
Label-Less: A Semi-Automatic Labelling Tool
for KPI Anomalies

Nengwen Zhao†‖, Jing Zhu†‖, Rong Liu‡, Dapeng Liu§, Ming Zhang¶, Dan Pei∗†‖
†Tsinghua University ‡Stevens Institute of Technology §BizSeer ¶China Construction Bank
‖Beijing National Research Center for Information Science and Technology (BNRist)

Abstract—KPI (Key Performance Indicator) anomaly detection
is critical for Internet-based services to ensure the quality and
reliability. However, existing algorithms’ performance in reality
is far from satisfying due to the lack of sufficient KPI anomaly
data to help train and evaluate these algorithms. In this paper,
we argue that labeling overhead is the main hurdle to obtain
such datasets.

Thus we novelly propose a semi-automatic labelling tool called
Label-Less, which minimizes the labeling overhead in order to
enable an ImageNet-like large-scale KPI anomaly dataset with
high-quality ground truth. To save operators from scanning and
checking the long KPIs back and forth for abnormal patterns
and label consistency, we propose to adopt Isolation Forest for
unsupervised anomaly detection and adopt the accelerated DTW
techniques in UCR Suite for robust anomaly similarity search.
In our evaluations using 30 real KPIs from a large Internet
company, our anomaly similarity search achieves the best F-
score of 0.95 on average, and a real-time per-KPI response time
(less than 0.5 second). Overall, the feedback from deployment
in practice shows that Label-Less can reduce operators’ labeling
overhead by more than 90%.

I. INTRODUCTION

In recent years, Internet-based services, such as search
engines and online shopping, have become an indispensable
part of our daily life. To ensure undisrupted business, operators
of these companies need to closely monitor various time series
data called Key Performance Indicators (KPIs, e.g., search
response time, CPU usage), to accurately detect KPI anomalies
and trigger timely troubleshooting/mitigation [1].

Despite the importance of KPI anomaly detection and also
a large body of algorithms proposed in the literature [2]–
[10], existing algorithms’ performance in reality is far from
satisfying. One key reason is the lack of generality in most
of these algorithms. KPIs in practice have various types of
patterns, yet the published algorithms are typically trained by
private datasets, and thus cannot be easily generalized to other
contexts. The majority of existing public time series datasets
mainly aim at classification, clustering or regression [11] [12],
not for anomaly detection. Although there exist a few public
anomaly detection datasets like Yahoo Benchmark [3] and Nu-
menta Anomaly Benchmark [4], they only contain KPIs with
limited data points and synthetic anomalies. Consequently, the
community of KPI anomaly detection is in an urgent need
for a large-scale and diverse KPI anomaly dataset. Such a
dataset would greatly benefit the anomaly detection research

∗ Dan Pei is the corresponding author.

and practice just like what ImageNet [13] did to the fields of
computer vision and deep learning.

Unfortunately, obtaining a large-scale KPI anomaly dataset
with high-quality ground truth has been a great challenge
due to following reasons. First, labeling KPI anomalies takes
domain knowledge of IT operations. Thus the number of
people who can reliably label in our domain is much fewer
than in image and speech areas. Besides, even the experienced
operators may not have enough confidence to perform high-
quality labeling since it is difficult to give an explicit definition
of “what is an anomaly” in various KPIs and applications.
Second, it is labor intensive to carefully examine a several-
month-long KPI back and forth and try to label anomalies in a
consistent manner. For example, according to our observation,
it takes an experienced operator a few hours, with the help
of a labeling tool such as Curve [14] which has a dedicated
user interface, to label a 6-month-long KPI with 300,000 data
points spaced at 1-minute interval. Third, we fundamentally
need to label a large number of KPIs to train anomaly detection
algorithms, because the anomalies in each KPI are relatively
rare, KPI patterns are diverse, and the number of KPIs in
practice is huge in large companies. In a real and very recent
example, when preparing for the KPI anomaly detection algo-
rithm competition [15], 5 large Internet companies (Alibaba,
Tencent, Baidu, eBay, and Sogou) sponsored us with thousands
of KPIs (2-month to 6-month long), yet we ended up being
able to publish just 30 labeled KPIs due to the high overhead
to obtain high-quality ground-truth.

From the above discussion, it is apparent that labeling over-
head has become the main hurdle to large-scale KPI anomaly
dataset, which in turn is the main hurdle to effective and prac-
tical KPI anomaly detection. In this paper, we aim to tackle the
KPI anomaly labeling overhead problem and propose a semi-
automatic labeling framework called Label-Less. Our idea is
inspired by one key observation: the majority of operators’
labeling efforts are spent on visually scanning through the
KPIs to gauge their “normal” patterns and variations and on
examining KPIs back and forth to check whether “similar” KPI
segments (see Fig. 1 for example) are labeled consistently.
We argue that above “scanning and checking” should be
facilitated by automatic tools driven by algorithms. In our idea,
the visual scanning is replaced by unsupervised anomaly
detection which emphasizes on high recall and acceptable
precision, and the results are candidate potential anomalies.
The manual consistency checking is replaced with anomaly

Apr 10 Apr 11 Apr 12
KPI X

Apr 10 Apr 11 Apr 12
KPI Y

Fig. 1: Similar anomalies (labeled in red) in KPIs X and Y .
similarity search, which given an anomaly template by the
operator, i.e., a KPI segment containing known anomalous data
points, discovers anomalies similar to the template among the
candidate anomalies.

Our major contributions are summarized as follows:
• To the best of our knowledge, this is the first work to focus

on reducing the labeling workload for KPI anomaly de-
tection by algorithms. Our proposed framework Label-Less
including an unsupervised anomaly detection component
and an anomaly similarity search component, is a general
one to tackle labeling overhead reduction problem. Besides,
the feedback from deployment in practice shows that Label-
Less reduces more than 90% labeling time for operators.

• This paper is the first one that applies Isolation Forest [16]
to unsupervised KPI anomaly detection, with features given
by time series prediction models. Experiments have showed
the unsupervised anomaly detection approach adopted in
Label-Less has better performance and lower computation
complexity compared with other alternatives, e.g., One-
Class SVM [17] and Local outlier factor [18].

• This is the first attempt to define and study the new problem:
search anomalies similar to a given anomaly template from
a set of candidate anomalies. Through experiments on
various KPIs, the average best F-score can reach about 0.95.
Besides, in order to reduce the response time required by
labeling’s interactive nature, we adopt the accelerated Dy-
namic Time Warping (DTW) techniques in UCR Suite [19]
for rapid anomaly similarity search. The response time for
one KPI is under 0.5 second. In addition to reducing labeling
workload, the problem has other practical applications, as
discussed in §VII.

II. DEFINITIONS AND OVERVIEW

In this section, we first define a few key terms and formulate
the problem of anomaly similarity search, then present an
overview of Label-Less framework.

A. Definitions.

KPI: KPI is a special type of time series data. A KPI can
be denoted as X = {x1, x2, · · · , xn}, where xi is the value
corresponding to time index i for i ∈ 1, 2, · · · , n, and n is the
length of the KPI. Compared with general time series, KPIs
are based on the domain knowledge of IT operations. Besides,
the length of one KPI is long and the number of KPIs is huge
about millions to tens of millions in large companies [9], [20].

KPI Anomaly: Anomalies refer to the data points in
a KPI that do not conform to the expected behavior and
significantly differ from the normal data [2] [5], e.g., jitters,
spikes and dips. Since an anomalous case always has its

context instead of an individual point, it is a collection of
continuous points called anomaly segment (anomaly for short
hereinafter), which can be formalized as a subsequence of KPI
X , denoted as segment(i) = {xi, xi+1, · · · , xi+m−1}, where
m is the length of the anomaly.

Anomaly template: An anomaly template is an anomaly
segment chosen by an operator according to his interest,
denoted as q with length m, which is the input to the anomaly
similarity search problem. For example, the fisrt segment in
red color in Fig. 1 can be an anomaly template.

Similar anomaly: According to some distance measure,
segment(i) with length m which has a small distance with
the anomaly template q is considered as a similar anomaly to
the template q. We require that two similar anomalies have the
same length (m) for the following two reasons. First, there are
no known techniques to support similarity search of arbitrary
lengths [19]. Second, the techniques of lower bound used to
speed up DTW in §IV-C requires that two segments must have
same length. Otherwise, the search would be too slow for the
interactive labeling.

B. Anomaly Similarity Search

Operators provide an anomaly template q, which is an
anomaly case that operators are interested in, such as the dip
of the number of requests, and the goal of “anomaly similarity
search” is to discover top-k similar anomalies from candidate
anomalies (given by unsupervised anomaly detection) with the
given template q. We opted to use k-NN search since it is
intuitive and practical. In contrast, range search which aims to
find all similar anomalies where their distances are less than
the tolerance value is very cumbersome to use in practice,
since the tolerance value is not intuitive for operations and it
varies under different KPIs. Therefore, it is hard to determine
a suitable tolerance value in advance [21].

Anomaly similarity search is a little different from general
time series similarity search [19] [22]. First of all, anomaly
information is indispensable in our scenario. In other words,
what we are searching for is not only a segment similar to the
template but also an anomaly. Thus the search space here is
candidate anomalies given by unsupervised anomaly detection
instead of the entire KPI. Besides, different from traditional
time series, e.g., Electrocardiogram (ECG) and Electroen-
cephalogram (EEG), a large number of long KPIs bring a
great challenge in search responsiveness. The difference is
demonstrated by experiments in §V-D.

C. Overview of Label-Less

The overall framework of Label-Less shown in Fig. 2 has
two major components. The first component, Unsupervised
Anomaly Detection, takes a set of related unlabeled KPIs
(e.g., the number of requests per server in a well load-
balanced server cluster) as its input, and identifies a set of
candidate anomalies as its output. In detail, we apply Isolation
Forest [16] as an outlier detector and use the features extracted
from time series models such as Holt-Winters [6]. Then an
appropriate detection threshold θ is selected with bias towards

Isolation
Forest

Feature
Extraction

Anomaly
Template

Threshold
Selection

Accelerated
DTW

Candidate
Anomalies

Check of top-k
similar anomalies

All anomalies
have been
labeled?

Yes (Labeled KPIs)

Unsupervised
Anomaly Detection Anomaly Similarity Search

No (Choose
another
template)

Operators Investigate

Preprocessing

No (Choose
another
template)

Unlabeled
KPIs

Fig. 2: The overall framework of Label-Less.

high recall and acceptable precision. As we will demonstrate
in our experiments later (§V-C), with a high recall rate, most
anomalies can be included as candidate anomalies. Moreover,
unsupervised anomaly detection not only provides candidate
anomalies which can save the visual scanning time for oper-
ators, but also plays a key role in anomaly similarity search.
It filters out normal points so as to reduce false positives, i.e.,
similar normal segment (§V-D). Besides, it can significantly
reduce the search space and improve search efficiency (§V-F).

To label anomalies consistently for the given KPIs, an
operator first labels a true candidate anomaly as template.
Then the second component, Anomaly Similarity Search, uses
the template to automatically search for the top-k similar
anomalies from the candidate anomalies. We adopt the ac-
celerated Dynamic Time Warping (DTW) techniques in UCR
Suite [19] to reduce the search response time. The operator
then confirms the returned similar anomalies and labels them
accordingly. This process continues until there are no more
unlabeled anomalies. More details on how operators interact
with Label-Less are introduced in §VI.

III. UNSUPERVISED ANOMALY DETECTION

A. Review of Isolation Forest

A rich body of literature exist on unsupervised anomaly
detection, e.g., One-Class SVM [17], deep generative model
like Variational Auto-encoder [5]. Their philosophy is to focus
on normal patterns instead of detecting anomalies directly.
Since the majority of data points in KPIs are normal, these
models all first recognize normal regions in the original or
some latent feature space, and then compute the anomaly
score by measuring “how far” an observation is from the
normal regions. However, these approaches suffer from either
high computational complexity [5] or poor performance [17].
Isolation Forest (iForest) is a popular outlier detector and
has shown good performance with a linear time complexity
in outlier detection [16], but it has not been applied in
KPI anomaly detection. Thus, we novelly apply iForest to
unsupervised KPI anomaly detection.

Different from most existing approaches, iForest explicitly
isolates anomalies rather than profiling normal instances. It
takes advantage of two properties of anomalies: they are the

Diff

WMA

MA EWMA HW
……

ARIMA

Score iTree

Anomaly

Normal
samples

< > � �
1

0

0.9

0.6

0.2

0.1

iForest

(a) An intuitive example to illustrate how iForest works.

Aug 3 Aug 4 Aug 5
Time (Day)

0

2

4

6

KP
I v

al
ue

KPI value
Anomaly score
Anomaly

0

1

An
om

al
y

sc
or

e

(b) Comparison of anomaly scores
between normal points and anomalies.

0.0 0.2 0.4 0.6 0.8 1.0
Anomaly score

0
20
40
60
80

100

CD
F(

%
)

(c) The CDF of anomaly scores.
The black point is 85th percentile.

Fig. 3: Detailed explanation of iForest and anomaly score.

minority consisting of fewer samples and they have some fea-
tures which are very different from those of normal samples.
In other words, anomalies are “few and different”. Therefore,
they are more susceptible to be isolated.

IForest isolates observations by randomly selecting a feature
and a split value between the minimum and maximum values
of the selected feature. Usually, only a few conditions are
needed to isolate anomalies from normal ones, whereas sepa-
rating normal observations requires more conditions. Thus an
anomaly score can be calculated as the number of conditions
required to separate a given observation. Recursive partitioning
of iForest can be represented by a tree structure (iTree), and the
number of splittings required to isolate a sample is equivalent
to the path length from the root node to the terminating node.
Therefore, iForest builds an ensemble of iTrees for the input
data, and anomalies are those instances with short average path
lengths on the iTrees. Fig. 3(a) presents an intuitive illustration
and the features on every node will be introduced later.

B. Preprocessing

Before unsupervised anomaly detection, we first need to
preprocess the input unlabeled KPIs. KPIs are monitored with
certain interval, e.g., every minute. Occasionally, a monitoring
system does not receive data, leading to missing values. We
simply use linear interpolation to fill them based on their
adjacent data points. In addition, since KPIs are sourced
from different servers, we normalize them to eliminate scale
variances to prepare for similarity search. Zero-mean normal-
ization is applied to transform a KPI to have zero mean and
one standard deviation, i.e., x̂i = xi−µx

σx
, where xi is the raw

KPI value, µx and σx are its mean and standard deviation.

C. Feature Extraction

To apply iForest algorithm, we first need to extract anomaly
features. Inspired by the idea of ensemble learning [2] [3],

we adopt several classical time series prediction models
as feature extractors, i.e., Difference [2], Moving Average
(MA), Weighed MA (WMA), Exponentially Weighted MA
(EWMA), Autoregressive Integrated MA (ARIMA) [7] and
Holt-Winters [6]. The parameters are chosen based on our
experience and domain knowledge. These six models have low
computation complexity and good performance which have
been proved in anomaly detection literature [2] [3]. Certainly,
if needed, other suitable prediction models can be added or
replace these six models.

In general, normal points can be well predicted with small
prediction errors, since they conform to the expected behavior,
while anomalies with unexpected patterns are hard to be pre-
dicted, creating large prediction errors. Let pi be the predicted
value of data point xi, then we can calculate the absolute
difference between the actual value and the forecast value of
each data point, i.e., |pi − xi|, as a feature of data point xi.

D. Unsupervised Anomaly Detector

In previous step, the raw KPI vector X (n× 1) was trans-
formed into feature matrix X ′ (n × 6). Then we recursively
divide X ′ by randomly selecting a feature, e.g., MA, and a split
value ε, as shown in Fig. 3(a), to construct an iForest. Each
terminal node in iForest is associated with a score between
0 and 1, calculated based on its path length [16]. The larger
the score is, the more likely the node is an anomaly. Fig. 3(b)
presents an example to illustrate the anomaly score (right Y-
axis) from a real KPI (left Y-axis). Obviously, the anomaly
scores of anomalies are much higher than normal points. The
effectiveness of iForest will be studied in §V-C.

E. Threshold Selection

To detect potential anomalies based on anomaly scores, we
need to choose an appropriate threshold θ. If the anomaly score
of a point xi is larger than θ, we regard this point as a potential
anomalous point, and then add segment(i) into the candidate
anomalies. Usually, threshold selection for anomaly detection
needs to trade off between high recall and high precision, and
often uses F-score as the metric. However, since here we try to
generate candidate anomalies for operators and as our search
space for anomaly similarity search, we choose to bias towards
high recall and acceptable precision, so that false negative rate
can be minimized. In principle, the percentage of anomalous
points in a KPI is very rare, usually about 1% [3], [5]. Fig. 3(c)
shows the CDF of anomaly scores of a real KPI. We observe
that the majority of points are likely to be normal with low
anomaly scores and only few points have high anomaly scores.
Thus we choose anomaly score at 85th percentile (marked as
the black dot) as the threshold θ such that the chance of false
negatives is really small. The robustness and generality of our
strategy of threshold selection will be discussed in §V-C.

IV. ANOMALY SIMILARITY SEARCH

A. Overview

Through unsupervised anomaly detection, we can get a set
of candidate anomalies as our search space. Next we search for

the top-k anomalies most similar to a user-provided anomaly
template and report to operators. The key issue here is how to
find similar anomalies with high accuracy and low response
latency. Inspired by existing works on time series similarity
search [19], [21]–[23], we adopt several effective techniques
in UCR Suite [19] to search for similar anomalies rapidly. The
details are shown in Algorithm 1.

Algorithm 1: Anomaly similarity search through
adopting the time series similarity search algorithms
in UCR Suite [19]

Input: Anomaly template q, candidate anomalies C
Output: Top-k similar anomalies

1 Create a max-heap h with size k to keep the top-k similar
anomalies;

2 for each candidate anomaly c in candidate C do
3 best-so-far=the root node of h;
4 if LB Kim(q, c) > best-so-far then
5 prune off c [23];
6 else if LB Keogh(q, c) > best-so-far then
7 prune off c [22];
8 else if LB Keogh Reverse(q, c) > best-so-far then
9 prune off c [19];

10 else
11 for j = 1; j ≤ m; j ++ do
12 dist = cDTW(1 : j) + LB Keogh(j : m);
13 if dist > best-so-far then
14 early stopping and prune off c [19];

15 h.push([c,dist]);

16 return Top-k similar anomalies;

B. Review of DTW

Choosing a suitable distance measure is the first step for
anomaly similarity search. In spite of dozens of alternative
measures, recent empirical evidence strongly suggests that
none of these alternatives routinely beats Dynamic Time
Warping (DTW) [24] [19]. Thus we adopt DTW and the
effectiveness of DTW will be discussed in §V-E. By op-
timally aligning two sequences in temporal domain, DTW
calculates the minimized accumulated aligning cost as distance
with dynamic programming. Hence, DTW can handle shift
invariance as shown in Fig. 4(a). Given two time series x
and y, with length of s and t, respectively, it first estimates
the distance map d between two points xi, yj given by
d(i, j) = (xi − yj)2. A cumulative distance D with elements
Di,j is computed from the distance map d as: Di,j = d(i, j)+
min{Di,j−1, Di−1,j , Di−1,j−1}. The final DTW corresponds
to the total accumulated cost, i.e., dDTW (x, y) = Ds,t.
The time complexity of DTW is O(st). Fig. 4(b) shows the
computation of DTW with a matrix, and the warping path
representing the optimal alignment is marked in black color.
C. Accelerated DTW

Suppose there are r candidate anomalies, the complexity of
similarity search reaches O(rm2), where m is the length of
anomaly template. When m and r are large, DTW computation
can be very costly. Thus speeding up DTW is a key challenge
in our scenario. A few techniques have been proposed to speed

x

y

(a) Elastic alignments.

x

y

w

(b) Warping path.

Fig. 4: Illustration of DTW.

up DTW in the literature, including early stopping [19], lower
bound [23], local constraints [22], Piecewise Aggregate Ap-
proximation (PAA) [22], etc. Note that not all techniques work
effectively in our scenario, for example, PAA only performs
well on long time series about thousands of points. While
the length of anomaly template is relative short with only
dozens of points, PAA will greatly destroy raw information.
Considering fast response time (usually less than 0.5 second)
required by labeling’s interactive nature and complexity of
the labeling tool, our goal is to reduce response time with as
simple an algorithm as possible. After careful investigation and
extensive experiments, we adopt the state-of-the-art similarity
search algorithm, UCR Suite [19], which is composed of three
techniques (constrained DTW [21], [22], lower bound [22],
[23], and early stopping [19]). Our experiments (§V) have
demonstrated these three techniques are effective in our label-
ing tool.

Review of Constrained DTW [21], [22]. The core idea of
constrained DTW (cDTW) is to limit the permissible warping
paths by providing local restrictions on the set of alternative
steps [21], [22]. It works under the assumption that it is
unlikely for qi and cj to be matched if i and j are too far. The
threshold is determined by a warping window size w. In this
way, we align qi and cj only if |i−j| ≤ w. The computational
complexity of cDTW is O(wm). As shown in Fig. 4(b), the
gray area is the permissible scope of warping path.

Review of Lower bound [19], [22], [23]. The basic idea is
to use a cheap-to-compute lower bound to prune segments that
cannot be the top-k similar anomalies [22], [23]. The process
of pruning by lower bound has been shown in Algorithm 1,
where best-so-far is the furthest distance in top-k segments.
In order to maintain best-so-far efficiently, we create a max-
heap to keep the top-k similar anomalies. When computing
similarity, once the lower bound exceeds best-so-far, this
segment is discarded since it cannot be in the top-k list. We
use the following three lower bounds in UCR Suite [19].
LBKim [23] extracts a four-tuple feature vector from each

segment: the first, last, minimum, and maximum values.
LBKim is the maximum squared difference of these features.
LBKeogh [22]. Two sequences U and L are defined with

the warping window size w in cDTW:

Ui = max
j
qj Li = min

j
qj , where j ∈ [i− w, i+ w]

U and L are the upper bound and lower bound of the template
q, i.e., ∀iLi ≤ qi ≤ Ui. Then LBKeogh can be computed as:

LBKeogh(q, c) =

m∑
i=1

(ci −Ui)
2I(ci > Ui) + (ci −Li)

2I(ci < Li)

q
U

L

c

(a) LBKeogh.

Partial calculation
of cDTW

Partial truncation
of LBKeogh

k

(b) Early stopping.

Fig. 5: Illustration of LBKeogh and early stopping of DTW,
adopted and slightly modified from Figure 6 in [19].

I(·) is the indicator function. As shown in Fig. 5(a), the
squared length of gray lines represents the LBKeogh.

Reversing the q/c role in LBKeogh [19]. We use the lower
bound proposed by UCR Suite [19], which computes the upper
bound U and lower bound L around each candidate anomaly.

Review of Early stopping [19]. Fig. 5(b) (adopted and
slightly modified from Figure 6 in [19]) explains the idea of
early stopping. In the process of computing cDTW, once the
sum of partial cDTW (from the left side of the dashed line) and
partial LBKeogh (from the right of the dashed line) exceeds
best-so-far, this candidate anomaly can be pruned off [19].

V. EVALUATION

In this part, we focus on evaluating two components in
Label-Less. We first introduce the datasets and metric. Then,
we present the performance of unsupervised anomaly detection
and anomaly similarity search. In addition, the discussion
about search response time is also provided.

A. Datasets

We obtained four datasets named A,B, C,D (shown in
Table I), with 30 KPIs in total collected from a large Internet
company through the real-time monitoring systems. All of
KPIs have a time span of about six months with 1-minute
monitoring interval. KPIs in each dataset monitor a service on
different servers, so they have similar shapes and many similar
anomalies. To illustrate our datasets intuitively, we select one
KPI from each dataset and plot a 2-day-long fragment as
shown in Fig. 6.

For the purpose of evaluating unsupervised anomaly detec-
tion, the experienced operators first label all anomaly segments
as the ground truth (N ′). Then in order to evaluate anomaly
similarity search, operators pick the most frequent anomaly
pattern in each dataset as the template, which is marked in
blue dashed rectangle in Fig. 6 (other anomaly patterns can
be seen in Fig. 11), and identify all anomalies in this dataset
that are similar to the template as the ground truth of anomaly
similarity search (N). For example, dataset A has 1030 labeled
anomalies in total and 874 similar anomalies for the most
frequent anomaly pattern A1.

B. Performance Metric

Different from regular anomaly detection, the input and
output are segments, instead of single observation. A returned
segment may partially overlap with a true anomaly segment.
As Fig. 7 shows, we define that if a returned anomaly segment

TABLE I: Details of the datasets in our experiments.

Datasets A B C D
KPIs 8 12 5 5

Template in Fig. 11 A1 B1 C1 D1

Length of template (m) 10 8 13 15
#Similar anomalies (N) 874 986 1308 634
#Total anomalies (N ′) 1030 1180 1436 752

Fig. 6: 2-day-long fragments of the KPIs in our datasets.
Similar anomalies are labeled in red color and the anomaly
templates are marked in blue dashed rectangles.

overlaps with more than half of a labeled anomaly segment in
ground truth, then we regard it is a true positive.

As for the metric of unsupervised anomaly detection, since
it provides potential anomalies for operators, we mainly em-
phasize on high recall, which is computed as #TP

N ′ , where N ′

is the number of total labeled anomaly segments and #TP is
the number of true positives found by candidate anomalies.

Top-k precision and top-k recall are two popular metrics
for k-NN search, which can be computed as: precision =
#TP
k and recall = #TP

N , where N is the number of true
similar anomalies, and #TP is the number of true positives
found. Besides, F-score as the harmonic mean of precision
and recall can be computed as: F -score = 2×precision×recall

precision+recall .
However, the selection of k has a great impact on precision and
recall. When k is too small, many similar anomalies cannot be
reported, resulting in low recall and high precision. When k is
too large, segments with low similarity may will be reported,
leading to high recall and low precision. In practice, k can
be determined by operators based on their needs and domain
knowledge. Considering the best k for each dataset may be
different, a more general approach for evaluation is to focus
on precision-recall curve and compute the AUC (area under
curve), which is the average precision over recall given all
possible k, or compute best F-score indicating the best possible
performance given an optimal k. Therefore, we adopt best F-
score and AUC for evaluating anomaly similarity search.

C. Performance of IForest

In order to show the effectiveness of unsupervised anomaly
detection in Label-Less, we compare iForest with two popular
outlier detectors, i.e., One-Class SVM (OCSVM) [17] and
Local outlier factor (LOF) [18]. OCSVM obtains a spherical
boundary in feature space around the data. The volume of
this hypersphere is minimized so as to isolate outliers outside
the boundary. LOF aims to find anomalous data points by

0 0 1 1 1 1 0

0 0 0 1 1 1 1

Ground truth

Returned similar anomaly

0

01

1

Fig. 7: Illustration of true positive. Anomaly is denoted by 1
and marked in hollow point on the right. The first row is the
ground truth with an anomaly segment highlighted in shaded
squares. The returned similar anomaly shown in the second
row has a more than 50% overlap with labeled anomaly in
truth. Hence, we regard it is a true positive.

TABLE II: Comparison of recall and per-KPI running time
with different outlier detectors.

Datasets A B C D

Recall(%)
IForest 97.4 98.9 95.9 99.4
LOF 66.7 49.7 62.8 68.0
OCSVM 75.9 73.3 82.9 76.3

Per-KPI
running time

IForest 13.6s 9.3s 12.4s 12.4s
LOF 14.1s 11.5s 11.5s 11.9s
OCSVM 5.7h 6.4h 5.9h 6.3h

measuring the local deviation of a given data point with respect
to its neighbors. These three outlier detectors adopt same
features (§III-C) and threshold selection strategy (§III-E). The
results about recall and per-KPI running time are shown in
Table II. It is obvious that both LOF and OCSVM show
poor recall, and OCSVM has extremely high computation
complexity. The high recall of iForest also demonstrates that
the features extracted by time series models is effective and
threshold selection strategy is robust. Note that it is always
possible to have false negatives, operators can adjust θ to
control false negatives within an acceptable range.

D. Comparison with Naive Search

The search space of anomaly similarity search in Label-Less
is candidate anomalies given by unsupervised anomaly detec-
tion. In order to demonstrate the importance of unsupervised
anomaly detection on anomaly similarity search, we compare
it with the naive search whose search space is all segments
with length m in KPIs. The result is displayed in Fig. 8(a).
We observe that the best F-score of anomaly similarity search
reaches about 0.95 on average, higher than naive search in all
datasets. This is because that naive search simply reports all
similar segments without considering whether they are normal
or anomalous. However, some similar segments are normal
patterns. For example, for dataset C as shown in Fig. 6, there is
a spike (black one) at about 12:00 every day. Although similar
to the template, these spikes are normal periodical behaviors,
probably due to regular business promotions at that time. Naive
search will output them simply based on similarity, leading to
poor performance (false positive), while unsupervised anomaly
detection can filter out these normal points.

On the one hand, this comparison clearly demonstrates that
it is essential to adopt unsupervised anomaly detection before
anomaly similarity search, since it not only filters out normal
points to reduce false positives, but also reduces the search

0.0

0.2

0.4

0.6

0.8

1.0
Be

st
 F

-s
co

re

0.0

0.2

0.4

0.6

0.8

1.0

AU
C

Anomaly similarity search Naive search

(a) Comparison between anomaly similarity search and naive search.

0.0

0.2

0.4

0.6

0.8

1.0

Be
st

 F
-s

co
re

0.0

0.2

0.4

0.6

0.8

1.0
AU

C

DTW ED SBD

(b) Comparison with different distance measures.

Fig. 8: Performance of anomaly similarity search.
space and improves search efficiency significantly (§V-F). On
the other hand, the result also highlights the difference between
anomaly similarity search and general time series similarity
search (§II-B).
E. Comparison with Other Similarity Measures

To demonstrate the effectiveness of accelerated DTW (DTW
for short hereinafter) in Label-Less, we use Euclidean Distance
(ED), and Shape-Based Distance (SBD) [25] as similarity
measure to compare with DTW, and other modules remain
unchanged. ED is a simple and well-accepted similarity mea-
sure, computed as ED(q, c) =

√∑m
i=1(qi − ci)2. SBD is

a normalized version of cross-correlation, which can handle
distortions in amplitude and phase.

The performance comparison is shown in Fig. 8(b). Clearly,
DTW consistently outperforms other distance measures on
all datasets. We can observe that ED perform poorly, since
it cannot handle shift or local scaling problem as shown in
Fig. 9(a) and Fig. 9(b). When calculating the distance between
two segments, ED assumes the i-th point in one segment
is aligned with the i-th point in the other, and it is very
sensitive to small distortions in the time axis. The performance
of SBD is unstable across the datasets. Although SBD can
recognize time shift, it fails to deal with local scaling like
in Fig. 9(b). In addition, it focuses on shape regardless of
variance in amplitude [25]. For example, a sharp spike and a
gradual increase in Fig. 9(c) are considered to have a small
distance. However, amplitude variance cannot be ignored in
anomaly detection, since a sharp spike is likely an anomaly
while a gradual increase is probably not, but SBD misjudges
this case. This experiment concludes that DTW is the best
choice for anomaly similarity search among these alternatives.

F. Efficiency of Anomaly Similarity Search

We have stated that response time is a big concern due
to a large number of long KPIs in §I. By comparing with
naive search (without unsupervised anomaly detection), and
original DTW (with O(m2) time complexity and without

(a) Shift (b) Local scaling (c) Amplitude

Fig. 9: Analysis of distance measures. Euclidean distance fails
to tackle (a) and (b); SBD fails to tackle (b) and (c).

TABLE III: Comparison of per-KPI running time (seconds).

Datasets A B C D
Anomaly similarity search 0.38 0.35 0.43 0.39

Naive search 2.18 2.22 2.95 2.60
Original DTW 3.84 3.99 5.29 4.95

any techniques in §IV-C), we demonstrate the efficiency of
anomaly similarity search in Label-Less. The results are shown
in Table III and the response time of per-KPI anomaly sim-
ilarity search in Label-Less is under 0.5 second. In addition,
the results show that both unsupervised anomaly detection
and accelerated DTW play key roles in reducing response
time. The unsupervised anomaly detection can reduce search
space significantly, and the accelerated techniques from UCR
Suite [19] in §IV-C are extremely effective in reducing DTW
computation complexity.

Note that although there exists some other novel acceler-
ating techniques [19], our goal is to reduce response time
required by labeling’s interactive nature with as simple an
algorithm as possible. In our approach, only using these three
classical techniques can satisfy our goal (under 0.5 second),
thus we do not consider other complex methods, which may
bring challenges to the development and maintenance of our
labeling tool.

VI. OVERALL LABELING WORKLOAD

In this section, we mainly focus on evaluating the perfor-
mance of Label-Less on reducing labeling workload. We first
introduce the traditional labeling method. Then we describe
the new labeling method with Label-Less and demonstrate
the good performance of Label-Less by comparing the total
labeling time with traditional labeling.

A. Traditional Labeling Method

In traditional labeling, given an unlabeled KPI, an operator
first needs to manually scan the entire KPI to understand its
overall normal behaviors and get a preliminary judgment of
what can be considered as anomalies. After that, the operator is
ready to label from the beginning of the KPI. When finding an
anomaly case, instead of hurrying to make a decision, he will
go back to see the historical information (last day/week/month)
and make a comprehensive comparison to draw a reasonable
conclusion whether the segment needs to be labeled. If the
segment needs to be labeled as an anomaly, the operator will
zoom in to the region where the anomaly is located and label
the segment point by point, and then zoom out to the original
time scale. The operator will repeat above process until all
anomalies have been labeled. Besides, above labeling process
is based on using a labeling tool with graphical interface.

Tune threshold

(a) Interface of candidate potential anomalies (labeled in red) given by
unsupervised anomaly detection.

(b) Interface of anomaly similarity search. On the left is the anomaly
template labeled in pink band; on the right is the similar anomalies given
by Label-Less sorted by similarity.

Fig. 10: Interface of labeling tool with Label-Less.

In summary, the majority of traditional labeling efforts are
spent on visually scanning through KPIs to gauge “what is
an anomaly” and examining KPIs back and forth to check
whether “similar” segments are labeled consistently. When
faced with a large number of long KPIs, traditional labeling
is indeed a prohibitive task for operators.

B. Labeling with Label-Less

Label-Less has been integrated into a labeling tool de-
veloped by us. Fig. 10(a) shows the interface of candidate
potential anomalies given by unsupervised anomaly detection
(labeled in red), and Fig. 10(b) shows the interface of anomaly
similarity search. The improved labeling process with Label-
Less is semi-automated, as shown in Fig. 2. More specifically,
given a set of unlabeled KPIs, candidate anomalies on each
KPI are identified through the unsupervised anomaly detection.
Thanks to the high recall achieved by this component, an
operator does not need to examine the entire KPI, but only the
candidate anomalies. Besides, the operator can drag the slider
to tune a suitable threshold. Later, the operator first labels one
of the candidate segments as an anomaly (pink band on the
left of Fig. 10(b)), then Label-Less uses it as a template to
automatically search for similar anomalies (displayed on the
right of Fig. 10(b) sorted by similarity). For the output similar
segments, the operator can look though them one by one
quickly. If top-k segments are all true positives, the operator
can click the “submit” button, so that top-k segments can be
labeled automatically. If there is a false positive, the operator
can click the “wrong” button to ignore the segment. In this
way, the operator saves time significantly in finding where the
anomalies are and manually labeling. The only manual work
for operators is choosing a template and checking the results
reported by Label-Less.

In order to show the effectiveness of Label-Less intuitively,
we invite eight voluntary experienced operators from an Inter-
net company which are divided into two groups to participate

m=10 c=874
 A1

m=154 c=39
 A2

m=37 c=54
 A3

m=13 c=26
 A4

m=61 c=37
 A5

(a) Dataset A.

m=8 c=986
 B1

m=115 c=65
 B2

m=30 c=43
 B3

m=188 c=38
 B4

m=116 c=32
 B5

m=5 c=16
 B6

(b) Dataset B.

m=13 c=1308
 C1

m=7 c=62
 C2

m=48 c=25
 C3

m=146 c=17
 C4

m=215 c=24
 C5

(c) Dataset C. (d) Dataset D.

Fig. 11: All templates in four datasets, where m is the length
of template and c is the number of similar anomalies.
TABLE IV: Comparison of labeling time (minutes) between
traditional labeling and Label-Less.

Datasets A B C D
Total labeling Label-Less 91 114 56 52

time Traditional 980 1243 573 602
Per-KPI labeling Label-Less 9.1 9.5 11.2 10.4

time Traditional 98.0 103.6 114.6 120.4

in our experiments. Every operator in each group chooses
one dataset to label. The operators in the first group use our
developed labeling tool without Label-Less to measure the
workload of traditional labeling and record the total time of
labeling these four datasets. The other four operators in the
second group use the labeling tool with Label-Less plugged in
to measure the total labeling time. Fig. 11 shows the templates
used by operators in the second group in four datasets, e.g.,
dataset A has five different anomaly templates and 1030
anomaly segments in total. In traditional labeling, operators
need to find and label all the 1030 segments by hand and
examine carefully. With Label-Less, operators choose the first
template A1 in Fig. 11(a), then confirm all results provided by
Label-Less until all anomalies similar to A1 have been labeled.
Next, the operators will probably choose A2 iteratively until
all anomalies in dataset A have been labeled. It is obvious that
confirming thousands of segments is much faster than finding
and labeling thousands of segments manually.

Table IV shows the workload comparison between Label-
Less and traditional labeling in detail. It is obvious that it
takes one or two hours to label a 6-month-long KPI for
traditional manually labeling. However, it only needs about ten
minutes with Label-Less. Thus we have confidence to make a
conclusion that Label-Less can reduce more than 90% labeling
time for operators.

VII. RELATED WORK AND DISCUSSION

A. Related Work

Labeling overhead: Despite many efforts have been put
into anomaly detection [2]–[10], effective ways to reduce the
labeling overhead of labeling KPI anomalies have remained
elusive. In the past, Haakon Ringberg et al. have argued
the challenges of manual labeling traces for network traffic
anomaly detection and presented WebClass [26], a web-based
infrastructure that adds rigor to the manual labeling process,
which allows researchers to share, inspect, and label traffic

time series through a graphical user interface, but it still
requires operators to manually label and inspect. In this paper,
we aim to facilitate labeling by automatic tools driven by
algorithms. To the best of our knowledge, Label-Less is the
first semi-automatic labeling tool that focuses on reducing the
labeling overhead of KPI anomaly dataset by algorithm.

Anomaly similarity search: Although this paper is also the
first one that studies anomaly similarity search in anomaly de-
tection fields, the problem can be regarded as incorporating the
domain knowledge about anomaly detection into general time
series similarity search. In fact, although the techniques used
in accelerated DTW are adopted from the UCR Suite [19],
[21]–[23], the difference between anomaly similarity search
and general similarity search has been introduced in §II-B and
demonstrated in §V-D.

B. Discussion

Beyond reducing the labeling overhead, we name a couple
of applications of the anomaly similarity search. First, it
can assist operators in discovering some specific types of
anomalies which they are concerned about. For example, the
template for dataset A in Fig. 6 indicates a sharp dip in
the number of requests. Finding all similar dips can help
operators timely troubleshoot whether and why such dips
happen frequently, so that they can respond quickly to avoid
the decline in the number of requests and reduce potential
economic loses. Second, suppose the template for dataset B
in Fig. 6 is of previously unknown type, operators can use
anomaly similarity search to quickly find similar unknown
anomalies in the all KPIs in dataset B to help pinpoint the
potential root cause as soon as possible.

VIII. CONCLUSION

In this paper, we argue that labeling overhead has become
the main hurdle to researching effective and practical KPI
anomaly detection. Our proposed semi-automatic labeling tool
Label-Less saves the operators from scanning and checking
the long KPIs back and forth for abnormal patterns and
label consistency by unsupervised anomaly detection based on
Isolation Forest, and robust anomaly similarity search, which
is built on top of existing time series similarity search methods.
Our evaluations show that anomaly similarity search achieves
the best F-score of 0.95 on average, and a real-time response
time. Overall, Label-Less developed in practice can reduce
operators’ labeling overhead by more than 90%.

We believe that, Label-Less is important first step to enable
an ImageNet-like large-scale KPI anomaly dataset with high-
quality ground truth. This is greatly beneficial to KPI anomaly
detection in academia and industry just like what ImageNet did
to computer vision and deep learning.

IX. ACKNOWLEDGEMENT

We thank the anonymous reviewers for their valuable feed-
backs. We thank Juexing Liao, Minghua Ma and Ya Su for
their helpful suggestions and proofreading. This work has
been supported by the National Natural Science Foundation of

China (NSFC) under grant 61472214, 61472210, the Beijing
National Research Center for Information Science and Tech-
nology (BNRist) key projects, the Global Talent Recruitment
(Youth) Program and Okawa Research Grant.

REFERENCES

[1] Y. Chen, R. Mahajan, B. Sridharan, and Z.-L. Zhang, “A provider-side
view of web search response time,” in SIGCOMM, ACM, 2013.

[2] D. Liu, Y. Zhao, H. Xu, Y. Sun, D. Pei, J. Luo, and et.al, “Opprentice:
towards practical and automatic anomaly detection through machine
learning,” in IMC, ACM, 2015.

[3] N. Laptev, S. Amizadeh, and I. Flint, “Generic and scalable framework
for automated time-series anomaly detection,” in SIGKDD, ACM, 2015.

[4] A. Lavin and S. Ahmad, “Evaluating real-time anomaly detection
algorithms–the numenta anomaly benchmark,” in ICMLA, IEEE, 2015.

[5] H. Xu, W. Chen, N. Zhao, Z. Li, J. Bu, Z. Li, Y. Liu, Y. Zhao, D. Pei,
and et.al, “Unsupervised anomaly detection via variational auto-encoder
for seasonal kpis in web applications,” in WWW, 2018.

[6] H. Yan, A. Flavel, Z. Ge, and A. Gerber, “Argus: End-to-end service
anomaly detection and localization from an isp’s point of view,” in
INFOCOM, IEEE, 2012.

[7] B. Krishnamurthy, S. Sen, Y. Zhang, and Y. Chen, “Sketch-based change
detection: Methods, evaluation, and applications,” in IMC, ACM, 2003.

[8] S. Zhang, Y. Liu, D. Pei, Y. Chen, X. Qu, S. Tao, and Z. Zang, “Rapid
and robust impact assessment of software changes in large internet-based
services,” in CoNEXT, IEEE, 2015.

[9] M. Ma, S. Zhang, D. Pei, X. Huang, and H. Dai, “Robust and rapid
adaption for concept drift in software system anomaly detection,” in
ISSRE, IEEE, 2018.

[10] S. Zhang, Y. Liu, D. Pei, Y. Chen, X. Qu, S. Tao, Z. Zang, X. Jing, and
M. Feng, “Funnel: Assessing software changes in web-based services,”
IEEE Transactions on Service Computing, 2016.

[11] Y. Chen, E. Keogh, B. Hu, N. Begum, A. Bagnall, A. Mueen, and
G. Batista, “The ucr time series classification archive,” July 2015. www.
cs.ucr.edu/∼eamonn/time series data/.

[12] M. Lichman, “UCI machine learning repository,” 2013.
[13] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet:

A large-scale hierarchical image database,” in CVPR, IEEE, 2009.
[14] “Curve: Time Series Labeling Tool.” https://github.com/baidu/Curve.
[15] “AIOps Challenge.” http://iops.ai/.
[16] F. T. Liu, K. M. Ting, and Z.-H. Zhou, “Isolation forest,” in ICDM,

IEEE, 2008.
[17] M. Amer, M. Goldstein, and et.al, “Enhancing one-class support vector

machines for unsupervised anomaly detection,” in SIGKDD, ACM,
2013.

[18] M. M. Breunig, H.-P. Kriegel, and et.al, “Lof: Identifying density-based
local outliers,” in SIGMOD, ACM, 2000.

[19] T. Rakthanmanon, B. Campana, A. Mueen, G. Batista, and et al.,
“Searching and mining trillions of time series subsequences under
dynamic time warping,” in SIGKDD, ACM, 2012.

[20] Y. Sun, Y. Zhao, Y. Su, D. Liu, X. Nie, Y. Meng, S. Cheng, D. Pei,
S. Zhang, et al., “Hotspot: Anomaly localization for additive kpis with
multi-dimensional attributes,” IEEE Access, 2018.

[21] W.-S. Han, J. Lee, Y.-S. Moon, and H. Jiang, “Ranked subsequence
matching in time-series databases,” in VLDB, VLDB Endowment, 2007.

[22] E. Keogh and C. A. Ratanamahatana, “Exact indexing of dynamic time
warping,” Knowledge and Information Systems, 2005.

[23] S.-W. Kim, S. Park, and W. W. Chu, “An index-based approach for
similarity search supporting time warping in large sequence databases,”
in ICDE, IEEE, 2001.

[24] D. J. Berndt and J. Clifford, “Using dynamic time warping to find
patterns in time series.,” in KDD workshop, ACM, 1994.

[25] J. Paparrizos and L. Gravano, “k-shape: Efficient and accurate clustering
of time series,” in SIGMOD, ACM, 2015.

[26] H. Ringberg, A. Soule, and J. Rexford, “Webclass: adding rigor to
manual labeling of traffic anomalies,” in SIGCOMM, ACM, 2008.

www.cs.ucr.edu/~eamonn/time_series_data/
www.cs.ucr.edu/~eamonn/time_series_data/
https://github.com/baidu/Curve
 http://iops.ai/

