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Abstract—An increasing number of Internet applications are
applying microservice architecture due to its flexibility and clear
logic. The stability of microservice is thus vitally important for
these applications’ quality of service. Accurate failure root cause
localization can help operators quickly recover microservice
failures and mitigate loss. Although cross-microservice failure
root cause localization has been well studied, how to localize
failure root causes in a microservice so as to quickly mitigate this
microservice has not yet been studied. In this work, we propose
a framework, MicroCause, to accurately localize the root cause
monitoring indicators in a microservice. MicroCause combines a
simple yet effective path condition time series (PCTS) algorithm
which accurately captures the sequential relationship of time
series data, and a novel temporal cause oriented random walk
(TCORW) method integrating the causal relationship, temporal
order, and priority information of monitoring data. We evaluate
MicroCause based on 86 real-world failure tickets collected
from a top tier global online shopping service. Our experiments
show that the top 5 accuracy (AC@5) of MicroCause for intra-
microservice failure root cause localization is 98.7%, which is
greatly higher (by 33.4%) than the best baseline method.

I. INTRODUCTION

Microservice has gained an increasing popularity in recent
years, especially for the applications that need to support a
broad range of platforms, e.g., IoT, mobile, and Web [1]. The
performance quality of microservice is of vital importance
to the Internet company, because a microservice failure can
degrade the user experience and bring economic loss [2], [3].
Therefore, an efficient root cause localization of online fail-
ures, which enables rapid service recovery and loss mitigation,
becomes increasingly more important for microservices.

In the microservice architecture, an application is decoupled
into multiple microservices. Recently, several works have been
proposed to understand how a failure is propagated across
microservices and try to localize the root cause microservice
that leads to this failure [4]–[6]. However, localizing failure
root causes within a microservice has not yet been investigated.
It is important for operators to further understand why a
microservice fails, otherwise they cannot take measures to
mitigate the failure.

To find the root cause of a microservice failure, we need
to know how a microservice works. Here we take “discount
coupon” microservice in the online shopping platform as an
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Fig. 1. An example of microservices architecture. FGC means full garbage
collection in java virtual machine.

example, as shown in Fig. 1. For a microservice, there are usu-
ally upstream components (e.g., a microservice, a middleware)
calling it, and it can call some downstream components (e.g.,
a microservice, a middleware). For example, the order creation
microservice will call the discount coupon service when a
customer places an order. To implement its function, the dis-
count coupon microservice will call the inventory microservice
and some middlewares, e.g., the notice publishing platform,
database. Moreover, a microservice is typically deployed on
one or more containers or virtual machines. Typically, there
are mainly three types of components that may lead to a
microservice failure: upstream component, downstream com-
ponent, deployment environment.

Operators have configured a collection of indicators to
continuously monitor the performance of each microservice.
As shown in Fig. 1, these indicators include KPIs which
are user perceived indicators such as response time (RT) of
Web users, and metrics include upstream component related
indicators (e.g., queries per second (QPS) of Web users),
downstream component related indicators (e.g., middleware
RT), deployment environment related indicators (e.g., CPU
utilization of the underlying container). When a KPI becomes
abnormal, it usually indicates a microservice failure, caused
by the microservice’s upstream component, downstream com-
ponent, or deployment environment, which usually becomes
anomalous. Typically, the anomalous component or deploy-

978-1-7281-6887-6/20/$31.00 © 2020 IEEE



ment environment can be reflected by an anomaly in one
or more metrics. Besides, an anomalous metric can further
tell why this root cause component becomes anomalous.
Consequently, the root cause of a microservice failure can be
denoted by an anomalous metric. For example, as shown in
Fig. 2, a microservice failure indicated by the anomalous RT
(KPI) is caused by the anomalous Web QPS (metric).

     Anomalous KPI

Root cause

W-RT

Load
Mem

ThreadGC-T
CPU

MC1-RT

W-QPS

MC1-QPS

Fig. 2. An example of the causal graph of a microservice failure. W-RT is Web
RT and W-QPS is Web QPS. Mem, Load, CPU are the memory utilization,
load, and CPU utilization of the underlying container, respectively. GC-T and
Thread are respectively the number of garbage collections and that of threads
in the underlying java virtual machine. MC1-RT and MC1-QPS are the average
consumers’ RT and QPS of middleware1, respectively.

Currently, operators usually manually localize the root cause
metric when a microservice failure occurs. However, due to
the large number and complicated dependency relationship of
KPIs and metrics, this manual way is time-consuming, labor-
intensive, and error-prone. Therefore, in this work we aim to
design an automotive framework to robustly localize the root
cause metric in a microservice. Usually, localizing failure root
causes for computer systems has two main parts: learning the
relationship of components to construct dependency graphs,
and inferring root causes through random walk [7]–[9].

However, this idea faces two major challenges in our
scenario as follows.
• Traditional causal graph construction method, which is

designed for independent and identically distributed (iid)
data, cannot fully utilize propagation delays.

• Current random walk algorithm, which is based on the
assumption that, an abnormal metric more correlated with
an anomalous KPI is more likely to be the root cause, is
not always true in our scenario.

We make the following contributions in this paper when
addressing the above challenges:
• To tackle the first challenge, we design a novel PCTS

(path condition time series) algorithm to learn the depen-
dency graph of monitoring indicators with propagation
delays being fully utilized. In PCTS, we first adopt the
improved PC [10] to learn the causal graph of each point
of time series. Then we generate the edges between two
time series and generate a failure causal graph.

• To tackle the second challenge, we propose a novel tem-
poral cause oriented random walk (TCORW) approach.

In TCORW, we successfully integrate three types infor-
mation: (1) causal relationship of monitoring indicators,
(2) anomaly information of metrics including occurrence
time and anomaly degree, and (3) metric priority which
is obtained based on domain knowledge.

• Combining PCTS and TCORW, we propose a novel
framework, MicroCause, to infer the top N root causes
of the failure in a microservice. To the best of our
knowledge, this is the first work to localize failure root
causes in a microservice.

• We collected 86 online failure tickets from a large online
shopping platform in three months. We evaluate the Mi-
croCause and the baseline methods based on these cases.
The AC@5 of MicroCause is 98.7%, which is higher
33.4% than the best performance of baseline method.

II. PRELIMINARIES

In this section, we first introduce the architecture of mi-
croservice in Section II-A, followed by the statement of the
studied problem in Section II-B. The basic concepts of the PC
algorithm and random walk are depicted in Section II-C and
Section II-D, respectively.

A. Microservice Architecture

Microservice becomes increasingly more popular recently
due to its flexibility, scalability, and ease of deployment. In
the microservice architecture, an application is decoupled into
multiple microservices, each of which is responsible for a
specific function, e.g., querying data, creating orders. In this
way, a microservice, due to its reusability, can serve several
applications at the same time. Therefore, there are direct or
indirect calling relationships among microservices in diverse
application scenarios.

Order
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Order  View inventory

Fig. 3. The call graph of microservices in the process of placing an order

Here we take the process of placing an order, which is
a frequently used application on online shopping platforms,
as an example. As Fig. 3 shows, this application involves
several microservices. Firstly, the order creation microservice
receives a user’s request and calls the inventory microservice
to check whether there are enough commodities. After that,
the inventory microservice calls the address microservice to
calculate the closest warehouse and counts its inventory of the
requested commodity. Besides, the order creation microservice
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calls the address microservice to generate the delivery address,
calls the discount coupon microservice to check whether this
order can use any coupon, and calls the freight microservice
to deliver the commodity. Consequently, an application is
completed through a series of callings among microservices.

B. Problem Statement

Failure and anomaly: A microservice failure is an event
that the microservice is not functional and seriously impacts
the user’s quality of experience. For example, when the order
creation microservice create orders very slowly or even cannot
create any order, this service is failed. It must be observable,
from a person, an application, or another microservice [11].
Besides, a microservice is anomalous, e.g., its underlying
containers suffer from extremely high memory utilization, is
when its behavior deviates from the normal one. However, for
a microservice an anomaly status does not necessarily lead to a
failure, thanks to its load balancing mechanism, self-recovery
strategy, etc.

KPI and metric: Usually, operators carefully configure a
collection of microservices’ indicators to continuously monitor
applications’ status, quickly locate the root causes of failures,
and timely mitigate failures, to guarantee the quality of users’
experience. These indicators, which are essentially time series
data, can be classified into two categories: key performance
indicator (KPI) and metric. A KPI, e.g., the average response
time of a microservice, is a user-perceived indicator that
directly reflects the quality of service. When a KPI of a
microservice becomes anomalous, the microservice will be
deemed to be failed. A metric, on the other hand, indicates
the status of a microservice’s underlying component. It can be
the CPU utilization of a microservice’s underlying physical
machine/virtual machine/container, the queries per second
(QPS) of its upstream microservice, or the response time of
its downstream microservice. An anomalous metric can be
the potential root cause of an abnormal KPI indicating a
microservice failure. However, an anomaly of metric does not
necessarily lead a KPI to be anomalous. For example, when
a microservice’s underlying database fails and the database
related metrics become anomalous, the microservice may be
normal due to the load balancing strategy.
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Fig. 4. Failure ticket in microservice A

To get readers better understand the difference between KPI
and metric, and that between anomaly and failure, we give
an example in Fig. 4. Microservice A becomes anomalous at
02:34 and 13:34, because one of its metrics behaves abnormal
then. However, the microservice fails only at 13:34 because
its KPI becomes abnormal at that time.

Failure ticket: In our scenario, a failure ticket of microser-
vice usually consists of three key elements: a microservice

ID indicating where the failure occurs, a KPI representing
which KPI becomes anomalous, and a timestamp showing
when this failure happens. Therefore, it can be denoted as
a tuple, i.e., {microservice ID, KPI, timestamp}. For example,
{Microservice A, Web RT, 17:18} is a microservice failure.

Problem definition: With the above definitions, our objec-
tive can be formulated as follows. Given one failure ticket,
MicroCause will try to localize the top N metrics that are
most likely to be the root cause of the failure.

C. PC Algorithm

Causality learning aims to discover the causal relationship
from data, which can help to better understand physical
mechanisms. The data needed can come from well-designed
comparative experiments. However, due to cost, ethics, and
other reasons, the use of experimental data for causal analysis
is nearly infeasible in practice. In recent years, using obser-
vational data for causal analysis has been demonstrated to be
effective in many fields [12] [13]. Causality usually has two
representations, namely, causal graph and structural equation.
Compared to the structural equation, causal graph is more
commonly used in practical applications because it is more
intuitive. The most popular method to construct a causal graph
from observational data is PC algorithm, which was proposed
by Peter Spirtes and Clark Glymour [14].

PC algorithm aims to learn the causal relationship among
random variables. Suppose we prepare to learn a causal graph
among M random variables. The input is N independent
identically distributed samples. Each sample contains M val-
ues, which represent the observed values of the M random
variables, respectively. PC algorithm will output a directed
acyclic graph (DAG) G with M nodes, where each node
represents one random variable. [9] treated each time series
as one random variable, and the data at each time point as a
sample. PC algorithm is based on the assumption that there is
no edge between variable A and variable B. Formally, given
a variable set S, A is independent of B, denoted as A ⊥ B|S.
There are four steps in PC algorithm:

1) Construct a fully connected graph of the M random
variables (all nodes are connected).

2) Perform a conditional independence test on each ad-
jacent variables under the significance level α. If a
conditional independence exists, the edge between the
two variables is removed. In this step, the size of the
conditional variable set S increases step by step until
there are no more variables that can be added into S.

3) Determine the direction of some edges based on v-
structure [15].

4) Determine the direction of the rest of the edges.

D. Random Walk

Random walk is a statistical model that consists of a series
of trajectories, each step of which is random. Random walk
can be performed in various types of spaces, e.g., a graph, a
vector. Typically, the random walk algorithm is as follows.
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Step 1. Generate a relationship graph G, where V is the
node set and E is the edge set. eij ∈ E is set to 1 when node
vi is one of the causes of vj .

Step 2. Calculate a matrix Q:
1) Forward step (walk from the result node to the cause

node). Specifically, we assume that the node which is
more related to the abnormal node is more likely to be
the root cause. Thus Qij = R(vabnormal, vj), where
R(vabnormal, vj) is the correlation coefficient between
vabnormal and vj , and eji = 1.

2) Backward step (walk from cause node to result node). To
avoid the algorithm getting trapped into the node which
has low correlation with the abnormal node, random
walk enables a step from the cause node to the result
node. Formally, if eji ∈ E and eij /∈ E, Qji =
ρR(vabnormal, vi), where ρ is a parameter controlling
the impact of the backward step and ρ ∈ [0, 1].

3) Self step (stay in the present node). If the algorithm
walks to a node where its neighbor nodes all have lower
correlation with the abnormal node, this node likely
denotes a root cause. Then the walker should stay in
the present node, and Qii = max[0, R(vabnormal, vi)−
maxk:eki∈E R(vabnormal, vk)].

Step 3. Normalize every row of Q, and get the transition
probability matrix Q̄ as follows:

Q̄ij =
Qij∑
j Qij

(1)

Step 4. Do random walk over G, and the probability of
random walk from vi to vj is Q̄ij .

After the above four steps, the node which is visited the
most frequently is the most likely to denote the root cause.

III. CHALLENGES AND DESIGN OVERVIEW

A. Challenges

The objective of MicroCause is to robustly localize the
root cause metric in a microservice. Motivated by the popular
design of failure root cause localization models for computer
systems [7]–[9], MicroCause has two main parts, i.e., causal
graph construction aiming to learn the relationship of compo-
nents, and random walk trying to infer root causes. The design
of MicroCause faces the two following challenges.

Web QPS

17:15

 Web RT

Middleware1

Consumer QPS 

17:16 17:17 17:18

Middleware1

Consumer RT 

Fig. 5. Causal relationship among a KPI and three metrics. A circle denotes
a time point of a KPI/metric, and an arrow represents a causal relationship

iid based causal graph cannot capture propagation de-
lays. Usually, a causal graph learning algorithm assumes that

the data is independent and identically distributed (denoted
as iid), and thus it cannot capture the propagation delays
of different metrics and KPIs. For example, path condition
(PC) algorithm, which is a popular causal graph learning
algorithm and has been used to learn the causal relationship
of APIs [9], [14], treats each time point of metric/KPI as one
iid data sample. However, the causal graph ignoring sequential
patterns can fail to accurately learn the causal relationships.
For instance, as shown in Fig. 5, PC algorithm treats the data
points at 17:18 (in the dotted box) as a iid data sample, and
assumes that the data sample is independent with the data
sample at 17:16 and that at 17:17. Therefore, PC algorithm can
only learn that an anomaly of middleware consumer QOS can
cause middleware consumer RT to be anomalous. However,
when a metric becomes anomalous, it can also lead a KPI or
another metric to be anomalous after some period of time due
to propagation delays. For example, when Web QPS becomes
anomalous at 17:16, it causes Web RT to be anomalous at
17:17 and Middleware consumer QPS to to be anomalous at
17:18. Because PC algorithm ignores the propagation delays
among metrics and KPIs, it cannot accurately deduce that the
root cause of a Web RT anomaly is an anomalous Web QPS.

Correlation based random walk may not accurately
localize root cause. Random walk has been widely used for
root cause localization [7]–[9]. It is based on the assumption
that, an anomalous metric, which is more correlated with the
anomalous KPI, is more likely to be the root cause. However,
in our scenario, the monitoring indicators (KPIs and metrics)
are heterogeneous. Usually, the monitoring indicators of the
same category are more correlated than those of different
categories. For example, the anomalous KPI in Fig. 6, Web
RT, is more correlated with the middleware consumer RT.
However, it is not correlated with the root cause metric, i.e.,
Web QPS. That is because both Web RT and middleware
consumer RT experience large spikes when they become
anomalous. On the contrary, a Web QPS more likely suffers
from a level shift when an anomaly occurs.
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Fig. 6. Monitoring indicators of failure case {Microservice A, Web RT, 22:45-
22:55}

B. Design Overview

To solve the above problem, we propose MicroCause,
which is a failure root cause localization framework in the
microservice through causality inference. In Fig. 7, we demon-
strate how the MicroCause works via a failure ticket X
{Microservice A, Web RT, 17:18}. When the online anomaly is
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Fig. 7. The overall architecture of MicroCause

detected in KPI (e.g. Web RT), MicroCause will be activated.
Based on the empirical failure propagation time, the monitor-
ing indicators of the failure microservice, which are from 4
hours before failure time to this moment will be used as the
MicroCause ’s input. For the failure ticket X, the monitoring
indicators of the microservice A, which are from 13:18 to
17:18, will be used.

The input dataset will be used to generate the failure causal
graph based on the PCTS algorithm we propose for the time
series causal graph learning. In the meantime, the metrics in
the input dataset will be checked whether there are anomalies
in anomaly detection module. The failure causal graph learning
module and the anomaly detection module can be processed
in parallel. Then the temporal cause oriented random walk
(denoted as TCORW) will give the top N potential root cause
of the failure based on the failure causal graph and the anomaly
information of the metrics.

IV. METHODOLOGY

A. Failure Causal Graph Learning

In the previous works [7]–[9], the dependency graph (e.g.,
the call graph of APIs) is essential for the failure root cause
localization. However, in our scenario, we cannot build the
graph via system tools [8] [7], because we investigate the
relationship among the monitoring indicators, not the API
or virtual machine. Thanks to the research of causal infer-
ence [14] [15] [16], we can use the observation data to obtain
the relationship between indicators. In [9], they use the PC
algorithm [14] to learn causal graph of the APIs. They treated
the monitoring data (time series) of APIs as iid data. It means
they assumed the independent relationship between It−τ and
It, where It = (I1t , . . . , I

N
t ) for the time series dataset with N

variables. Only the instantaneous causal relationship (e.g. from
Iit to Ijt ) can be learnt based on this assumption. However, the
causal relationship between time series often has time lag, e.g.
the relationship in Fig. 5. The PC algorithm will fail to report
lots of sequential causal relationship between the time series.

Here we propose PCTS, which is built on the top of the
improved PC algorithm [10], to learn the failure causal
graph based on the monitoring indicators. The improved
PC algorithm [10] has been used in climate science [10],
sociology [17]. To the best of our knowledge, it is the first

time that this algorithm is adopted in the root cause analysis
in the network system.

In improved PC algorithm, given a failure case, such as
failure case X, the monitoring indicators of microservice A
dataset Iit, t = 0, . . . , T, i = 1, . . . , N with N time series ,
including metrics and KPIs, will be used as input. Here we
treat each time point in one time series as one variable Ijt ,
which also represents one node in the causal graph. Because
there is one sample for the variable Ijt , t = 0, . . . , T in
the observed time series. We define the max lag as τmax,
which means the maximum time lag of the causal impact.
Therefore, if we want to find the cause of Iit , only the past
variables from It to It−τmax should be taken into consider-
ation. Then we can use the sliding window to construct the
independence test samples. We will initialize the preliminary
parents P̂(Iit) = (It−1, . . . , It−τmax

) for each variable Iit . If
we assume the instantaneous causality, we can add It \ Iit .
Then we conduct conditional independence tests like the PC
algorithm, and remove Ijt−τ from P̂(Iit) if the null hypothesis
Ijt−τ ⊥ Iit |S cannot be rejected at the significance level
αIPC , given the conditional set S. S ∈ I−t \ I

j
t−τ , where

I−t = (It−1, It−2, . . . , It−τmax
). This stage converges if no

more conditions can be tested and all independent parents
with Iit are removed from P̂(Iit). However, the result of the
improved PC is a causal graph (denoted as GC), which each
node represents one time point of the monitoring indicators,
as shown in the Fig. 5. It can not be used to localize the root
cause. Because we need a graph, which each node represents
an indicator. Then we can localize the root cause by taking
the propagation path.

In PCTS, we improve GC to the graph where each node
represents one monitoring indicator. We assume if there is
one edge from Ijt−τ to Iit in GC , the final causal graph should
have the edge from Ij to Ii. We denote the final failure causal
graph as GFCG and the edge set of GFCG is EFCG. It can
be formed that if Iit−τ ∈ P̂(Ijt ), τ = 0, · · · , τmax, then eij ∈
EFCG. The Fig. 2 shows GFCG of failure ticket X. There
are several metrics impacting the anomalous KPI (Web RT)
, such as system CPU utilization, system memory utilization
and middleware1 Consumer RT.
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B. Anomaly Detection

In MicroCause, we assume that the root cause metrics
should become anomalous in some time before failure time.
We adopt the SPOT [18], to detect anomaly of the metrics.
Because SPOT detects the sudden change in time series via
the extreme value theory. It accords with the characteristics of
the anomaly metrics in microservice. For each time point in
the time series, SPOT will generate a threshold based on the
extreme value distributions of the past data. The time point,
whose value is higher than the high threshold or lower than
the low threshold, will be treated as an anomaly. Based on the
physical meaning of the metrics, we list the detection type of
the metrics in Table I.

TABLE I
SPOT DETECTION TYPE OF METRICS

Metric type Detection type
All queries per second, High threshold and low thresholdmemory-related

All success rate Low threshold
Others High threshold

In addition to detecting the anomalies of indicators, we also
evaluate the anomaly degree of metrics based on the SPOT
result in this module. Here we define the anomaly degree of
the metric i as ηimax. Given a time series of metric Mi =
M i

0,M
i
1, . . . ,M

i
T , the index set of the anomaly point of Mi

is O. We denote the threshold in SPOT for M i
t is φMi

t
.

Then the ηimax is calculated as follows:

ηimax = max
k∈O

|M i
k − φMi

k
|

φMi
k

(2)

For the metrics, which are detected with both high thresh-
old and low threshold, the max value of ηimax of this two
conditions will be used. After the anomaly detection module,
the anomaly time and anomaly degree of each metric will be
output. For example, QPS of Web in failure ticket X becomes
anomalous at 17:17 with the anomaly degree 10.62. YGC time
of JVM becomes anomalous at 17:17 with the anomaly degree
18.35. The memory utilization of system does not become
anomalous.

C. Temporal Cause Oriented Random Walk

In the last modules, we get the anomalous metrics in the
anomaly detection module and the anomaly causal graph
GFCG in the failure causal graph learning module. Here
we denote the node set as V and the edge set as E. Each
node vi represents one monitoring indicator, including KPIs
and metrics. And each edge eij ∈ E is set to 1 when
the indicator (node) vi is one cause of indicator (node) vj .
Because each of node in GFCG is one time series and different
monitoring indicators have different characteristics, we design
the temporal cause oriented random walk (TCORW) to rank
the potential root causes (metrics) and give the top N root
causes.

There are three steps in TCORW:

Step 1: Cause oriented random walk: In this step, we
propose cause oriented random walk to find the possible root
cause via the causal relationship between the metrics and KPIs.
In the traditional random walk (introduced in Section II-D),
they use correlation to quantify the relationship between met-
rics and anomalous KPI. The applied researches have proved
“correlation is not equal to causality” [19] [20]. Because the
correlation cannot remove the third variable’s impact (named
as confounder in the causality research). In cause oriented
random walk, we calculate Qij via partial correlation [21],
which can remove the effect of confounders We calculate the
matrix Q in random walk as follows:

1) Forward step (walk from result indicator to cause indi-
cator):

Qij = Rpc(vak, vj |Pa(vak) \ vj , Pa(vj)) (3)

Here the Rpc represents the partial correlation, and we
take the Pearson correlation as the correlation algorithm
of partial correlation. Pa(vak) is the parent node set of
vak. Pa(vak) \ vj means that vj is removed from the
parent node set of vak. We take the Pa(vak) \ vj and
Pa(vj) as the confounders in partial correlation.

2) Backward step (walk from cause indicator to result
indicator): We also allow the walker to walk backward to
avoid getting trapped in the node which has low causal
relationship with vak. If eji ∈ E and eij /∈ E, Qji is
set as :

Qji = ρRpc(vak, vi|Pa(vak) \ vi, Pa(vi)) (4)

where ρ is a parameter controlling the impact of the
backwark step and ρ ∈ [0, 1].

3) Self step (stay in the present node): We encourage the
walker stay in the present node if no neighbors have
high causal correlation with vak. We set the Qii as:

Qii = max[0, Rpc(vak, vi | Pa(vak) \ vi, Pa(vi))− Pmax
pc ]

P
max
pc = max

k:eki∈E
Rpc(vak, vk | Pa(vak) \ vk, Pa(vk)) (5)

Then we get the transition probability matrix Q̄ as follows by
normalizing every row of Q,

Q̄ij =
Qij∑
j Qij

(6)

With Q̄ij , we start the random walk from vak. The walker
walks into next node from vi following the probability vector
Qi. After Nrw steps, the walker stops and each node is
visited ci times. For example, for failure ticket X, after 1000
steps, Web QPS are visited the most times, which is 270.
Middleware1 RT ranks as the second with 182 times and the
JVM YGC time is visited 75 times.

Step 2: Potential root cause score: Beside the casual
relationship with the anomalous KPI, we also take the anomaly
degree ηimax of the metrics into the consideration to localize
the root cause. Because some metrics which impact the
anomalous KPI may not be anomalous, such as the memory
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utilization of system in Fig. 2. Here we define the potential
root cause score of metric i as γi. It is calculated as:

γi = λc̄i + (1− λ)η̄imax (7)

c̄i is the normalized visit time ci. η̄imax is the normalized
anomaly degree ηimax. λ controls the contribution of metric’s
causal relationship with the anomalous KPI and the anomaly
degree of the metric.

Step 3: Rank the root causes: For the time series moni-
toring data, the anomaly time is a non-negligible information
to infer the root cause. However some metrics may look
like that they become abnormal at the same time, owing
to the data aggregation and the instantaneous propagation
of the anomaly. Different metrics reflect the performance of
different parts in microservice. They have different priorities
in the propagation path. For example, when the QPS of Web
(upstream) rises in microservice A, the consumer QPS of
middleware1 (downstream) will grow up because tasks of the
microservice A increase. The CPU of system of microservice
A increases likewise. But the consumer QPS of middleware1
cannot impact QPS of Web. Here we classify the metrics
into three levels, which is summarized in Table II. Normally
the high level metrics (e.g. Level 1) impact the low level
metrics(e.g. Level 2). Therefore, the high level metrics have a
higher priority to be considered as the root cause.

In this step, we design an algorithm, which combines the
potential root cause score of the metric, the priority of the met-
ric and the anomaly time of the metric to rank all the potential
root cause of the failure ticket, as shown in Algorithm 1. We
will give the top N results of the RankResultSet returned by
Algorithm 1.

Algorithm 1: Rank the root cause
Input: 1 Levels of metrics, 2 γi of metric i,
3 anomaly time ti of metric i
Output: RankResultSet
ResultSet ← [ ]
for j=1,2,3 do

Rj ← rank metrics in Level j by γi in descending
order.

ResultSet ← append the top 2 result in Rj
end
RankResultSet ← rank ResultSet by ti in ascending

order

For failure ticket X, the top 1 metric in RankResultSet is
QPS of Web. Because QPS of Web is at Level 1 in the priority
of the metrics. QPS of Web gets abnormal and the young
garbage collection count of java virtual machine at the same
time at 17:17. The labelled root cause of failure ticket X is
QPS of Web.

V. EXPERIMENT

In this section, we evaluate MicroCause based on the 86
online failure cases in a microservice based online shopping

platform, which has hundreds of millions of users.

A. Experimental Setup

1) Dataset: In the large online shopping platform with
thousands of applications, there are hundreds of microservices
working online for the operation of the whole system. From
Sep. 2019 to Jan. 2020, we collected 86 online failure tickets
by monitoring more than 400 microservices’ status. Each of
these cases is checked by the professional operator to get
the root cause. The dataset of each microservice contains 64
metrics and 4 KPIs. The four KPIs is Web RT, Middleware1
Provider RT, Middleware2 Receive RT and Middleware3 Re-
ceive RT. All the metrics are listed in Table II, which can be
divided into three types according to the its relationship with
the microservice.

2) Evaluation Metric: To evaluate MicroCause and the
baseline algorithms, we introduce two performance metrics:
AC@k and Avg@k. These two metrics are the most com-
monly used metrics to evaluate the rank result of the root cause
localization task in recent works [7]–[9]. AC@k represents the
probability that top k results given by each algorithm includes
the real root causes for all given failure cases. When the k is
small, the higher AC@k indicates the algorithm identifies the
actual root cause more accurate. It prompts the efficiency of
operators’ further investigation because of the smaller search
space. Given the failure cases set A, AC@k is calculated as
follows:

AC@k =
1

|A|
∑
a∈A

∑
i<k R

a[i] ∈ V arc
min(k, |V arc|)

(8)

where Ra[i] is the result of rank of all metrics for failure case
a. V arc is the root cause set for failure case a. Avg@k evaluates
the overall performance of each algorithm by computing the
average AC@k, which defines as:

Avg@k =
1

k

∑
1≤j≤k

AC@j (9)

3) Baseline Algorithms:
1) Anomaly Time Order: We will rank the metrics based

on the start of the anomaly time of each metric.
2) TON18 [8], MonitorRank [7]: [8] used a tracer tool

named PreciseTracer and nova APIs to construct the
dependency graph between the virtual machines. The
dependency graph is used to localize the root cause
virtual machine based on random walk (denoted as RW-
1). MonitorRank used the Hadoop tools to generate the
call graph between APIs, the call graph is used to trace
the root cause API based on RW. In our scenario, we
can not obtain the call graph or dependency graph based
on system tools, therefore we use the PCTS to generate
the graph needed in their algorithms.

3) CloudRanger [9]: CloudRanger used the PC algorithm
to generate the dependency graph between the APIs in
the cloud native system. Then a second-order random
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TABLE II
METRICS AND ITS PRIORITY IN FAILURE PROPAGATION. YGC MEANS YOUNG GARBAGE COLLECTION. FGC MEANS FULL GARBAGE COLLECTION. QPS

MEANS THE QUERIES PER SECOND.Metrics
Type

Metrics Priority

Upstream Web QPS; Middleware1 Provider QPS; Middleware2 Receive QPS; Middleware3 Receive QPS Level 1

Self

Java virtual machine (JVM) related: JVM YGC Count; JVM YGC Time; JVM FGC Count; JVM FGC Time; JVM Max Heap
Memory; JVM Used Heap Memory; JVM Usage Heap Memory; JVM Max Nonheap Memory; JVM Used Nonheap Memory; JVM
Memory Usage Metaspace Pools; JVM Memory Usage Code Cache Pools; JVM Max Mapped Bufferpool; JVM Used Mapped
Bufferpool; JVM Max Direct Bufferpool; JVM Used Direct Bufferpool; JVM Thread Count; JVM Deamon Thread Count; JVM
Deadlock Thread Count; JVM Runnable Thread Count; JVM File Descriptor Utilization;

Level 2

System related: System CPU Utilization; System CPU Steal; System Load1 Utilization; System Load5 Utilization; System Load15
Utilization; System Load1; System Load5; System Load15; System Memory Utilization; System Swap Utilization; System Net
In; System Net Out; System Net Retran Utilization; System Net Established; System Disk Utilization; System Disk Read; System
Disk Write; System Dish Inode;

Level 2

Downstream

Queries per second (QPS): Middleware1 Consumer QPS; Middleware4 Read QPS; Middleware1 Write QPS; Middleware5 Read
QPS; Middleware5 Write QPS; Middleware2 Send QPS; Middleware3 Send QPS;

Level 2

Response time (RT): Middleware1 Consumer RT; Middleware4 Read RT; Middleware4 Write RT; Middleware5 Read RT;
Middleware5 Write RT; Middleware2 Send RT; Middleware3 Send RT;

Level 3

Success rate: Middleware1 Consumer success rate; Middleware4 Read success rate; Middleware4 Write success rate; Middleware5
Read success rate; Middleware5 Write success rate; Middleware2 Send success rate; Middleware3 Send success rate;

Level 3

walk (denoted as RW-2) is used to trace the root cause
API.

4) Microscope [22]: Microscope used the PC algorithm to
construct the non-communicating service dependencies
and used the network connection information to con-
struct the communicating service instance dependencies.
Then they used the Pearson correlation coefficient of
service level objective between the anomalous front
service and the root cause candidates, which are the
anomalous parent services of the anomalous service in
the dependency graph.

B. Evaluation of the overall performance

The accuracy of MicroCause and the baseline method are
listed in Table III, which shows the best performance of all
method obtained by MicroCause. Specifically, we outperform
TON18 and MonitorRank, the best performance baseline, by
12.0% and 14.7% on AC@1 and AC@2, respectively. As for
AC@5, the proposed algorithm achieves at least 29.1% im-
provement over other methods. In general, MicroCause shows
the best performance in this task, and it’s Avg@5 achieves
69.7%, which is equivalent to more than 40% relative im-
provement compared with the second place.

TABLE III
RESULT OF MICROCAUSE AND THE BASELINE ALGORITHMS

Method AC@1 AC@2 AC@5 Avg@5
MicroCause 46.7% 62.7% 98.7% 69.7%

TON18 [8], MonitorRank [7] 34.7% 48.0% 65.3% 48.2%
CloudRanger [9] 19.0% 32.9% 69.6% 46.8%
Microscope [22] 12.2% 21.9% 29.3% 23.9%

Anomaly Time Order 11.4% 21.5% 43.0% 28.4%

C. Evaluation of Failure Causal Graph Learning

In this part, we will analyze the performance of failure
causal graph learning part. PCTS will be compared with
the PC algorithm, which is used in the previous root cause
localization works [9] [12]. Here we take the significance
level of independent test in PC as 0.05, which is a common
setting in previous works. For all algorithms, the TCORW will
be used to localize the root cause. The results summarized

in Table IV show the importance of the proposed PCTS
algorithm. Specifically, PCTS outperforms PC by at least
1.8% and 3.7% in AC@1 and AC@3 this task,respectively. In
most commonly used AC@5 in practical application, PCTS
achieves 5.1% improvement than PC.

TABLE IV
COMPARISON OF THE CAUSAL GRAPH LEARNING ALGORITHMS

Method AC@1 AC@2 AC@5 Avg@5
MicroCause 46.7% 62.7% 98.7% 69.7%

MicroCause w/PC 44.9% 59.0% 93.6% 67.4%

Case study: Fig. 8 shows the failure causal graph of failure
ticket X via PC algorithm. Unlike the graph via PCTS (Fig. 2),
the graph is divided into two parts. Because there is no path
from the Web RT, the random walker can not walk into the real
root cause Web QPS. This phenomenon is not rare. In [12],
the author declared the isolated subgraphs generated by the PC
algorithm based on time series data. It is because we treat the
time series as iid data when we use PC algorithm. In fact, we
treat the It = (I1t , . . . , I

N
t ) and It−τ = (I1t−τ , . . . , I

N
t−τ ) as

independent samples, which means there is no edge between
Iit−τ and Ijt . But it is acknowledged the causal relationship
between time series is often along with the time lag. Therefore
the time lag causal relationships in practice can not be recog-
nized via PC algorithm, such as the impact from QPS of Web
to memory utilization of the system, which is not instantaneous
because of the time of the program initialization.

W-RT

CPU

Load

Mem

W-QPS

GC-C GC-T

Root cause

        Anomalous KPI
Thread

Fig. 8. Failure causal graph via PC algorithm of failure ticket X. Mem is
the System Memory Utilization. Cpu is the System CPU Utilization. Load
is the System Load1. W-QPS is the Web QPS. GC-C and GC-T are the
young garbage collection count of java virtual machine and the young garbage
collection time of virtual machine respectively. W-RT is the anomalous KPI:
Web RT.
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D. Evaluation of TCORW

In this part, we analyze the performance of root cause
analysis part: TCORW. Here the RW-1 [8] [7] and RW-2 [9]
will be used as the baseline algorithms. The results are shown
in Table V. All the results are based on PCTS for the root cause
analysis. In all methods, the MicroCause achieves the best
performance for the task of failure root cause localization and
MicroCause w/RW-1 works better than MicroCause w/RW-2
based on all the evaluation metrics. Overall, the performance
will be reduced remarkably if we use PC to replace PCTS
(e.g., more than 30% performance drop in AC@5 ), which
proves the effectiveness of the proposed TCORW algorithm.

TABLE V
COMPARISON OF TCORW WITH THE BASELINE METHOD

Method AC@1 AC@2 AC@5 Avg@5
MicroCause 46.7% 62.7% 98.7% 69.7%

MicroCause w/RW-1 34.7% 48.0% 65.3% 48.2%
MicroCause w/RW-2 29.3% 46.7% 62.7% 46.3%

E. Evaluation of The Parameters in MicroCause

In this part, we will analyze the impact of parameters λ
and ρ in TCORW on the root cause localization performance
of MicroCause. Here we change the λ from 0 to 1 and the
results can be found in Fig. 9(a). The best performance of
MicroCause is achieved when the λ is equal to 0.1. When
the λ changes from 0.1 to 0.7, AC@1, AC@2, Avg@5 almost
do not change, and AC@5 remains above 90.0%. From this
point, MicroCause is robust to the λ in TCORW, when λ is
less than 0.8.
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Fig. 9. The performance of MicroCause based on different λ and ρ in
TCORW

Here we change the ρ from 0 to 1 and the results are
shown in Fig. 9(b). The results show the performance of the
MicroCause is not influenced by ρ, when the ρ is greater than
0. MicroCause is not sensitive to ρ in TCORW, based on the
experiments with the online shopping platform dataset.

VI. RELATED WORK

Because it is of vital importance to quickly localize the
root causes of computer system failures for assuring the
quality of users’ experience, a large number of methods have
been proposed for this purpose. However, these works all aim
to localize the root cause cross-microservices. Normally there
are clear calling relationships between the microservices.
The system tools or network connection information can
be used to learn the communicating [8] [7] [22]. For the
non-communicating relationship, [9] [22] use the one service

level objective metric to represent each service and learn the
non-communicating relationship between the microservices
via the causality method, such as PC. But there is no clear
communicating relationship in a microservice. We have to
learn the dependence relationship between different metrics
to localize the root cause in a microservice.

As listed in Table VI, root cause localization for system
failures typically include two parts: learning the relationship
of components to construct dependency graphs, and inferring
root causes through random walk.

TABLE VI
THE RELATIONSHIP LEARNING METHODS AND ROOT CAUSE INFERENCE

METHODS USED IN PREVIOUS WORKS FOR FAILURE ROOT CAUSE
LOCALIZATION

Type Model Relationship
learning

Root cause
inference

Cross-
microservice

TON18 [8] OpenStack APIs Random walk
MonitorRank [7] Hadoop tools Random walk

CloudRanger [9] PC Second order
random walk

Microscope [22] PC Pearson
correlation

Intra-
microservice MicroCause PCTS TCORW

A. Relationship Learning

There are mainly two types of relationship learning meth-
ods used in previous failure root cause localization models:
system tool based methods and data analysis based methods
as follows:

• System tool based methods: Kim et al. proposed Mon-
itorRank [7] to localize the root cause API of failures in
service-oriented architectures. MonitorRank generated a
call graph of the studied APIs, which was easily gener-
ated by those batch processing systems (e.g., Hadoop), to
learn APIs’ relationship. Besides, Weng et al. [8] inferred
the dependencies of virtual machines in a cloud platform
to localize failure root causes at the virtual machine
level. The APIs of OpenStack were applied to obtain
physical relationships, and a popular trace analysis tool,
PreciseTracer, was used to capture call relationships.

• Data analysis based methods: In [23], Chen et al.
adopted a Bayesian network as a diagnostic tool to infer
the relationship between alerting signals and outages in
cloud service systems. Moreover, in [24], the AutoRe-
gressive eXogenous (ARX) model was used to learn the
invariant relationship of monitoring indicators. Based on
historical alarms, [9] applied the PC algorithm to learn
the causal relationships of service APIs.

In our scenario, however, we cannot obtain the relationship
of KPIs and metrics within a microservice through system
tools. Besides, the previously proposed methods, e.g., the
Bayesian network, ARX, and the PC algorithm, which can-
not capture the sequential relationship of KPIs and metrics,
do not achieve satisfactory performance in our scenario as
demonstrated in Section V-B.
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B. Root Cause Inference

Motivated by the successful applications of random walk
in biological research (e.g.,, inferring the source of scent),
[7] introduced random walk on the generated calling graph
to trace the root cause APIs of failures. Random walk was
also used to analyze the root cause virtual machines of
failures in cloud platforms [8]. To improve the performance
of random walk, [9] proposed a second-order random walk,
which calculates the transition probability between two edges
rather than that of two nodes. However, neither the native
random walk method nor the second-order one achieves good
performance in our scenario, namely, they are more likely to
generate false root causes. This is because they neither fully
utilize the temporal information of KPI anomaly and metric
anomalies, nor leverage the priority information of metrics,
which has been demonstrated in Section V-B.

VII. CONCLUSION

Microservice-based architectures are becoming more com-
mon in current large-scale Internet systems. Quick failure root
cause localization can improve quality of service and reduce
loss in efficiency and revenue. In this paper, we first propose to
investigate the failure root cause in a microservice, which is an
important step in the failure localization of the whole system.
We design a framework, MicroCause, to localize the failure
root cause in a microservice, which achieves high performance
in the experiments based on 86 the online failure tickets. In
MicroCause, we design PCTS, which can learn the causal
graph of monitoring indicators. We believe this method can
be used in other time series related root cause localization
problems.
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