in 266,200 trainable
parameters. The first two hidden layers use a ReLU activation function and the final output layer uses
a softmax. We do not use biases in any layer. Models are trained using the Adam optimizer [8] and a
learning rate of 1.2e-3. All models train for 50,000 iterations per pruning iteration and use a batch
size of 60. The first two layers have a pruning rate of 20%, while the output layer has a pruning rate
of 10%.

Normal training consists of minimizing the categorical cross entropy loss function on natural examples.
Adversarial training minimizes a combination of categorical cross entropy loss on natural examples
and adversarial examples with a 50/50 split.

We craft FGSM attacks in a l∞ ball of ε = 0.3. We craft PGD attacks with a step size of 0.05 for 10
iterations in a l∞ ball of ε = 0.3. All attacks are clipped to be within [0, 1].

4.3 Datasets

We perform our experimental analysis on two datasets: MNIST Digits [10] and MNIST Fashion
[22]. Both datasets consist of 60,000 training images and 10,000 test images. We further split both
training sets into a 50,000 image training set and 10,000 image validation set. Each example is a
28x28x1 grayscale image associated with a label from one of ten classes. Images are preprocessed by
normalizing grayscale values to [0, 1].

5



5 Experimental Results

Figure 1: Lenet 300-100 adversarial test accuracy on MNIST Digits with the FGSM attack as training
proceeds (left) and comparisons with the random (middle) and continued (right) pruning strategies.
Labels are Pm–the fraction of weights remaining in the network after pruning. Each curve is the
average of five trials and error bars are the standard deviation across trials.

Figure 2: Lenet 300-100 adversarial test accuracy on MNIST Digits with the PGD attack as training
proceeds (left) and comparisons with the random (middle) and continued (right) pruning strategies.
Labels are Pm–the fraction of weights remaining in the network after pruning. Each curve is the
average of five trials and error bars are the standard deviation across trials.

Figure 3: Early-stopping iteration (left), adversarial accuracy (middle), and natural accuracy (right)
for each pruning strategy using Lenet 300-100 on MNIST Digits with the FGSM attack. Accuracy
measures are taken at the early stopping iteration. Each curve is the average of five trials and error
bars are the standard deviation across trials.

Both natural and adversarial test accuracy for the MNIST Digits and MNIST Fashion datasets are
presented in item 4.1 and Table 1. In this section, we present figures for MNIST Digits results and
include similar figures for MNIST Fashion results in Supplementary Section A.

Figure 1 and Figure 2 show Lenet 300-100 adversarial test accuracy as training proceeds on MNIST
Digits with the FGSM attack and PGD attack, respectively. Figure 3 and Figure 5 show the early-
stopping iteration, early-stopping adversarial accuracy, and early-stopping natural accuracy for Lenet
300-100 on MNIST Digits with the FGSM attack and PGD attack, respectively. Early-stopping acts
as a proxy measurement for the speed at which networks learn, denoting the training iteration at which
the network would stop training given some early-stopping criterion. We use minimum validation
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Figure 4: The adversarial validation loss data corresponding to Figure 3, i.e., the adversarial validation
loss for Lenet 300-100 on MNIST Digits with the FGSM attack as training proceeds (left) and
comparisons with the random (middle) and continued (right) pruning strategies. Labels are Pm–the
fraction of weights remaining in the network after pruning. Each curve is the average of five trials
and error bars are the standard deviation across trials.

Figure 5: Early-stopping iteration (left), adversarial accuracy (middle), and natural accuracy (right)
for each pruning strategy using Lenet 300-100 on MNIST Digits with the PGD attack. Accuracy
measures are taken at the early stopping iteration. Each curve is the average of five trials and error
bars are the standard deviation across trials.

Figure 6: The adversarial validation loss data corresponding to Figure 11, i.e., the adversarial
validation loss for Lenet 300-100 on MNIST Fashion with the PGD attack as training proceeds (left)
and comparisons with the random (middle) and continued (right) pruning strategies. Labels are
Pm–the fraction of weights remaining in the network after pruning. Each curve is the average of five
trials and error bars are the standard deviation across trials.

loss as this metric in our experiments. We then report the adversarial and natural validation accuracy
at this stopping point for various pruning levels. Figure 4 and Figure 6 show the adversarial validation
loss for Lenet 300-100 on the MNIST Digits with the FGSM attack and PGD attack, respectively.

6 Discussion

The Lottery Ticket Hypothesis pruning technique [4] has proven the existence of subnetworks that
achieve better accuracy and generalization than the original dense network because of the fortuitous
initialization of their weights. Using the same approach, we aim to test their hypothesis searching for
subnetworks that can also achieve equal or better robustness at high levels of sparsity and compare it
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with different pruning techniques. This idea contradicts recent work that hypothesizes that models
with higher capacity, i.e., number of parameters, tend to be more robust to adversarial examples
compared to lower capacity model of the same architecture [9, 14] and suggests that fortuitous
initialization and network architecture account for the overall robustness of the network. As shown in
Figure 1 and Figure 2, we find robust lottery tickets that significantly outperform the original dense
network on adversarial accuracy when pruned by up to 96.4%. Additionally, as it is shown in Figure 3
and Figure 5, these sparser models also train faster than the original dense network achieving better
results when the early stop best validation loss criterion is met. The best empirically found robust
lottery ticket is at 16.9% sparsity, significantly improving on the original dense network in adversarial
accuracy while achieving similar results in natural accuracy.

Surprisingly, in specific scenarios, we found that continued training outperforms the Lottery Ticket
Hypothesis in robustness. This is the case when using the PGD attack [6], which is stronger than
FGSM [14]. This can be appreciated in Figure 2 for the 51.3% of sparsity in the continued training
case. Likewise, when evaluating on the MNIST Fashion dataset using PGD attack, we see similar
results having an even higher sparsity of 16.9% as the most robust model. The common factor in
both cases seems to be that the more complex the scenario, the better continued training will perform
at higher levels of sparsity.

Even though the winning lottery tickets outperform all other approaches at any sparsity level on
natural accuracy, the fact that continued training or other methods may outperform them on robustness
in certain scenarios suggests it may be worth investigating its performance in order to find novel
pruning techniques that could leverage the characteristics of both approaches and achieve even better
results. In support of this, it is important to note that the random reinitialization pruning technique is
outperformed by at least one of the other approaches in all cases.

Furthermore, winning lottery tickets constantly outperform all other approaches at the highest level
of sparsity of 3.6% and 1.8%. In some cases even finding robust lottery tickets as in Figure 7. This
supports the hypothesis made by the authors of the Lottery Ticket paper [4] where up to a certain level
of sparsity other pruning methods may still find subnetworks that can be retrained successfully, but
beyond a certain point, this can only be achieved by methods that consider the fortuitous initialization
of the weights in the pruning process.

7 Limitations and Future Work

We only consider vision-centric classification tasks on smaller datasets (MNIST Digits and MNIST
Fashion) using a small fully-connected model (Lenet 300-100). We are constrained to these tasks as
iterative pruning and adversarial training are computationally expensive, requiring twenty pruning
iterations and numerous attack generations in order to evaluate the robustness of the model every
500 training iterations. Very recent work [5] has explored the lottery ticket hypothesis using larger
models; we leave similar evaluations of larger models for robustness at scale for future work.

Though we drastically reduce parameter counts, the resulting unstructured, sparse architectures are
not optimized for current libraries or hardware unlike their structured counterparts.

Lastly, our pruning strategies assume that small parameter weight corresponds to unimportant model
parameters. This is a strong assumption.

8 Conclusion

Contrary to empirical studies [21] and popular belief suggesting there is a trade-off between network
sparsity and adversarial robustness, we find that overparameterization of the network is not required
for network robustness. Winning lottery tickets not only account for the overall network’s accuracy,
but can also train faster and achieve similar—if not better—robustness with adversarial training.
In specific scenarios, we found that continued training outperforms the Lottery Ticket Hypothesis
in robustness, which suggests it may be worth investigating its performance in order to find novel
pruning techniques that could leverage the characteristics of both approaches. In order to support
these findings, we provide extensive empirical results comparing the Lottery Ticket Hypothesis
approach with its alternatives.
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Supplement A Results for MNIST Fashion

In this section we present additional figures for the MNIST Fashion dataset. Figure 7 and Figure 8
show Lenet 300-100 adversarial test accuracy as training proceeds on MNIST Fashion with the
FGSM attack and PGD attack, respectively. Figure 9 and Figure 11 show the early-stopping iteration,
early-stopping adversarial accuracy, and early-stopping natural accuracy for Lenet 300-100 on
MNIST Fashion with the FGSM attack and PGD attack, respectively. Early-stopping acts as a proxy
measurement for the speed at which networks learn, denoting the training iteration at which the
network would stop training given some early-stopping criterion. We use minimum validation loss as
this criterion in our experiments. We then report the adversarial and natural validation accuracy at this
stopping point for various pruning levels. Figure 10 and Figure 12 show the adversarial validation
loss for Lenet 300-100 on the MNIST Fashion with the FGSM attack and PGD attack, respectively.

Figure 7: Lenet 300-100 adversarial test accuracy on MNIST Fashion with the FGSM attack as
training proceeds (left) and comparisons with the random (middle) and continued (right) pruning
strategies. Labels are Pm–the fraction of weights remaining in the network after pruning. Each curve
is the average of five trials and error bars are the standard deviation across trials.

Figure 8: Lenet 300-100 adversarial test accuracy on MNIST Fashion with the PGD attack as training
proceeds (left) and comparisons with the random (middle) and continued (right) pruning strategies.
Labels are Pm–the fraction of weights remaining in the network after pruning. Each curve is the
average of five trials and error bars are the standard deviation across trials.

Figure 9: Early-stopping iteration (left), adversarial accuracy (middle), and natural accuracy (right)
for each pruning strategy using Lenet 300-100 on MNIST Fashion with the FGSM attack. Accuracy
measures are taken at the early stopping iteration. Each curve is the average of five trials and error
bars are the standard deviation across trials.

11



Figure 10: The adversarial validation loss data corresponding to Figure 9, i.e., the adversarial
validation loss for Lenet 300-100 on MNIST Fashion with the FGSM attack as training proceeds
(left) and comparisons with the random (middle) and continued (right) pruning strategies. Labels are
Pm–the fraction of weights remaining in the network after pruning. Each curve is the average of five
trials and error bars are the standard deviation across trials.

Figure 11: Early-stopping iteration (left), adversarial accuracy (middle), and natural accuracy (right)
for each pruning strategy using Lenet 300-100 on MNIST Fashion with the PGD attack. Accuracy
measures are taken at the early stopping iteration. Each curve is the average of five trials and error
bars are the standard deviation across trials.

Supplement B Network Weight Distributions

Figure 13, Figure 14, and Figure 15 show the distribution of initializations in winning tickets pruned
to various sparsity levels using the original reinitialization strategy outlined in subsection 2.1 for
natural training, FGSM adversarial training, and PGD adversarial training, respectively.
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Figure 12: The adversarial validation loss data corresponding to Figure 11, i.e., the adversarial
validation loss for Lenet 300-100 on MNIST Fashion with the PGD attack as training proceeds (left)
and comparisons with the random (middle) and continued (right) pruning strategies. Labels are
Pm–the fraction of weights remaining in the network after pruning. Each curve is the average of five
trials and error bars are the standard deviation across trials.

Figure 13: The distribution of initializations in winning tickets pruned to the levels specified in
the titles of each plot using original reintialization. The blue, orange, and green lines show the
distributions for the first hidden layer, second hidden layer, and output layer of the Lenet 300-100 for
MNIST Digits with normal training. The distributions have been normalized so that the area under
each curve is 1.

Figure 14: The distribution of initializations in winning tickets pruned to the levels specified in
the titles of each plot using original reintialization. The blue, orange, and green lines show the
distributions for the first hidden layer, second hidden layer, and output layer of the Lenet 300-100 for
MNIST Digits with FGSM adversarial training. The distributions have been normalized so that the
area under each curve is 1.
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Figure 15: The distribution of initializations in winning tickets pruned to the levels specified in
the titles of each plot using original reintialization. The blue, orange, and green lines show the
distributions for the first hidden layer, second hidden layer, and output layer of Lenet 300-100 for
MNIST Digits with PGD adversarial training. The distributions have been normalized so that the
area under each curve is 1.

14


	Introduction
	Preliminaries
	Network Pruning
	The Lottery Ticket Hypothesis
	Adversarial Robustness
	Fast Gradient Sign Method
	Projected Gradient Descent


	Related Work
	Experimental Design
	Iterative Pruning Strategies
	Hyperparameters
	Datasets

	Experimental Results
	Discussion
	Limitations and Future Work
	Conclusion
	Results for MNIST Fashion
	Network Weight Distributions

