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ABSTRACT
Alert is a kind of key data source in monitoring system for online
service systems, which is used to record the anomalies in service
components and report to engineers. In general, the occurrence of
a service failure tends to be along with a large number of alerts,
which is called alert storm. However, alert storm brings great chal-
lenges to diagnose the failure, because it is time-consuming and
tedious for engineers to investigate such an overwhelming number
of alerts manually. To help understand alert storm in practice, we
conduct the first empirical study of alert storm based on large-scale
real-world alert data and gain some valuable insights. Based on the
findings obtained from the study, we propose a novel approach to
handling alert storm. Specifically, this approach includes alert storm
detection which aims to identify alert storm accurately, and alert
storm summary which aims to recommend a small set of representa-
tive alerts to engineers for failure diagnosis. Our experimental study
on real-world dataset demonstrates that our alert storm detection
can achieve high F1-score (larger than 0.9). Besides, our alert storm
summary can reduce the number of alerts that need to be examined
by more than 98% and discover representative alerts accurately. We
have successfully applied our approach to the service maintenance
of a large commercial bank (China EverBright Bank), and we also
share our success stories and lessons learned in industry.
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1 INTRODUCTION
Online service systems, such as online banking and search engine,
have become indispensable parts in our daily life. However, due to
the large scale and complexity of these systems, service failures are
inevitable in practice [12]. More specifically, service failures can be
caused by many factors, such as hardware outages, software bugs
and unexpected user load changes [25, 26]. The service failures
could cause slow response, unavailability, violation of service level
agreements (SLA), ultimately customer dissatisfaction, and huge
economic loss. For example, according to a study conducted on 63
data center organizations in the U.S, the average cost of downtime
has steadily increased from $505,502 in 2010 to $740,357 in 2016 1 [4].
Therefore, detecting failures accurately and diagnosing failures
quickly are quite vital for online service systems.

Currently, to ensure the service quality, engineers collect various
types of monitoring data, including Key Performance Indicators
(KPIs) [21, 23, 24], logs [9, 12], traces [26] and incidents [4, 5],
and then check these data by manually defining many rules. Once
these data violate the pre-defined rules (e.g., the latency of a request
exceeds a pre-defined threshold), alerts would be produced to notify
1https://www.ponemon.org/blog/2016-cost-of-data-center-outages.
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On-Call Engineers (OCEs) and then engineers would start diagnosis
for the system according to the alerts. In this way, a potential service
failure could be noticed and mitigated earlier.

However, in practice, the occurrence of a service failure tends to
be along with a large number of alerts (e.g., thousands of alerts pro-
duced every minute) rather than one or two alerts. This is because
an online service system consists of a large number of components,
each of which has a huge amount of monitoring data, and different
components tend to be affected by each other. We call this phe-
nomenon alert storm. Faced with such an overwhelming number
of alerts, it is very time-consuming and tedious for engineers to
manually examine each alert to identify and diagnose the real fail-
ure [10]. That is, the ideal goal of using alerts to help ensure the
service quality is good, but it suffers from the great challenge in
reality due to the existence of alert storm. Therefore, to facilitate
the assurance of the service quality, understanding and handling
alert storm are very essential.

To date, there is no work investigating alert storm. To help un-
derstand alert storm, we conducted the first empirical study to
investigate it. More specifically, we studied alert storm based on a
large amount of real-world alert data from a large commercial bank
(China EverBright Bank). Through this study, we obtained three
key findings: (1) Alert storm occurs frequently (about once a week)
and brings great trouble to engineers in practice, i.e., taking several
engineers about an hour to deal with alert storm on average. (2)
The current practice of identifying alert storm is just to set a fixed
threshold manually, which cannot fit the dynamic online service
environment and thus could lead to poor performance. (3) Some
alerts in alert storm are regular, which are irrelevant to the service
failure, and also many alerts relevant to the failure have certain
correlation, i.e., textual and topological correlation. To sum up, on
the one hand, this study further motivates the necessity of handling
alert storm; on the other hand, it provides some guidelines to help
us handle alert storm.

Inspired by the findings from our empirical study, in this paper
we novelly propose an approach to handling alert storm, which
first accurately identifies alert storm (alert storm detection) and
then effectively selects a few representative alerts from alert storm
recommending to engineers instead of analyzing all the alerts (alert
storm summary). More specifically, in the stage of alert storm de-
tection, instead of manually setting a fixed threshold, we formulate
the problem of alert storm detection as online change point detec-
tion and then adopt Extreme Value Theory (EVT) [6, 20] to detect
alert storm adaptively and accurately. In the stage of alert storm
summary, the goal is to select a set of alerts that are relevant to the
service failure and are able to reflect the failure from diverse aspects.
With this intuition, we first design an alert denoising method to
filter irrelevant alerts by learning alert patterns in normal states
of the system. Then, we discriminate alerts reflecting the service
failure from different aspects into different groups by clustering
based on their textual and topological correlation. Finally, we select
the most representative alert from each cluster to form a small set
of alerts for investigation instead of examining all the alerts in alert
storm, which can largely save engineers’ effort.

To evaluate the effectiveness of our proposed approach, we con-
ducted an experimental study based on large-scale real-world alert
data from a large commercial bank and collected 166 alert storm

cases based on historical failure tickets. The experimental results
demonstrated that our approach can detect alert storm more ac-
curately compared with the traditional threshold-based method,
achieving the F1-score of larger than 0.9. Also, our approach can re-
duce the number of alerts that engineers need to examine by larger
than 98% and accurately recommend representative alerts, which
indeed facilitates engineers to diagnose the service failures. In ad-
dition, we also evaluated the two main steps (i.e., alert denoising
and alert discrimination) in alert storm summary, demonstrating
that our methods perform better than baseline methods. In par-
ticular, we have successfully deployed our approach in the large
commercial bank and shared some experience from practice.

To sum up, this work has the following main contributions:
• We conducted the first empirical study to understand alert storm
based on real-world alert data from a large commercial bank,
delivering a series of valuable findings.

• We proposed the first approach to handling alert storm, consist-
ing of alert storm detection and alert storm summary. The former
aims to adaptively and accurately detect alert storm based on
Extreme Value Theory [6, 20], while the latter aims to select a
small set of representative alerts for investigation by proposing
an alert denoising method and an alert discrimination method.

• We conducted an experimental study to evaluate the effectiveness
of our approach based on real-world alert data, demonstrating the
great effectiveness of our approach for both alert storm detection
and alert storm summary.

2 AN EMPIRICAL STUDY ON ALERT STORM
To help understand alert storm, in this section we present the first
large-scale empirical study on alert storm. In this study, we address
the following research questions:
• RQ1: What is the distribution of the number of alerts?
• RQ2: What is the cost of handling alert storm?
• RQ3: How do engineers think about alert storm in industry?
• RQ4: What are the characteristics of alert storm by case analysis?
Our study is performed based on the large-scale real-world alert
data provided by a large commercial bank (China EverBright Bank),
and all the alerts are generated from 2016/07/01 to 2019/06/31 (three
years in total) through the unified alert management platform. In
total, the number of alerts is up to 3 millions. Also, this bank has
hundreds of services and thousands of servers, which support more
than one hundred million users.

2.1 Alert Distribution
To understand the alert distribution, we used the 3-year-long alert
data and counted the number of alerts per minute. Figure 1 presents
the number of occurrences under different scale of (#Alerts per
minute). From this figure, we observed in about 96.87% cases the
number of alerts per minute is no more than 10, and in about 99.83%
cases the number of alerts per minute is nomore than 100, which are
normal states of the online service system. However, in about 0.17%
cases, hundreds of to thousands of alerts occur in one minute. In
these cases, the number of alerts is so overwhelming that engineers
cannot properly handle them, which are so-called alert storm.

In practice, engineers adopt the fixed threshold strategy to iden-
tify alert storm, where the threshold is defined according to their
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Figure 1: The number of occurrences under different scale
of (#Alerts per minute)

experience. For example, in our collaborated bank, they define
the cases that #(alerts per minute) is larger than 500 as alert storm.
However, the pre-defined threshold may be out of operation in prac-
tice, since online service systems tend to be changed frequently,
for example, the number of alerts could be increased due to the
development of new services. At that time, the threshold should
be also adjusted by considering the specific changes. Besides, the
setting of the threshold varies among different engineers due to
their different experience and also it is hard to determine whether
the setting is reasonable enough in practice [10]. Therefore, that
indicates the necessity of designing a method to adaptively and
accurately identify alert storm.

2.2 Cost of Handling Alert Storm
We investigated the cost of handling alert storm in terms of the
following two measurements: 1) the time cost, and 2) the number of
engineers involved. More specifically, we collected 166 alert storm
cases from the 3-year-long alert data according to historical failure
tickets. From the detailed records in tickets, we get the time cost
and the number of involved engineers of each case, whose results
are shown in Figure 2. From this figure, we can observe it takes
about 55 minutes and involves 6 engineers to handle an alert storm
case on average. In particular, in some extreme cases, dealing with
an alert storm case costs about two hours and involves more than 10
engineers, which occupies much effort and many resources, leading
to negative influence on system development and maintenance.
Therefore, an effective approach to assisting engineers to handle
alert storm is in an urgent demand.
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Figure 2: The time spent on handling alert storm and the
number of involved engineers

2.3 Survey on Alert Storm
To investigate the comments of engineers on alert storm in industry,
we designed a questionnaire including a few questions, and invited
some engineers from different service teams in the collaborated
bank to take part in the survey. More specifically, we sent out 50
questionnaires in total and received 44 completed questionnaires.

By analyzing our collected questionnaires, we found that alert
storm occurs frequently in industry, and the majority of engineers
(86.3%) thought the frequency of alert storm is about once a week.

Besides, nearly 88.6% of the 44 respondents argued the fixed thresh-
old for alert storm detection is not very accurate and adaptive with
some false positives. Therefore, an effective alert storm detection
method is indeed desired. All the engineers involved in this sur-
vey agreed that alert storm is a troubling problem. The disturbing
reasons included the number of alerts is too large to identify the
problem manually (77.3%), messages and emails explosion (68.2%),
and bad impact on normal work (72.7%). Almost everyone (97.7%)
agreed it is very meaningful to reduce the number of alerts in alert
storm, and about 70.5% of the engineers thought the maximum ac-
ceptable number of alerts per minute is 30. Therefore, the problem
of alert storm is indeed a headache for engineers, and extracting a
small set of representative alerts as the alert-storm summary seems
to be a promising direction to relieve this problem.

2.4 Case Analysis
To understand the characteristics of alert storm, we manually an-
alyzed some cases in depth and gained a series of insights. Here,
we chose one typical case as the representative to present the char-
acteristics of alert storm, which are also hold in the other cases.
Figure 3(a) shows the timeline of this case. It was caused by a data-
base server down at 19:40 and the alert storm occurred at 19:42 (the
number of alerts at this minute is 459). However, this alert storm
was not detected by the fixed threshold method (lower than the
threshold 500). Finally, the failure was discovered by user complaint
at 20:05 and engineers took 48 minutes to mitigate the failure. As
shown in Figure 3(b), due to database disconnection, the service
(NBANK) cannot receive data, which leads to a series of alerts gener-
ated by other components in NBANK. Subsequently, other services
calling it also generated alerts. All the components generating alerts
due to this failure labeled in blue color and the alert propagation
relationships are labeled in blue line in Figure 3(b).

Database
sever down

Alert storm
19:40 19:42 20:05

Failure
discovery

Service
recovery

20:53

(a) Timeline of the alert storm case
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Figure 3: A typical alert storm case
We sampled some typical alerts from this case shown in Table 1.

Based on our analyzed cases, we found that there are many re-
dundant alerts in alert storm. In general, redundant alerts can be
divided into the following two categories:

Regular alerts. Some alerts frequently occur no matter whether
there is a failure or not. For example, as shown in Figure 4(a), peri-
odic alerts regularly occur with a fixed time interval. Figure 4(b)
further uses an intuitive example to explain the difference between
the alerts relevant to the failure (Alert a) and regular alerts (Alert
b). That is, the occurrence of regular alerts is not affected by alert
storm. In Table 1, the regular alerts are labeled in gray color. There-
fore, regular alerts are not helpful to failure diagnosis actually and
sometimes even mislead engineers, so we should filter them out.
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Table 1: An example to present some typical alerts in the alert storm case in Figure 3

No Time Content Service Server Type Severity

1 2018/4/7 19:40 Node Ping checks and alarms. Packet loss 100%. NBANK P12 Network 3
2 2018/4/7 19:42 The number of Oracle sessions is high. NBANK P12 Database 3
3 2018/4/7 19:42 CPU usage: Can’t get necessary data. NBANK P12 OS 1
4 2018/4/7 19:42 Can’t get Weblogic queue (NBANKAPP). Timeout. NBANK P4 Middleware 1
5 2018/4/7 19:42 CPU usage is 72%. (Threshold is 70%). EPAY P1 OS 3
6 2018/4/7 19:42 Batch automation agent port. Connection refused. CEMB P3 Application 1
7 2018/4/7 19:42 Weblogic port alarms. Connection refused. HKNABNK P6 Middleware 3
8 2018/4/7 19:42 Weblogic JDBC pool is not running. CEMB: MbankMgmt. CEMB P3 Middleware 2
9 2018/4/7 19:42 Weblogic JDBC pool is not running. CEMB: MClientServer. CEMB P7 Middleware 2
10 2018/4/7 19:42 Standby database recover-mode is MANAGED. SCFP P13 Database 3
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Figure 4: Illustration of the regular alerts

Correlated alerts. As shown in Figure 3(b), the database server
down can lead to many related alerts, and thus there are many
correlated alerts in alert storm. In the study, we investigated the
correlation between alerts from two aspects, i.e., text and topology.
Textual correlation means that the textual contents of two alerts
are similar, e.g., alerts 8 and 9 in Table 1. In terms of topological
correlation, Figure 3(b) clearly presents the propagation of alerts
in topology. More specifically, topological correlation includes two
aspects: software (e.g., NBANK, CEMB and HKNBANK) and hard-
ware (e.g., a switch failure may cause the related servers to generate
alerts). These correlated alerts tend to reflect the failure from similar
aspects, and thus grouping them can facilitate engineers’ investiga-
tion to some degree.

In summary, through the empirical study including the analyzed
typical alert storm cases, we obtain the following three key findings:
• Alert storm frequently occurs in development and maintenance
of online service systems, and it takes several engineers about
one hour on average to handle alert storm.

• The fixed threshold method used for alert storm detection is far
from satisfying in practice.

• Some alerts in alert storm are irrelevant to the failure, and also
many alerts relevant to the failure have certain correlation, i.e.,
textual and topological correlation.
Therefore, it is necessary to explore an effective approach to

handling alert storm, including detecting alert storm accurately
and adaptively, filtering out regular alerts, and grouping correlated
alerts, in order to facilitate failure diagnosis from alert storm.

3 APPROACH
3.1 Overview
Inspired by the findings from our empirical study, we propose
the first approach to handling alert storm and the overview of
our approach is presented in Figure 5. Our approach contains
two components, alert storm detection and alert storm summary.
Specifically, for online alert stream, we leverages Extremely Value

Theory (EVT) [20] to detect alert storm adaptively and accurately.
Then, if an alert storm case is discovered, the second component
will be triggered to assist engineers to identify the problem. Alert
storm summary includes three steps: learning-based alert denois-
ing, clustering-based alert discrimination, and representative alert
selection. The overview of alert storm summary is depicted in Fig-
ure 6. In detail, alert denoising aims to filter out irrelevant alerts to
the failure. Alert discrimination aims to divide the alerts into dif-
ferent groups via clustering based on their textual and topological
correlation so as to reflect the failure from different aspects. Rep-
resentative alert selection aims to extract the most representative
alert from each cluster to recommend to engineers [12]. Through
the above three steps, we can acquire a small set of representative
alerts that are relevant to the failure and reflect the failure from
diverse aspects, so that engineers can spend less time handling the
alert storm instead of analyzing all the alerts.

3.2 Alert Storm Detection
In real world, the fixed threshold method (e.g., #alerts/minute > 500)
is commonly used to identify alert storm. However, the designed
threshold rules cannot accommodate to dynamic service systems.
For example, new service deployment will lead to the increase of
the number of alerts. Besides, different engineers have their own
preference when setting threshold [10]. Therefore, to deal with alert
storm better, we first need an adaptive and accurate alert storm
detection method.

Technically, alert storm detection can be formulated as the on-
line change point (spike) detection problem. Extreme Value Theory
(EVT) is a popular statistical method dealing with the extreme devi-
ations from the median of probability distributions, which has been
applied in predicting the probability distribution of extreme floods,
tornado outbreaks, and many other unusual events [6]. Motivated
by EVT used for stream anomaly detection [20], we propose to
apply EVT to identify alert storm. The goal of EVT is to find the law
of extreme values, which are usually placed at the tails of a prob-
ability distribution. EVT does not require to hand-set thresholds
and it makes no assumption on data distribution. Following [20],
we adopt Peaks-Over-Threshold (POT) based on generalized Pareto
distribution (GPD) to fit the tail of the distribution, and the param-
eters of GPD can be estimated by Maximum Likelihood Estimation
(MLE). Due to the limit of space, we omit more details about EVT,
which can be found in [6, 20].

In our approach, we use the normal number of alerts per minute
in history to fit the POT model and apply the model to detect
extreme value (alert storm) online. Most importantly, EVT has the
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ability to adapt to the evolution of the number of alerts and adjust
the threshold dynamically, so as to tackle the highly dynamic online
service systems. Figure 7 presents an alert storm case which can
successfully detected by EVT. The #Alerts/minute exceeding the
EVT-threshold (labeled in orange) are identified as alert storm,
which are denoted in red points.
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Figure 7: Illustration of alert storm detection using EVT

3.3 Alert Storm Summary
Once an alert storm case is detected, engineers will take actions to
handle the alert storm and diagnose the problem. However, faced
with such an overwhelming number of alerts, it is time-consuming
and tedious for engineers to manually examine each alert for failure
diagnosis. To tackle this challenge, we propose an alert storm sum-
mary method to extract a small set of representative alerts from
the numerous alerts to assist engineers in handling alert storm.
The method shown in Figure 6 includes three steps, i.e., learning-
based alert denoising, clustering-based alert discrimination, and
representative alert selection.

3.3.1 Alert Preprocessing. Before introducing detailed alert sum-
mary approach, we first need to preprocess the alert data for further
analysis. Suppose we detect a case of alert storm at time t , we collect
the alerts occurred during the time range [t −w : t] as our input
data and w is set as 5 minutes in our experiments, because there
may be a time gap between the root cause alert and the alert storm
due to the delay of alert generation. Inspired by the preprocessing
techniques used in existing work [11], we adopt the following two
steps to preprocess alert data.

Token Normalization. As presented earlier, the alert content
is semi-structured and has some variables such as IP address and
port number. For the purpose of further analysis, we are only inter-
ested in the textual structural information in alerts [11]. Therefore,
we replace the variables by another common strings (e.g., replace

various IP addresses with “ipaddr”). Token normalization signifi-
cantly reduces the alert space and eliminates a lot of noises in the
data. It is now much easier to detect structural patterns within the
normalized alerts and conduct the following algorithm.

Stop-words removal. Formally, the alert content can be re-
garded as a bag of words (tokens). Terms like “the”, “in” and “is”
also known as stop-words do not carry much specific information
in the context of the alert content. All stop-words are removed from
the set of tokens based on a list of known stop-words.

3.3.2 Learning-based Alert Denoising. As presented in Section 2.4,
there are some irrelevant alerts to the failure in alert storm. An intu-
itive denoising solution is to filter the alerts whose numbers do not
perform a change point (spike) when the storm occurs (Figure 4(b)).
However, for a large variety of alerts, monitoring the number of
each alert and detecting spikes suffer from extremely high cost,
which leads to its unavailability in practice. In our approach, we
novelly formulate the problem of alert denoising as anomaly de-
tection. We regard the regular alerts happening in normal states
of the system as training set and the alerts happening during the
alert storm as testing set. In this way, regular alerts are normal
samples and the goal is to identify the anomalous alerts (different
from regular alerts) in testing set.

A rich body of literature has been devoted to anomaly detection,
e.g., One-Class SVM [1], Local Outlier Factor [2] and clustering-
based methods [3]. However, these algorithms suffer from either
high computational cost or poor performance. Isolation Forest (iFor-
est) is a popular anomaly detection algorithm and has shown good
performance with a linear time complexity [13], and thus we lever-
age iForest to detect anomalous alerts in our scenario.

Before applying iForest, we first extract several features from
alert data. Based on our observations, anomalous alerts usually have
some attributes which are very different from those of normal alerts.
For example, an alert usually happens at night, but it happens in the
morning. As shown in Table 1, the alert data has multi-attributes
and we mainly focus on several important and indicative attributes.
Combining with domain knowledge, eight features are extracted in
our approach, including normalized alert content, server, service,
type, alert time (hour, day of week, weekend or not) and frequency.

IForest [13] is a popular outlier detection algorithm and has been
applied in various anomaly detection tasks. Technical details about
iForest can be found in the existingwork [13]. Given several features
extracted from the above step, iForest can output an anomaly score
for each alert. The larger the score is, the more likely the alert is
abnormal. Then, we decide the ratio of anomalous alerts, i.e., how
many alerts need to be retained and how many alerts need to be
filtered. Specifically, we choose the number of anomalies (nanomaly)
based on the number of alerts in the training set (normal states),
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which can be computed as nanomaly = ntest −
time spantest
time spantrain

× ntrain.
In this way, the alerts with top-nanomaly largest anomaly scores are
retained and other alerts are filtered.

3.3.3 Clustering-based Alert Discrimination. After alert denoising,
the majority of remaining alerts are related to the failure. As pre-
sented in Section 2.4, complex correlation exists in alert storm,
including textual and topological correlation. To ensure the vari-
ety of our recommended alerts and reflect the failure from diverse
aspects, we leverage the clustering technique to gather correlated
alerts together, so that engineers only need to focus on a small set
of alerts from different clusters, instead of all alerts. Alert clustering
in our approach contains the following two steps.

Similarity Matrix Construction. Similarity measurement is a
key component in clustering task. Given N alerts that need to be
clustered, we create an N ×N distance matrix to record the distance
between two alerts. Given that there exist textual correlation and
topological correlation in alert storm, we calculate the similarity
from these two aspects, text and topology.

1) Textual similarity. Textual similarity is designed for detailed
alert content. Here, we adopt Jaccard distance as metric to measure
the textual similarity between two alerts [11]. The content of each
alert (after data preprocessing) can be represented as a bag of words.
Then, Jaccard distance between alerts a and b is defined as below:

Jaccard(a,b) = 1 −
|bow(a) ∩ bow(b)|

|bow(a) ∪ bow(b)|
(1)

where bow(a) means the bag of words of alert a. Jaccard distance is
a number between 0 and 1, and is not sensitive to the position of
each word in alert content.

2) Topological similarity. There are two kinds of topologies in
real-world online service systems, i.e., software topology (service)
and hardware topology (server). In practice, the topological rela-
tionships among all services and all servers can be represented
a directed graph respectively, which can be usually obtained by
Configuration Management Database (CMDB). The topological dis-
tance of two services/servers can be computed by the shortest path
length between two nodes on the service/server topological graph.
Thus the topological distance of two alerts can be computed as:

topological(a,b) = pathservice(a,b) + pathserver(a,b) (2)

Finally, by normalizing the distance obtained by the above two
steps to the interval of [0, 1], we can compute the final similarity
between two alerts (a and b) as follows:

similarity(a,b) = α × textual(a,b)+ (1−α) × topological(a,b) (3)
The value of distance weightα is set to 0.6 based on the performance
on the small part of our dataset, which will be discussed in detail
in Section 4.4.2.

Clustering. Given the distance matrix that summarizes how
the alerts relate to each other, various clustering methods can be
applied, but different methods have different assumptions and ad-
vantages. Popular clustering algorithms contain partitional meth-
ods like k-means [14], density-based methods like DBSCAN [8],
and hierarchical methods [16]. Based on experimental results, we
choose DBSCAN due to the following reasons. First, we have no
prior knowledge about the number of clusters (k), while DBSCAN
can infer k based on the data. Second, it can discover clusters of

arbitrary shape and can work with most distance measures [16].
Beside, it does not need to iteratively compute an explicit “centroid”
and re-cluster at every iteration [7, 24]. DBSCAN requires two pa-
rameters: ϵ which is the density threshold, and minPts which is the
number of minimum points to form a cluster. DBSCAN finds dense
regions separated by low-density areas to form clusters. A cluster
is expanded if its neighbors are dense, i.e., others that are similar
to its core will be absorbed into it. We set minPts equals to 2 and
set the value of ϵ using elbow method as suggested in [8].

3.3.4 Representative Alert Selection. After clustering-based alert
discrimination, we can get k clusters and alerts in the same cluster
are closely correlated to each other. Therefore, for each cluster,
engineers only need to examine one representative alert that can
capture the overall pattern of this cluster. In our approach, we
select the representative alert by choosing the centroid of each
cluster [12]. The centroid of a cluster is defined as the object which
has theminimal average distance to other objects in the same cluster
and can be calculated using the following equation:

centroid = argmin
i ∈cluster

1
n

∑n

j=1
similarity(i, j) (4)

where n is the number of alerts in this cluster and j is the alert in
this cluster. Finally, the selected representative alerts from each
cluster are recommended to engineers for manual examination to
diagnose failure. If engineers are interested in an alert, they can
also examine other alerts in this cluster in depth.

4 EVALUATION
To evaluate the effectiveness of our proposed approach, we con-
ducted an experimental study aiming to address the following re-
search questions:
• RQ5: How accurate is the alert storm detection method?
• RQ6: How effective is the alert storm summarymethod for failure
diagnosis?

• RQ7: How effective are components in alert storm summary?
• RQ8: How efficient is our alert storm summary method?

4.1 Dataset
As stated in Section 2, we obtained 3-year-long real-world alert
data from a large commercial bank as our dataset, and collected
166 cases of alert storm as our experimental subjects from the
historical failure tickets. The minimum and maximum number of
alerts of these alert storm cases are 410 and 8739, respectively.
Due to the long time span of our collected alerts, the patterns and
characteristics of alerts may change largely over time. Therefore,
we divided the 3-year-long data into three one-year-long datasets,
which is also helpful to evaluate the generality of our approach
to some degree. Table 2 shows the details of our datasets. We can
observe the number of alerts increases over the years due to the
deployment of some new services.

Table 2: Details of the experimental datasets
Datasets Time span #Alerts #Storm cases

A 2016/07/01 ∼ 2017/06/30 907851 49
B 2017/07/01 ∼ 2018/06/30 1073491 56
C 2018/07/01 ∼ 2019/06/30 1256313 61
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4.2 Accuracy of Alert Storm Detection
The widely-used alert storm detection method in practice is based
on a fixed threshold determined by domain experts. In our approach,
we propose a novel method to identify alert storm accurately and
adaptively by adopting EVT, a classical statistical theory. To eval-
uate the effectiveness of our EVT-based method, we compared
the detection precision, recall and F1-score between our EVT-based
method and the existing fixed threshold method (i.e., #alerts/minute
> 500). Notice that we regard the continuous points exceeding the
threshold as an alert storm case as shown in Figure 7. We obtained
the ground truth of alert storm from historical failure tickets.

The results are shown in Table 3, and we found all the metrics
achieved by our EVT-based method are larger than 0.9, demonstrat-
ing the great effectiveness of our alert storm detection method. Also,
our EVT-based method outperforms the existing fixed threshold
method in terms of all the metrics. Furthermore, according to the
results from dataset A to dataset C, the fixed threshold method
performs worse with the time increasing. The reason is that the
system scale becomes larger (including deploying some new ser-
vices), which causes many emerging alerts (shown in Table 2). The
fixed threshold method cannot fit such a dynamic scenario, lead-
ing to poor performance. Besides, the fixed threshold method does
not consider the context and is easy to generate false positives,
which bring meaningless trouble to engineers. However, our EVT-
based method can achieve stably good effectiveness on all the three
datasets, showing the adaptability of our method. In summary, our
alert storm detection method is indeed effective and adaptive.

Table 3: Performance comparison between our approach
and fixed threshold method for detecting alert storm

Datasets A B C
Methods P R F1 P R F1 P R F1
EVT 0.92 0.96 0.94 0.90 0.97 0.93 0.95 0.96 0.95

Threshold 0.82 0.99 0.90 0.75 0.92 0.83 0.59 0.91 0.72

4.3 Effectiveness of Alert Storm Summary
We evaluated the effectiveness of our alert storm summary method
from the following two aspects:

• How much effort alert storm summary can reduce?
• How accurate are the alerts recommended by alert storm
summary in identifying failures?

4.3.1 Effort Reduction. Asmentioned earlier, a service failure tends
to be along with the alert storm, so that engineers need to examine
a large number of alerts for efficient troubleshooting. Here, we used
nstorm−nexamine

nstorm
as the metric to measure the effort reduction, where

nstorm is the number of input alerts which occurred during the storm
and a few minutes before the storm, and nexamine is the number
of alerts that need to be examined by engineers. As discussed in
Section 1, it is time-consuming and tedious for engineers to examine
each alert one by one in face of the alert storm. In practice, engineers
may adopt some tricks to examine the numerous alerts. For example,
engineers tend to first examine alerts with high severities (i.e., 1-
critical in our datasets).

To demonstrate the ability of alert storm summary to reduce
engineers’ effort, we compared it with two baselines, i.e., severity

trick and raw manual checking, whose results are shown in Table 4.
“Denoising” and “Summary” denote the effort reduction achieved by
alert denoising and the whole process of our alert storm summary,
respectively. We observed that with our alert storm summary, the
number of alerts need to be examined is reduced by more than 98%
and engineers only need to investigate about 2% alerts to capture
the detailed information about this alert storm from diverse aspects.
In terms of raw manual checking without any tricks, engineers
have to examine each alert one by one to identify the failure, which
is tremendously labor intensive, slow and unreliable. Besides, criti-
cal alerts (severity=1) in our datasets account for more than 10%,
indicating that the common-used severity trick used to handle alert
storm only saves less than 90% effort, which is much smaller than
that by our method (larger than 98%).

In summary, our alert storm summary is indeed effective in
reducing the number of alerts need to be investigated, so as to save
much effort for engineers.
Table 4: Comparison of effort reduction between our alert
summary approach and compared methods

Datasets Raw Severity Denoising Summary
A 0% 88.7% 6.9% 98.8%
B 0% 85.6% 5.1% 98.2%
C 0% 84.1% 8.4% 99.1%

4.3.2 Accuracy. We further measured the accuracy of alert storm
summary for failure diagnosis. Following the accuracy evaluation
of log-based problem identification in [12], we counted the number
of true positives (the number of examined alerts that are helpful to
troubleshooting) and false positives (the number of examined alerts
that are unhelpful to troubleshooting and engineers do not need
to examine), which are acquired via manual analysis by engineers.
We adopt the value of precision as evaluation metric which can be
computed with T P

T P+F P .
Due to the limited number of available engineers and the lim-

ited time, they helped us identify which alerts are helpful to trou-
bleshooting in dataset C only. It is reasonable since dataset C con-
tains the most recent alerts and thus they can accurately identify
them with the largest confidence. Table 5 shows the average preci-
sion results on dataset C achieved by two baselines, our approach,
and our approach without the component of alert denoising (de-
noted as W/o denoising in this table). In general, our approach
achieves much higher precision than the two baselines. Also, we
observed that it is essential to adopt our alert denoising method,
which can filter some irrelevant alerts to the failure so that the
precision can be improved. However, our denoising method can-
not remove all irrelevant alerts accurately, and there may exist
some correlation between alerts to some degree. Therefore, there
are still a small part of irrelevant and correlated alerts in the final
recommended alerts, resulting in not very high precision of our
approach. About the two compared methods, raw manual checking
without any tricks needs to examine each alert, but there are many
irrelevant and correlated alerts (Section 2.4) and engineers waste
much effort on meaningless work, which leads to low precision.
In terms of the severity trick, the severities of alerts are decided
by manual rules without considering the correlation among alerts,
which are also inaccurate to some degree.
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In summary, our alert storm summary approach achieves the best
precision and can minimize the meaningless effort for engineers.
Table 5: The precision comparison between our approach
and compared methods

Method Raw Severity W/o denoising Summary
Precision 0.08 0.42 0.64 0.75

Finally, to further demonstrate the effectiveness of alert storm
summary for troubleshooting, we take the alert storm case intro-
duced in Section 2.4 (occurred at 2018/4/7 19:42) as example. Using
traditional manual checking, engineers needed to examine more
than 495 alerts (occurred during 19:37 ∼ 19:42) and spend 48 min-
utes mitigating the failure. However, using our alert storm summary
approach, 11 representative alerts are recommended as shown in
Figure 8. Due to the limit of space, we only present the alert con-
tent and ignore other attributes. The alerts labeled in blue color
imply the root cause (database server down) to some degree. In this
way, engineers only need to investigate several valuable alerts and
spend several minutes mitigating the failure, instead of examining
hundreds of redundant alerts. This comparison demonstrates that
our alert storm summary is indeed effective for failure diagnosis.

0. Oracle database connection detection alerts, TNS: no listener program
1. Weblogic JDBC pool status is not running. The alert item is NBANK: EntServer
2. Syslog alert, lan24 on system SDII11P1 has gone down due to lost connection with the link partner
3. Memory check timeout. Description/Type table : No response from remote host ipaddr
4. CPU usage: Can't get necessary data
5. Disk load current value: 100.00% exceeding configured threshold 95.00%
6. Oracle log alerts. ORA-01034: Oracle not available
7. Database transfer status is abnormal. Alert item is NBANKDB_STB
8. Node ping alert. Host check timed out after 10 seconds
9. Source ipaddr ping destination ipaddr, response timeout. Average RTT is 106ms, threshold is 100ms
10. System VCS cluster alert. SDII13P1_vcs has faulted in cluster CL_NBANK_DBSRAC_SHD

Figure 8: The summary result of the alert storm case intro-
duced in Figure 3

4.4 Effectiveness of Components in Alert
Storm Summary

We further investigated the performance of two key components
in alert storm summary, i.e., learning-based alert denoising and
clustering-based alert discrimination. Here, we also conducted the
experiment only on dataset C as explained above.

4.4.1 Learning-based Alert Denoising. The goal of alert denoising
is to filter some alerts that are irrelevant to the alert storm. As
discussed in Section 3.3.2, we formulate the alert denoising problem
as anomaly detection. Naturally, we adopt precision and recall as
metrics, which can be computed as #T P

nanomaly
and #T P

#truth , respectively,
where #TP is number of the detected anomalous alerts that are true
anomalies, nanomaly is the number of anomalous alerts given by the
algorithm, which has been introduced in Section 3.3.2, and #truth
is the number of true anomalous alerts labeled by engineers.

To demonstrate the effectiveness of the alert denoising, we re-
placed iForest in our approach with another two popular outlier
detection algorithms, i.e., One-class SVM (OCSVM) [1] and Local
Outlier Factor (LOF) [2]. Figure 9(a) presents the precision, recall,
and F1-score comparison between iForest and the two baselines.
We found that our approach identifies anomalous alerts that related
to alert storm more accurately than OCSVM and LOF, achieving
the F1-score larger than 0.9. Besides, we also took the efficiency

into consideration. Based on our observations, for 1000 alerts, iFor-
est, OCSVM and LOF required 3.1 seconds, 10.4 minutes and 32.9
seconds running time, respectively. Therefore, iForest with linear
time complexity requires negligible running time, while OCSVM
suffers from extremely high computational complexity, which leads
to unavailability in practice.

Precision Recall F1-score
Metric
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Figure 9: The effectiveness of two key components in alert
storm summary

4.4.2 Clustering-based Alert Discrimination. To evaluate the perfor-
mance of alert clustering, we adopted two popular clustering met-
rics, i.e., accuracy and Normalized Mutual Information (NMI) [15].
Accuracy discovers the one-to-one relationship between resulting
clusters and true classes, and measures the extent to which each
cluster contains alerts from the corresponding class. NMI is an
information-theoretic measure based on the mutual information
of the true classes and the resulting cluster, normalized using the
entropy of each. Note that ACC and NMI lie in the range of 0 to 1,
where one is the perfect clustering result and zero is the worst.

Clustering performance.Alert clustering is a vital component
in our approach, but it is not first proposed in this paper. Lin et al.
proposed an alert clustering approach (KDD-Cluster) using Jaccard
distance and graph-cut clustering algorithm in KDD’14. However,
the goal is to extract information automatically and gain some
insights from a novel visualization of the clustering results, not
designing for handling alert storm [11]. Figure 9(b) shows the av-
erage accuracy and NMI comparison between our approach and
KDD-Cluster. We observed that our approach performs better than
KDD-Cluster, since the latter only considers textual similarity be-
tween alerts and graph-cut performs not very well in our scenario.

Furthermore, to demonstrate the effectiveness of our used cluster-
ing algorithm DBSCAN [8], we adopted another two popular clus-
tering algorithms, i.e., k-means [14] and hierarchy clustering [16],
to compare with DBSCAN. Please note that we chose the number
of clusters (k) for these two baselines based on Silhouette Anal-
ysis [18]. The parameters of DBSCAN (ϵ and minPts) have been
introduced in Section 3.3.3. The accuracy and NMI comparison are
presented in Figure 9(b), which shows that DBSCAN adopted in
our approach is indeed more effective compared with the other two
clustering algorithms. Besides, DBSCAN has the ability to discover
the best k automatically. However, k-means and some other algo-
rithms need to run many times under different k , and then choose
the best k , which suffer from high computational cost.

The impact of distance weight.As introduced in Section 3.3.3,
alert clustering in our approach has a parameter, i.e., distanceweight
(α in Eq.(3)). To study the impact of the distance weight on cluster-
ing performance, we varied the value of α from 0 to 1 and Figure 10
shows the accuracy and NMI values achieved by different α . Clearly,
the alert clustering method achieves the best performance when the
value of α is equal to 0.6. In our study, we chose the best α based on
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a small sample of dataset. Besides, the results also demonstrate that
both textual distance and topological distance play key roles in our
approach. Both only using textual distance (α = 1) and only using
topological distance (α = 0) perform worse than the combination
of two types of distance.
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Figure 10: The impact of dis-
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Figure 11: The efficiency of
alert summary approach

4.5 Efficiency of Alert Storm Summary
Considering our alert storm summary approach is used to han-
dle online alert storm and assist troubleshooting in practice, short
response time is desired. Otherwise, service quality and user ex-
perience will be destroyed if engineers wait for a long time to get
the summary results. Figure 11 presents the running time on some
alert storm cases in our experimental datasets. We implemented our
approach with Python and ran the program on a Dell PowerEdge
R420 server with an Intel Xeon E5-2420 CPU and a 24GB memory.
We found that when the number of alerts in storm is not very large
(e.g., less than 1000), the response time of alert storm summary is
very short (less than 7 seconds). As the number of alerts increases,
the response time also increases, but still in an acceptable range.
The total computational complexity of our approach is aboutO(N 2).
In real deployment, we can further reduce the response time by
multi-process and some other optimization techniques.

5 DISCUSSION
5.1 Success Story
Our proposed approach including alert storm detection and alert
storm summary has been successfully applied in a large commercial
bank, which is used to assist engineers to handle alert storm intelli-
gently. Before deploying our approach, engineers were insensitive
to alert storm and tired of so many alerts. The majority of engineers
tended to ignore alert storm until the failure was exposed by user
complaint. In this way, failures cannot be discovered and mitigated
in time, which may lead to unsatisfactory user experience and huge
economic loss. After integrating our approach, engineers are able
to detect potential failures more accurately and further shorten the
time to diagnose the failure. Taking a recent case as an example, a
disk failure incurred a case of alert storm (722 alerts in total), which
can be detected by EVT-based detection method successfully. Then
equipped with the alert storm summary, engineers only examined
31 alerts and took about eight minutes to locate the root cause
and mitigate the failure. Therefore, based on the feedbacks from
many service teams, our approach indeed enables more efficient
failure discovery and failure diagnosis in practice. Besides, they
appreciated that our approach can reduce the key metric “Mean
Time to Repair” (MTTR) significantly.

5.2 Lessons Learned
Better alert rules. In our study, we found that there exist lots of
meaningless and redundant alerts caused by unreasonable alert
rules. In real world, engineers spend much time setting alert rules
for a large variety of monitoring data. However, due to system com-
plexity, it is hard to set perfect rules, and unreasonable rules often
lead to lots of false positives and false negatives in alert generation.
These meaningless alerts would bring trouble to engineers and
waste much time. Besides, different engineers may write different
rules based on their personal maintenance experience and intu-
itions. Therefore, how to set reasonable alert rules with minimum
manual efforts is a big challenge in practice.

More intelligent alert management system. Existing alert
management systems in practive only contain some simple tech-
niques to process alert data, such as alert de-duplication and alert
assignment. However, it is far from satisfying in reality. Exploring
some novel algorithms and deploying in alert management system
are indeed desired. For example, how to design an accurate and
adaptive alert ranking strategy (instead of rule-based) to accom-
modate to dynamic online service system, how to assign various
alerts to corresponding responsible engineers automatically and
accurately, how to predict failures in advance based on historical
alerts, and how to reduce the number of alert in advance to avoid
false alert storm. These issues can assist engineers handling alerts
more intelligently and can be our future work.

5.3 Threats to Validity
We have identified the following threats to validity in our study:

Noises in labeling: Based on historical failure tickets, the ex-
perienced engineers manually labeled the ground truth carefully
for our evaluation. Noises (false positives/negatives) may be intro-
duced during the manual labeling process. However, given that the
engineers are experienced experts with rich domain knowledge
and the ground truth is provided based on historical tickets, we are
confident that the amount of noises in labeling is small (if it exists).

Subject selection bias: In our work, we obtained a 3-year-long
alert dataset from a large commercial bank through its unified
alert management system and collected 166 alert storm cases for
our study (Section 2 and 4). Since the alert management platform
gathers all alerts from hundreds of online service systems of this
bank, our dataset is typical, large-scale and contains various alerts.
However, the number of alert storm cases is still limited. In the
future, we will reduce this threat by evaluating our approach on
more alert storm cases from different companies.

Evaluation metics and parameters setting: We evaluated
our approach from multiple aspects and adopted suitable metrics
for each research question. One limitation of our metrics is effort
reduction (Section 4.3.1). It is because that engineers may not in-
vestigate all alerts in the storm actually. However, it is difficult to
determine the best practice adopted in real world. In the future,
we will reduce this threat by considering more metrics to more
sufficiently measure them. In terms of the parameters setting, we
adopt some default parameters provided by the original algorithm
(e.g., DBSCAN). For the parameters need to be set additional (e.g.,
distance weight α ), we set them based on the performance of a
small sample of dataset (Section 4.4.2). In our future work, we will
further explore the impact of various parameters.
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6 RELATEDWORK
6.1 Alert Management
Despite a great deal of efforts have been devoted into alert man-
agement, including alert aggregation [22], alert correlation [19],
alert ranking [10] and alert clustering [11], investigation about alert
storm and effective methods to handle alert storm remain elusive.
Lin et al. [11] proposed to cluster semi-structured alert texts to
gain some insights from the clustering results, so as to improve
operational efficiency. However, it only consider the textual sim-
ilarity among alerts, while there exists topological correlation in
real world. Besides, as stated in Section 2.4, there are some regular
alerts in alert storm, and thus it is necessary to filter these alerts.
Therefore, their approach is limited to handle alert storm in our
scenario, which has been demonstrated in Section 4.4.2.

6.2 Problem Identification
Recently, many existing works focus on problem identification and
failure diagnosis to ensure the quality of service in software mainte-
nance [9, 10, 12]. To our best knowledge, this is the first work that
focuses on problem identification in alert storm. Jiang et al. [10]
proposed to identify problems by ranking the importance of alerts
and the top ranked alerts are more likely to be problem. This work
compared the metric value in alert data (e.g., CPU utilization) to
determine the importance of alerts. However, it is only applicable
to KPI alerts with threshold and strongly assumes the linear rela-
tionship between two alerts. In practice, there exist various alerts
(Table 1) and not all alerts are generated by threshold rules.

In the field of log analysis, some related works aim to identify
problems from a large volume of log data. Lin et al. [12] proposed
LogCluster to cluster log sequences and pick the center of each
cluster to identify problem. Rosenberg et al. [17] proposed to add
dimension reduction technique into LogCluster to solve the high-
dimensional log sequence vector, so as to achieve a better perfor-
mance. Different from them, our work focuses on alert data rather
than log data, and log-based problem identification approaches
cannot be applied directly to our problem due to the differences
between alert data and log sequences, but the alert clustering tech-
nique in our approach is indeed inspired from LogCluster.

7 CONCLUSION
Alert storm is a frequent phenomenon in the maintenance of online
service systems. Faced with such an overwhelming number of alerts,
it is very time-consuming and tedious for engineers to manually
examine each alert to diagnose the real failure. To better understand
the alert storm in practice, we conduct the first empirical study to
investigate alert storm based on the large-scale real-world alert data
from a large commercial bank. Based on the insights gained from
the empirical study, we propose a novel approach to handling alert
storm, which can detect the alert storm accurately and recommend
a small set of representative alerts to engineers from the numerous
alerts, so as to save engineers’ effort in diagnosing failure. We
evaluate the effectiveness of our approach based on real-world
dataset, and the results show that our approach is indeed effective
in both alert storm detection and alert storm summary. Besides, real
deployment in practice shows our approach enables more efficient
failure discovery and failure diagnosis.
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