Localizing Failure Root Causes in a Microservice through Causality Inference

Yuan Meng¹, Shenglin Zhang², Yongqian Sun² Ruru Zhang², Zhilong Hu², Yiyin Zhang³, Chenyang Jia³, Zhaogang Wang³, Dan Pei¹

IEEE/ACM International Symposium on Quality of Service 15-17 June 2020 // Virtual Conference

Outline

Background Algorithm

Evaluation

Case Studies

Outline

Background Algorithm Evaluation Case Studies

Failures in Microservice

• Microservice has gained an increasing popularity in recent years.

- Performance quality of microservice is of vital importance to the Internet company and the users
 - > On May 18 in 2020, Zoom, experienced a wide range of failures. The COVID-19 official Briefing of British Government was forced to cancel.
 - > On March 26 in 2020, Google service broke down for 20 minutes.
 - > Netflix reduced stream quality to meet additional demand
- **Efficient root cause localization** of online failures in microservice enables rapid service recovery and loss mitigation. 4

Microservice architecture

 In the microservice architecture, an application is decoupled into multiple microservices.

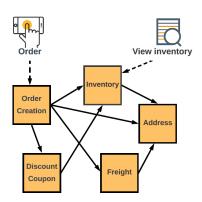


Fig.1. The call graph of microservices in the process of placing an order

Cross-microservices root cause localization tries to understand how a failure is propagated across microservices and aims to localize the *root cause microservice,* e.g. the Address microservice.

The failure root cause in Address may be the CPU, network, memory, etc.

- In the literature, only the cross-microservices root cause localization has been investigated.
- has been investigated.
 Failure root causes within a microservice is still not clear for the operators.

A Microservice

• How does a microservice work?

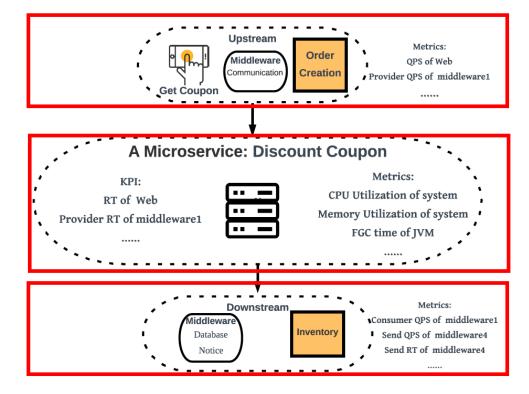


Fig.1. An example of the microservice

KPI(key **p**erformance Indicator):a userperceived indicator that directly reflects the quality of service.

Metric: an indicator indicates the status of a microservice' s underlying component.

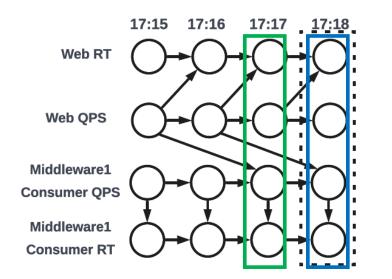


Problem Statement

• Failure ticket

- > a microservice ID indicating where the failure occurs
- > a KPI representing which KPI becomes anomalous when this failure occurs
- \succ a timestamp showing when this failure happens.
- ► E.g. {Microservice A, RT of Web, 17:18}

Problem definition


Top N root causes

Rank	Metrics
1	Web QPS
2	JVM YGC Time

Related work

Туре	Model Relationship learning		Root cause inference
Cross-microservice	Microscope[SOC18]	PC Data	Pearson correlation
	CloudRanger[CCGGRID18]	PC analysis	Second order random walk
	MonitorRank[SIGMETRICS13]	Hadoop tools]	random walk
	TON18	OpenStack APIs	stem tools random walk
Intra-microservice	MicroCause (our method)	PCTS	TCORW

Challenges

Fig.1:Causal relationship among a KPI and three metrics. A circle denotes a time point of a KPI/metric, and an arrow represents a causal relationship

Challenge 1: *iid* based causal graph(e.g. PC) cannot capture propagation delays.

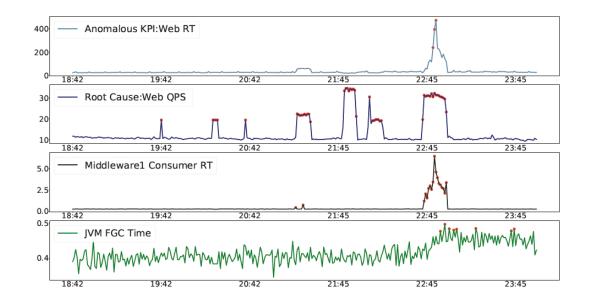
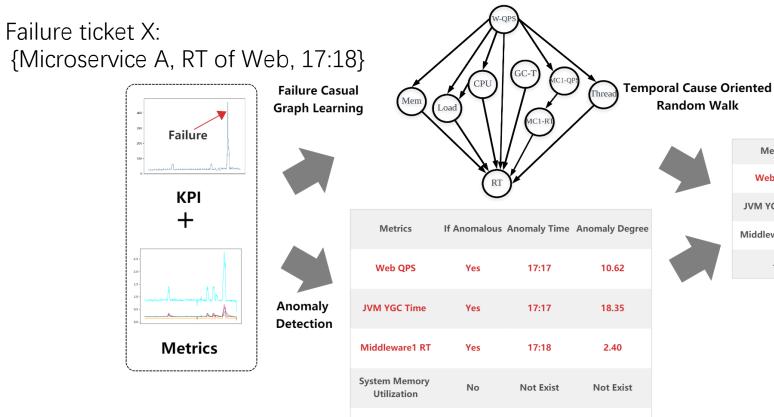
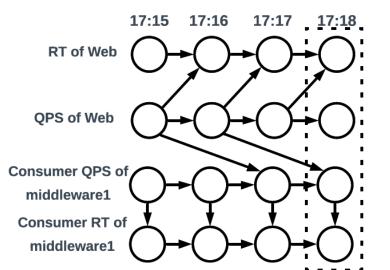


Fig.2: Monitoring indicators of failure case {Microservice A, Web RT, 22:45-22:55}


Challenge 2: Correlation based random walk may not accurately localize root cause.

Outline

Background Algorithm Evaluation Case Studies


Model Architecture

Top N Root Cause List

Metrics	Anomaly Time	Anomaly Degree	Level	Visit Time	Rank
Web QPS	17:17	10.62	Level 1	270	1
JVM YGC Time	17:17	18.35	Level 2	75	2
Middleware1 RT	17:18	2.40	Level 3	180	3

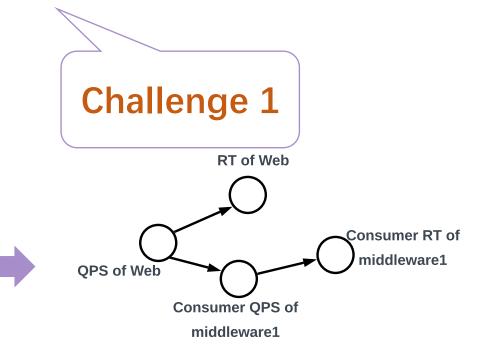

Failure Causal Graph Learning
 PCTS

Fig.1:Causal relationship among a KPI and three metrics. A circle denotes a time point of a KPI/metric, and an arrow represents a causal relationship

Step1: Improved PC algorithm[1]

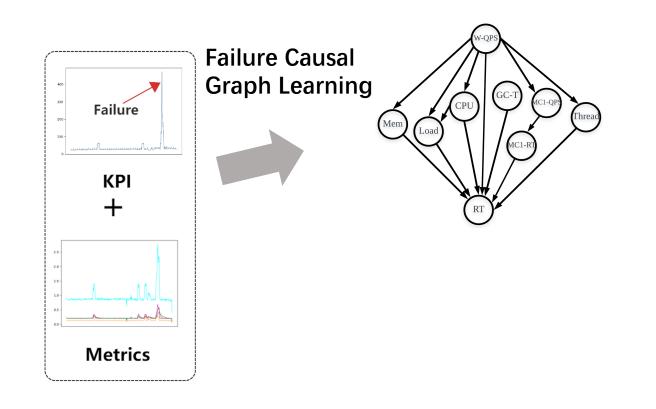
[1] J. Runge, P. Nowack, M. Kretschmer, S. Flaxman, and D. Sejdinovic, "Detecting and quantifying causal associations in large nonlinear time series datasets," Science Advances, vol. 5, no. 11, p. eaau4996, 2019.

Failure Casual Graph Learning

Failure

КРІ +

Metrics

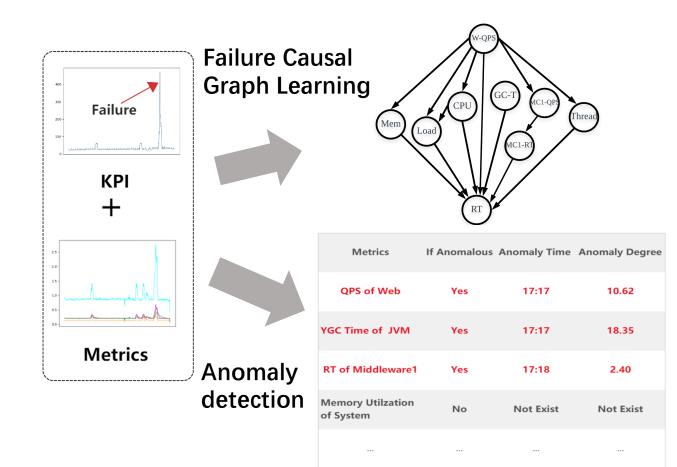

mporal Cause Oriented

Top N Root Cause List

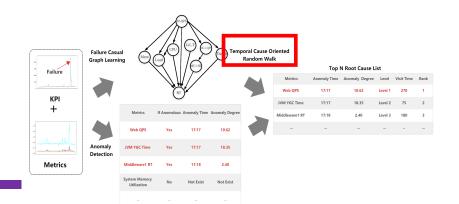
Random Wall

Fig.2: Failure causal graph between a KPI and three metrics

Step2: Generate failure causal graph

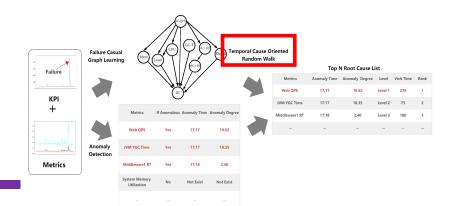

 Filure
 Image: Construction of the constr

- Anomaly detection
 - > SPOT[KDD17]
 - detects the sudden change in time series via the extreme value theory
 - Anomaly degree


$$\eta_{max}^{i} = \max_{k \in O} \frac{|M_k^i - \phi_{M_k^i}|}{\phi_{M_k^i}}$$

O is the index set of the anomaly point, $\phi_{M_t^i}$ is the threshold

Temporal Cause Oriented Random Walk(TCORW)


> Step one: Cause oriented random walk (causal relationship)

> Step two: Potential root cause score (+ anomaly degree)

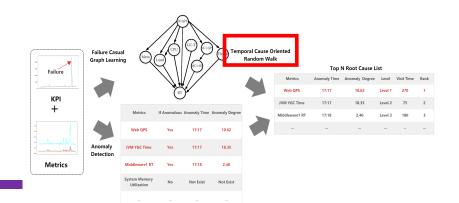
> Step three: Rank the root causes (+ priority, anomaly time)

Challenge 2

17

- Temporal Cause Oriented Random Walk(TCORW)
 - > Step one: Cause oriented random walk (causal relationship)
 - > Partial correlation
 - Forward step (walk from effect indicator to cause indicator)

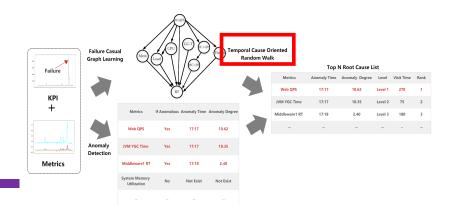
$$Q_{ij} = R_{pc}(v_{ak}, v_j | Pa(v_{ak}) \setminus v_j, Pa(v_j))$$


Backward step (walk from cause indicator to effect indicator)

$$Q_{ji} = \rho R_{pc}(v_{ak}, v_i | Pa(v_{ak}) \setminus v_i, Pa(v_i))$$

 \succ Self step (stay in the present node):

$$Q_{ii} = \max[0, R_{pc}(v_{ak}, v_i \mid Pa(v_{ak}) \setminus v_i, Pa(v_i)) - P_{pc}^{max}]$$
$$P_{pc}^{max} = \max_{k:e_{ki} \in E} R_{pc}(v_{ak}, v_k \mid Pa(v_{ak}) \setminus v_k, Pa(v_k))$$

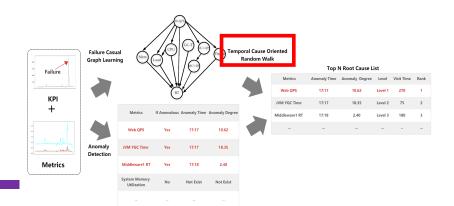


• Temporal Cause Oriented Random Walk(TCORW)

Step two: Potential root cause score (+ anomaly degree)

$$\gamma_i = \lambda \bar{c}_i + (1 - \lambda) \bar{\eta}_{max}^i$$

 \bar{c}_i is the normalized visit time c_i . $\bar{\eta}_{max}^i$ is the normalized anomaly degree η_{max}^i . λ controls the contribution of metric's causal relationship with the anomalous KPI and the anomaly degree of the metric.



• Temporal Cause Oriented Random Walk(TCORW)

Step three: Rank the root causes (+ priority, anomaly time)

Metrics	Metrics	Priority
Туре		l l
Upstream	QPS of Web; Provider QPS of middleware1; Receive QPS of middleware2; Receive QPS of middleware3	Level 1
Self	Java virtual machine (JVM) related : YGC count of JVM; YGC time of JVM; FGC count of JVM; FGC time of JVM; Max heap memory of JVM; Used heap memory of JVM; Used neap memory of JVM; Used neap memory of JVM; Usage metaspace pools of JVM memory; Usage code cache pools of JVM memory; Max mapped bufferpool of JVM; Used mapped bufferpool of JVM; Max direct bufferpool of JVM; Used direct bufferpool of JVM; Thread count of JVM; Deamon thread count of JVM; Deadlock thread count of JVM; Runnable thread count of JVM; File descriptor utilization of JVM; System related : CPU utilization of system; CPU steal of system; Load1 utilization of system; Load5 utilization of system; Load15	Level 2 Level 2
	utilization of system; Load1 of system; Load5 of system; Load15 of system; Memory utilization of system; Swap utilization of system; Net in of system; Net out of system; Net retran utilization of system; Net established of system; Disk utilization of system; Disk read of system; Disk write of system; Dish inode of system;	
	Queries per second (QPS): Consumer QPS of middleware1; Read QPS of middleware4; Write QPS of middleware1; Read QPS of middleware5; Write QPS of middleware5; Send QPS of middleware2; Send QPS of middleware3;	Level 2
Downstream	Response time (RT): Consumer RT of middleware1; Read RT of middleware4; Write RT of middleware4; Read RT of middleware5; Write RT of middleware5; Send RT of middleware2; Send RT of middleware3;	Level 3
	Success rate: Consumer success rate of middleware1; Read success rate of middleware4; Write success rate of middleware4; Read success rate of middleware5; Write success rate of middleware5; Send success rate of middleware2; Send success rate of middleware3;	Level 3

• Temporal Cause Oriented Random Walk(TCORW)

Step three: Rank the root causes (+ priority, anomaly time)

Algorithm 1: Rank the root causeInput: 1 Levels of metrics, 2 γ_i of metric i,3 anomaly time t_i of metric iOutput: RankResultSetResultSet \leftarrow []for j=1,2,3 do $R_j \leftarrow$ rank metrics in Level j by γ_i in descending order.ResultSet \leftarrow append the top 2 result in R_j endRankResultSet \leftarrow rank ResultSet by t_i in ascending order

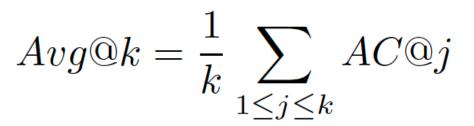
Failure ticket X: {Microservice A, RT of Web, 17:18} **Failure Causal Graph Learning** GC-' Failure hread 200 KPI +Metrics If Anomalous Anomaly Time Anomaly Degree **QPS** of Web Yes 17:17 10.62 YGC Time of JVM 17:17 Yes 18.35 Metrics Anomaly **RT of Middleware1** 17:18 Yes 2.40 detection **Memory Utilzation** No Not Exist Not Exist of System

Temporal Cause Oriented Random Walk

Top N Root Cause List

Metrics	Anomaly Time	Anomaly Degree	Level	Visit Time	Rank
QPS of Web	17:17	10.62	Level 1	270	1
YGC Time of JVM	17:17	18.35	Level 2	75	2
RT of Middleware1	17:18	2.40	Level 3	180	3

Outline


Background Algorithm Evaluation Case Studies

Dataset & Evaluation Metrics

• Dataset

- > 86 online failure tickets in an online shopping platform
- monitoring more than 400 microservice status.
- > Sep. 2019 to Jan. 2020
- ➤ 4 KPIs:
 - ➢ RT of Web
 - provider RT of middleware1
 - ➢ receive RT of middleware2
 - receive RT of middleware3.
- > Metrics
- Evaluation Metrics

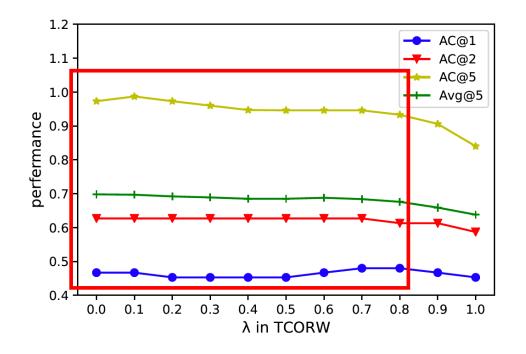
$$AC@k = \frac{1}{|A|} \sum_{a \in A} \frac{\sum_{i < k} R^{a}[i] \in V_{rc}^{a}}{\min(k, |V_{rc}^{a}|)}$$

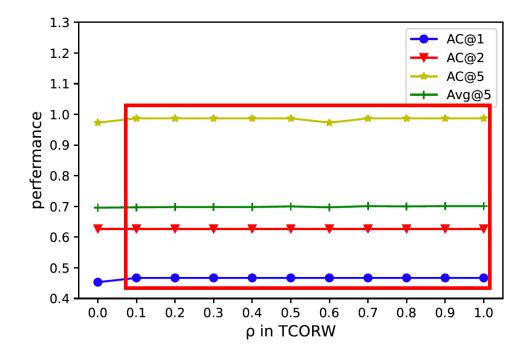
MicroCause VS baseline methods

Method	AC@1	AC@2	AC@5	Avg@5
MicroCause	46.7%	62.7%	98.7%	69.7%
TON18, MonitorRank[SIGMETRICS13]	34.7%(-12.0%)	48.0%(-14.7%)	65.3%(-33.4%)	48.2%(-21.5%)
CloudRanger[CCGGRID18]	19.0%	32.9%	69.6%	46.8%
Microscope[SOC18]	12.2%	21.9%	29.3%	23.9%
Anomaly Time Order	11.4%	21.5%	43.0%	28.4%

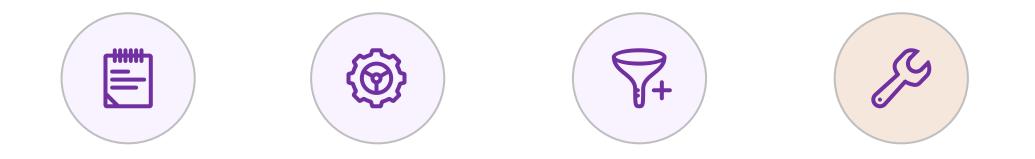
Analysis about MicroCause

• Evaluation of PCTS


Method	AC@1	AC@2	AC@5	Avg@5
MicroCause	46.7%	62.7%	98.7%	69.7%
MicroCause w/PC	44.9%(-1.8%)	59.0%(-3.7%)	93.6%(-5.1%)	67.4%(-2.3%)

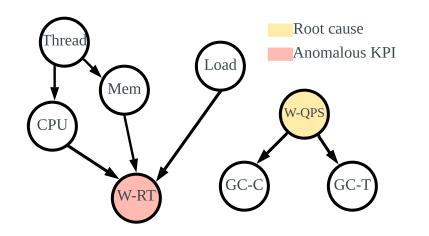

Evaluation of TCORW

Method	AC@1	AC@2	AC@5	Avg@5
MicroCause	46.7%	62.7%	98.7%	69.7%
MicroCause w/RW-1	34.7%(-12.0%)	48.0%(-14.7%)	65.3%(-33.4%)	48.2%(-21.5%)
MicroCause w/RW-2	29.3%	46.7%	62.7%	46.3% 25

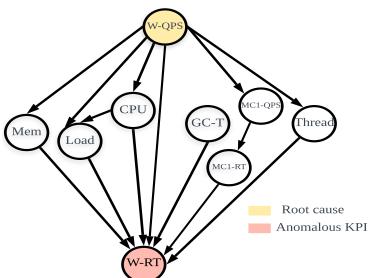

Analysis about MicroCause

Parameters in MicroCause

Outline


Algorithm Background

Evaluation


Case Studies

Causal graph of time series

Isolated subgraphs via PC[INFOCOM14]

Fig1: Failure causal graph via PC algorithm of failure ticket X {Microservice A, RT of Web, 17:18}

Fig2: Failure causal graph via PCTS algorithm of failure ticket X {Microservice A, RT of Web, 17:18}

Conclusion

- To the best of our knowledge, this paper is the first attempt to investigate the failure root cause in a microservice
- We design a framework, **MicroCause**, to localize the failure root cause in a microservice, which achieves high performance in the experiments based on 86 the online failure tickets.
- In MicroCause, we design PCTS, which can learn the causal graph of monitoring indicators. We believe it can be used in other time series related root cause localization problems.

Thank you! Q & A

meng-y16@mails.tsinghua.edu.cn

IWQOS 2020