The DevOps Lab Platform for Managing Diversified
Projects in Educating Agile Software Engineering

Xiaoying Bai, Dan Pei, Mingjie Li, Shanshan Li
Department of Computer Science and Technology
Tsinghua University, Beijing, China, 10008
Email: {baixy, peidan, lishanshan}@tsinghua.edu.cn, li-mj14 @mails.tsinghua.edu.cn

Abstract—This Research Work-in-Progress paper presents the
design of a Software Engineering (SE) course to support project-
based practical training. Group projects, especially projects from
industry partners, are deemed to be necessary for students to gain
hands-on experiences. With projects from the real world, students
learn not only practical engineering solutions, but also the contex-
t, constraints, and social aspects of SE. For a course having over
100 students with different interests and experiences, it is desired
to provide diversified choices of projects to stimulate enthusiasm
for learning. However, management and evaluation of diversified
projects are challenging. Following the Agile principles, we need
to continuously track progress and activities of each group, to
provide quick feedback of deliveries, and to periodically evaluate
students’ performance. Therefore, we built a DevOps platform
based on GitLab version control and continuous integration
framework. Commits to GitLab code repositories automatically
trigger build, testing, and analysis functions (which provide
both qualitative and quantitative feedback to the students). This
system has been in operations since 2014 for an undergraduate SE
course, with over 500 students participating in over 130 project
teams in total. The preliminary research showed promising
results in improving SE education.

I. INTRODUCTION

Project-based practical training has been widely accepted as
an important part of Software Engineering (SE) education [1]
[2] [3]. With carefully designed projects, especially projects
from industry partners, students learn not only practical en-
gineering solutions, but also the context, constraints, and
social aspects of SE [4] [5]. They gain hands-on experiences
of software lifecycle process, development and management
techniques, communication and collaboration skills.

For SE courses in general, students are usually assigned with
a unified project with well-defined requirements. However, for
courses having over 100 enrollments in a semester, one fixed
project for all students could be boring. A reasonable solution
is to introduce diversities into the design of course projects. On
one hand, it provides diversified choices so that a student has
the flexibility to choose one that best fits his/her background
and interests. On the other hand, it can simulate uncertainties
in real project context as students face different customer-
s, requirements, and development environment. The variety
of software projects is also helpful to enrich the students’
experiences and stimulate cross-project knowledge sharing.
Therefore, we collaborate with various partners representing
customers from industry as well as on-campus organizations,
and design projects representing different customer types,

978-1-5386-1174-6/18/$31.00 ©2018 IEEE

architecture styles and techniques. Some example projects are
like VOD (Video on Demand) system for students’ broadcast-
ing association, class sign-in system based on face-recognition
using cognition Web APIs from open platforms, and vehicle
entertainment system for Automobile Research Institute.

While inspiring learning interests, such diversity also
presents research challenges to process supervision and quality
assessment, which existing software engineering platforms (for
experienced software engineers) cannot directly deal with. It
is very challenging to fairly and timely evaluate and provide
feedback to students who have diversified customers, diver-
sified development environments and techniques, diversified
experience, and diversified roles in the project team, while the
instructor-to-student ratio is low (e.g., about 1:100 in our case)
and the SE project has to compete with several other heavy
projects for a student’s time.

The goal of our platform’s is to have a unified platform
that can address above challenges. We devised a customized
Agile process to encourage both online and offline commu-
nication and collaboration among team members, customer
representatives, and teaching assistants who take the role
of product manager. With limited resources of lecturers and
teaching assistants, it may take a lot of time and efforts to
supervise every project and every student. Automatic tools
are thus demanded to facilitate project data collection and
analysis [1] [6] [7] [8]. Taking DevOps practices, we built a
collaborative development platform by integrating GitLab with
plug-in tools for continuous integration, testing, deployment,
and assessment. We designed various automatically generated
reports to provide timely feedback to students, customers,
and TAs. The platform was incrementally constructed and
applied during the last four years. It has a total of over 500
students participating in over 130 project teams. Preliminary
results showed promising improvements in training students’
development habits and strengthening process quality control.

II. COURSE AND PROJECT DESIGN

The research is for the course of “Introduction to Software
Engineering”, which is a mandatory course for all under-
graduate students in the Department of Computer Science
and Technology in Tsinghua University. There are about 150
enrollments each semester, coming from 2" and 3" year
students. Students have background in programming languages

Authorized licensed use limited to: Tsinghua University. Downloaded on July 05,2020 at 11:12:47 UTC from IEEE Xplore. Restrictions apply.

Framark

sk

W veess
-7 [vepy
M oienge
[weChat mini program
[wokTTP
[Pyton H
[savascript React
[unity
[oescript
W | =1
Weoois
[cocos
[svring

(a) Diversified languages (b) Diversified frameworks

Fig. 1. An example of project diversity. The data are collected from the 40
projects of 2017 Fall semester.

and data structures, but limited experiences in complex sys-
tem design and development, projects management, and team
collaboration. For most of the students, the average size of the
largest software they have ever built is less than 1,000 LOC
(Lines of Code). SE course thus aims to train students from
following perspectives:

e End-to-End system architecture design for a relative
complicated problem.

o Team-based collaborative development with 3-5 students
in each team.

o Project planning, task decomposition and scheduling.

o Engineering habits training to follow good development
practices such as eliminating bad code smells [9], con-
tinuous version control, and coverage-based testing.

Many studies have illustrated the benefits of introducing
real industry projects to SE course education. But, as Hans
pointed out [10], considering the students’ background and
the limitations of course syllabus, it could be very hard to find
industry projects with proper size, complexity and workload.
To deal with this problem, the industry projects selected
were customized with following constraints: the team size (3-
5 students each team), time (10 weeks during a semester),
students’ background, and course syllabus.

A. Project Diversity

Diversity is a principle when we designed the course
projects. Software have been widely used in all aspects of in-
dustrial production and social life. Different types of software
require different SE methods, techniques, tools, and even the
social aspects of software development. As a fundamental and
compulsory course for students majoring in computer-related
specialities, we hope that students can experience modern de-
velopment technologies and best practices as much as possible
in the course-project environment. We thus selected various
topics and allowed students to choose different techniques
such as programming languages, Web frameworks, xUit tools,
third-party components/services, and open source packages.
Requirements were divided into mandatory, optional, and
creative parts. While mandatory and optional requirements
were predefined, creative requirements encourage students to
creatively design their own features. Taking the course of 2017
Fall semester as an example, Figure 1 shows the diversified
languages and frameworks used in the 40 projects.

Bulld and Test Analysi
Scoringand Ranking

Fig. 2. The layered architecture of the proposed framework, centered around
the repository of course data. The infrastructure services provide authorization
and runtime environment to support CI/CD. The data are collected throughout
the process for analysis and assessment.

B. Agile Process

The Agile principles have been successfully applied to in-
dustry software system constructions, which promote frequent
small and incremental deliveries, test-driven development, and
adaptability to changes. College courses are also reformed to
accommodate the paradigm shift in modern software industry
(1] [3] [11] [12].

In this research, we customized Agile Scrum process to
fit the process model into the semester time schedule and
course education requirements. The process was divided into
5 iterations with 1-2 weeks for each Scrum Sprint. At each
iteration, students met with customer representatives. They
reviewed the phased progress of delivered functionalities, and
agreed on the work plan of next iteration. During the iterative
and incremental development process, students were expected
to progressively improve SE skills with accumulated domain
knowledge and development experiences, such as requirements
acquisition and analysis, to make tradeoffs of functional and
non-functional requirements, to break down requirements into
manageable small tasks, to decompose system into decoupled
modules, and to react to changes in requirements and design.

In spite of project diversity, we defined the uniform format
of process and project management, including project planning
and task allocation, source code version control, unit testing,
Cloud-based software delivery and deployment. With tool sup-
port, the engineering practices were continuously re-enforced
throughout the project lifecycle.

III. THE DEVOPS FRAMEWORK

DevOps supports Agile practices with an infrastructure of
automatic tool chain to support continuous integration, testing,
quality control, and deployment [7].

A. The Platform

In this research, we built a DevOps platform based on Git-
Lab' code repository and continuous integration framework,
and hosted it on the Cloud platform. Figure 2 shows the
layered architecture of the proposed framework.

Uhttps://www.gitlab.com

Authorized licensed use limited to: Tsinghua University. Downloaded on July 05,2020 at 11:12:47 UTC from IEEE Xplore. Restrictions apply.

—* Issues
Project

——+ Commits
Process

L Branches
Metrics
— Source Code
Software __| _puild

Quality

L Test

Fig. 3. The metrics defined for evaluating project process and software
quality from different perspectives, which are calculated for individuals,
teams, projects, and repositories, at various frequencies and on demand.

o The repositories of course data, which include code,
project and process data, analysis and assessments.

o The authorization mechanism, which defines access priv-
ileges of various roles for each type of course data, such
as students, teaching assistants, customer representatives
and instructors.

o Runtime environment, which provides the infrastruc-
ture services to support CI/CD (Continuous Integra-
tion/Continuous Deployment) including version control,
deployment services and CI/CD configurations.

o Process analysis, which is exercised from three perspec-
tives including:

— Source code analysis, such as the code smells [9],
coding styles, vulnerabilities, and maintainability.

— Build and test results analysis, such as test coverage
and bug reports.

— Collaboration analysis, such as task allocation,
scheduling, team member contribution, frequency
and adequacy of commitments.

o Project assessment, which defines various metrics to
quantitatively evaluate each project, each team, and each
student.The final grade also takes into consideration the
offline assessment from teaching assistants and customer
representatives based on their interactions with project
teams.

B. Continuous Assessment

Quality is assessed with following principles:

o To evaluate not only team achievements, but also indi-
vidual contributions;

o To evaluate not only final deliveries, but also progress
performance; and

o To evaluate not only software development, but also
project management.

Various metrics are defined to provide a quantitative view
of project progress, status, and quality, as shown in Figure 3.
The data are collected from source code repository, version
control system, build and test reports, and code analysis tools.
They are calculated for teams as well as individuals. Tools are
built to automatically generate reports at various frequencies
or on demand.

We encourage students to use GitLab issue management for
project task management, and use issue statistics to monitor

project progress. Issues are considered as tasks annotated with
types, status, and priorities. Issue board is used to facilitate
task planning and organization, and to visualize progress by
tracing issues status. Statistics include the number of issues
opened at the beginning of each iteration, the percentage of
closed issues at the end of an iteration, the time duration
of each issue, the issues allocated to each team member,
and the fluctuations of issue statistics (e.g., total number and
distribution among team members) per iteration throughout the
lifecycle. Students are expected to gradually improve the skills
of balancing tasks among team members, realistic workload
estimations, and iterative deliveries on schedule.

Commits are used to supervise students’ version manage-
ment and collaboration skills. For students who are new
to collaborative development, we observed some common
problems of commits. For examples, beginners tend to push
large modifications and submit with insufficient comments.
In the course project, we designed the metrics to guide
students to form the habits of commit with small and frequent
modifications, and concrete and specific commit messages.
Code size, message length, and commit frequency are thus
taken as three indicators. Students will get warnings if the
system detects abnormal commits such as over-size, over-
simplified comment messages, over high/low frequency, and
SO on.

Branching is widely used in parallel development. There
exist various branching patterns in industry environment which
are largely dependent on software and project types, and
organization culture. However, in the course exercise for
beginners, we intend to train students the following practices
[13] [8]:

e Merge Your Own Code. One can only merge his or her
own code to enforce students taking responsibilities of
the code.

o Early Branching. Independent tasks are suggested to be
divided into different branches to parallelize the develop-
ment.

o« Merge Often. This is to encourage small incremental
deliveries in each iteration and train students’ capabilities
of resolving conflicts.

Every commit triggers the events of source code quality
control by integrating static analysis tools and testing frame-
works. Many tools are available to diagnose bad smells (any
characteristic in the source code of a program that possibly
indicates a deeper problem [9]) in the code such as coding
style, code comments, structure complexity, code clone, viola-
tion of safety rules, and security vulnerabilities. Integration the
reports from the tools can reinforce students the engineering
habits. In addition to static analysis, we also require students
to submit with testing scripts, including unit, functional, and
performance testing. By configuring the CI pipeline process,
the software are deployed in a container environment, test
scripts are automatic executed, bug and performance reports
are generated and collected for analysis.

Authorized licensed use limited to: Tsinghua University. Downloaded on July 05,2020 at 11:12:47 UTC from IEEE Xplore. Restrictions apply.

Composer
Docker and
l l Kubernetes
Services
OAuth Project Analyzer
Manager

Gitlab | —|
Repo

Deployed
Services

Fig. 4. The prototype system built on Cloud platform. Taking Kubernetes
micro-service architecture, the system is composed of multiple services
including project management, GitLab repository, Auth authorization, GitLab
CI, SonalQube code analysis, deployment, build, test, and analysis.

Cloud Storage Services

I'V. PROTOTYPE AND RESULTS

A prototype system was built on Cloud platform. Figure 4
shows the micro-service architecture of the prototype system.
The components in Figure 2 are wrapped and deployed as
Kubernetes?/docker?® containerized services.

In the 2017 Fall semester, there are 141 students enrolled in
the course, organized into 33 teams participating 11 projects.
Altogether 68 code repositories were created in GitLab, with
3076 issues and 14506 commits throughout the 64 days of
project development. Figure 5 shows the statistics of total
number of issues (Figure 5(a)) and commits (Figure 5(b))
by individual students. On average, over 70% students were
assigned at least 2 issues at each iteration, and committed at
least once per day; over 30% students committed at least twice
per day. Those exceptional inactive students got warnings
to keep up with teammates. Students with many tasks and
commits also got attentions from instructors to avoid overload
or improper operations.

Students’ Improvement. With frequent feedback and as-
sessment, we can see the improvement in students’ engineering
practices progressively. For example, Figure 6 shows, in a
period of 41 days in Fall 2016, the average and median
COMMIT gradually increases, and the standard deviation
gradually decreases. The results indicate that, as expected,
with the help of our platform, students became more and
more accustomed to and better at good engineering habits.
As a qualitative comparison, another SE course in the same
university, which did not use our platform but collected the
stats similar to COM M IT, did not see a similar trend clearly.

The system has been refactored and upgraded after each
semester course in the last four years, until this year we
built the tool chain covering full lifecycle process. The data
were gradually accumulated. Some data showed clear improve-
ments. More data will be collected and analyzed in the future.

Zhttps://kubernetes.io/
3https://www.docker.com

501 46
2
S 40
k- 34
5 30- 29
[
o
1520- 17
£ 1
5 10-

o- L]

[1,10] [11,20] [21,30] [31,40] [41,50] [51,63]
Number of issues (tasks)
(a) Issues by Individual

30-
7] 25
c 23
H 21
B 20-
2
» 16
e 14 13
°
.. 10 11
@
210 8
3
S
z D

o

[1,25] [26,50] [51.75] [76,100] [101,125] [126.150] [151,175] [176,200] [201.353]

Number of commits

(b) Commits by Individual

Fig. 5. Statistics of the number of issues and commits by individual students.

1
0.9
0.8
0.7
0.6
0.5

0.4 7‘

0.3

0.2 -\\-i_v/x
0.1

0
M2ON ISR R RN PRPEDR P DD DD DD

—average — stdev median

Fig. 6. COMMIT assessment for 2016 course. In consecutive 41 days, the
average and median increase while standard deviation decreases progressively.

V. CONCLUSION

We propose to enhance the openness and diversity of
project-based SE courses through a well-designed framework
of project process supervision and assessment. The paper
reported our research in recent 4 years to innovate course
design based on the Agile best practices, with DevOps tools
supporting the pipeline process of continuous integration and
quality control. The preliminary results showed promising
improvements in education and practical training, which we
believe are good reference for SE courses in general.

VI. ACKNOWLEDGMENT

The authors would like to thank all our project partners, the
instructors and students who support the course development.
Special thanks to Dr. Wolfgang Mauerer and his team for shar-
ing with us Codeface tools, their knowledge and experiences.

Authorized licensed use limited to: Tsinghua University. Downloaded on July 05,2020 at 11:12:47 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] P. A. Laplante, “An agile, graduate, software studio course,” [EEE
Transactions on Education, vol. 49, no. 4, Nov 2006. [Online].
Available: http://dx.doi.org/10.1109/TE.2006.879790

“Enriching traditional software engineering curricula with software

project management knowledge,” 2016. [Online]. Available:

http://dx.doi.org/10.1145/2889160.2889193

[3] R. Chatley and T. Field, “Lean learning - applying lean techniques
to improve software engineering education,” 2017 I[EEE/ACM
39th International Conference on Software Engineering: Software
Engineering Education and Training Track (ICSE-SEET), May 2017.
[Online]. Available: http://dx.doi.org/10.1109/ICSE-SEET.2017.5

[4] I. Liem, Y. Asnar, S. Akbar, A. Mulyanto, and Y. Widyani,
“Reshaping software engineering education towards 2020 engineers,”
in Proceedings of the IEEE CSEE&T 27th Conference on Software
Engineering Education and Training - CSEE&T '12. 1EEE Press, 2014.
[Online]. Available: https://ieeexplore.ieee.org/document/6816797/

[5S] M. R. Marques, “Monitoring: An intervention to improve team
results in software engineering education,” in Proceedings of the 47th
ACM Technical Symposium on Computing Science Education, ser.
SIGCSE ’16. New York, NY, USA: ACM, 2016. [Online]. Available:
http://doi.acm.org/10.1145/2839509.2851054

[6] L. Alperowitz, D. Dzvonyar, and B. Bruegge, “Metric-
s in agile project courses,” 2016. [Online]. Available:
http://dx.doi.org/10.1145/2889160.2889183

[7] J. Feliciano, M.-A. Storey, and A. Zagalsky, “Student experiences using
github in software engineering courses,” 2016. [Online]. Available:
http://dx.doi.org/10.1145/2889160.2889195

[8] R. B. Rayana, S. Killian, N. Trangez, and A. Calmettes, “Gitwaterflow:
a successful branching model and tooling, for achieving continuous
delivery with multiple version branches,” Proceedings of the 4th
International Workshop on Release Engineering - RELENG 2016,
2016. [Online]. Available: http://dx.doi.org/10.1145/2993274.2993277

[91 M. Fowler, Refactoring. Improving the Design of Existing Code.
Addison-Wesley, 1999, no. ISBN 0-201-48567-2.

[10] H. van Vliet, “Reflections on software engineering education,” in
Inverardi P, Jazayeri M. (eds) Software Engineering Education in the
Modern Age. ICSE 2005. Lecture Notes in Computer Science, vol
4309. 'I12. Springer, Berlin, Heidelberg, 2006. [Online]. Available:
https://doi.org/10.1007/11949374_1

[11] C. Anslow and F. Maurer, “An experience report at teaching a group
based agile software development project course,” in Proceedings of
the 46th ACM Technical Symposium on Computer Science Education,
ser. SIGCSE ’15. New York, NY, USA: ACM, 2015, pp. 500-505.
[Online]. Available: http://doi.acm.org/10.1145/2676723.2677284

[12] M. Paasivaara, J. Vanhanen, V. T. Heikkila, C. Lassenius, J. Itkonen, and
E. Laukkanen, “Do high and low performing student teams use scrum
differently in capstone projects?” 2017 IEEE/ACM 39th International
Conference on Software Engineering: Software Engineering Education
and Training Track (ICSE-SEET), May 2017. [Online]. Available:
http://dx.doi.org/10.1109/ICSE-SEET.2017.22

[13] B. Appleton, S. P. Berczuk, R. Cabrera, and R. Orenstein, “Streamed
lines: Branching patterns for parallel software development,” PLoP,
1998.

_
N

Authorized licensed use limited to: Tsinghua University. Downloaded on July 05,2020 at 11:12:47 UTC from IEEE Xplore. Restrictions apply.

