
Automatically and Adaptively Identifying
Severe Alerts for Online Service Systems

Nengwen Zhao†‖, Panshi Jin‡, Lixin Wang‡, Xiaoqin Yang‡, Rong Liu§,
Wenchi Zhang¶ Kaixin Sui¶, Dan Pei∗†‖

†Tsinghua University ‡China Construction Bank §Stevens Institute of Technology ¶BizSeer
‖Beijing National Research Center for Information Science and Technology (BNRist)

Abstract—In large-scale online service system, to enhance the
quality of services, engineers need to collect various monitoring
data and write many rules to trigger alerts. However, the number
of alerts is way more than what on-call engineers can properly
investigate. Thus, in practice, alerts are classified into several pri-
ority levels using manual rules, and on-call engineers primarily
focus on handling the alerts with the highest priority level (i.e.,
severe alerts). Unfortunately, due to the complex and dynamic
nature of the online services, this rule-based approach results
in missed severe alerts or wasted troubleshooting time on non-
severe alerts. In this paper, we propose AlertRank, an automatic
and adaptive framework for identifying severe alerts. Specifi-
cally, AlertRank extracts a set of powerful and interpretable
features (textual and temporal alert features, univariate and
multivariate anomaly features for monitoring metrics), adopts
XGBoost ranking algorithm to identify the severe alerts out of
all incoming alerts, and uses novel methods to obtain labels for
both training and testing. Experiments on the datasets from a top
global commercial bank demonstrate that AlertRank is effective
and achieves the F1-score of 0.89 on average, outperforming
all baselines. The feedback from practice shows AlertRank can
significantly save the manual efforts for on-call engineers.

I. INTRODUCTION

Large-scale and complex online service systems, such as
Google, Amazon, Microsoft and large commercial banks,
consist of thousands of distributed components and support
a large number of concurrent users [1]. To maintain high-
quality services and user experience, these companies use
monitoring systems to collect various monitoring data from
service components, for example, metrics/Key Performance
Indicators (KPIs) [2], logs [1] and events [3]. Typically,
engineers set up many rules to check the monitoring data
and trigger alerts [4]–[6]. For example, if a selected metric
exceeds a given threshold (e.g., CPU utilization exceeds 90%),
an alert is generated to notify on-call engineers. Then an on-
call engineer examines this alert. If this alert is severe, an
incident ticket is created to initiate an immediate process of
deep investigation and appropriate repair [7].

Unfortunately, in real world, these complex service systems
generate a large number of alerts continuously, way more
than what resource-constrained on-call engineers can properly
investigate [5], [6], [8]. For example, Fig. 1 shows that
thousands of alerts are generated per day in a large commercial
bank C (China Construction Bank) [8]. Therefore, in practice,
manual rules are used to classify alerts into different priority

∗ Dan Pei is the corresponding author.

0 5 10 15 20 25 30
Day of Month

102

103

104

105

#A
le

rts

#Alerts in total #Alerts per day

Fig. 1: The number of alerts in a large commercial bank in a
given month (Y-axis is in logarithmic scale for clarity) [8].

levels, e.g., P1-critical, P2-error and P3-warning. These rules
typically contain fixed threshold for KPIs (e.g., CPU utilization
over 90% is P2-error, while exceeding 80% renders P3-
warning), keywords matching for logs (e.g., different keywords
like “warning”, “error” and “fail” indicate different severities)
and so on. In general, given the limited man power, on-call
engineers mainly focus on the alerts with top priority (called
severe alerts hereinafter), whose daily count can be still be
in hundreds in bank C, before working on other alerts.

However, simple manual rules cannot sufficiently capture
the patterns of complex and interacting factors that influence
the priorities of the alerts. Furthermore, it is labor intensive
for engineers to manually define and maintain rules, because
1) there are many types of alerts; 2) new types of alerts might
be added due to system changes; 3) engineers might have
different priority preferences [5]. As a result, in practice, above
rule-based approach often results in missed severe alerts and
lengthened time-to-repair, or results in wasted troubleshooting
time on non-severe alerts. For example, in a dataset used in §IV
from bank C, the precision and recall for identifying severe
alerts is only 0.43 and 0.68, respectively.

To show the the damage of missed severe alerts, we
present a real case in Fig. 2. There was a failure and related
immediate P2 alert at 10:14 which indicated the monitored
transaction response time increased to 500ms (exceeding a
threshold specified in a P2 rule). However, the engineers are
busy handling P1 alerts thus this alert was not immediately
handled. The failure went unnoticed until customers called to
complain at 10:45, wasting 31 minutes of repair time. Upon
detailed investigation, multiple metrics (such as success rate,
transaction volume) all experienced some anomalies during
busy hours, based on which engineers thought there should has
been a P1 alert, but there was no installed P1 rule that captured



User complaint
10:45

Response time increases
to 500ms (P2-error).

10:14 11:20

Diagnose
and repair

Recovery
10:20

Alert Alert

Localize root
cause: database

Fig. 2: A missing failure case due to the unsuitable rule-based
strategy.

such a complex symptom. This case strongly demonstrates that
multiple features are needed to determine the appropriate alert
priorities.

Therefore, there is in an urgent need to design an effective
machine learning-based algorithm that fully utilizes multiple
features to identify severe alerts accurately, which can assist
on-call engineers in differentiating high-priority severe alerts
from non-severe alerts, in order to improve engineers’ work
efficiency as well as service quality. The challenges in design-
ing such an algorithm are summarized as follows.
• Labeling overhead. With thousands of alerts arriving every

day, it is tedious to manually label the severity of each alert.
• Large varieties of alerts. There are many types of alerts

in practice, for example, application, network, memory and
middleware. It would be labor intensive to manually define
rules for determining the priority of each kind of alerts. An
automatic approach can be extremely helpful.

• Complex and dynamic online service systems. Alert priority
in such a complex system is influenced by various factors.
Besides, large-scale online services are often under constant
change, e.g., configuration change, software upgrade, which
may add new alerts. Therefore, the approach should be
adaptive to stay in tune with the dynamic environment.

• Imbalanced data. In general, only a small portion of alerts
are considered severe. For example, in our experimental
datasets, the ratio between non-severe and severe alerts is
around 50:1 (§IV-A). Learning (e.g., binary classification)
from imbalanced data can be another challenge.
To tackle the above challenges, we propose an automatic

and adaptive framework named AlertRank for identifying se-
vere alerts. AlertRank includes two components, offline train-
ing and online ranking. In offline training, to handle complex
online service, AlertRank extracts a set of interpretable features
from historical alerts and monitoring metrics to characterize
the severities of alerts. The resolution records in historical
alerts are grouped into a very small number of clusters, each
of which is labeled with a severity score by engineers. Then
each historical alert is automatically assigned a severity score
(§III-A2), avoiding manual labeling.

Instead of simply classifying whether an alert is severe or
not, AlertRank formulates the problem of identifying severe
alerts as a ranking model, which can handle class imbalance
and is user-friendly for engineers. Then the XGBoost ranking
is utilized to train a ranking model [9]. Besides, an incremental
training pipeline is leveraged to make our model adapt to
dynamic environment. During online ranking, when alerts
arrive, AlertRank extracts the features from current data and
apply the trained ranking model to prioritize these alerts based

on the output severity scores, so that engineers can investigate
the arrived alerts based on the guidelines given by AlertRank.

The major contributions of this paper are the following:
• To the best of our knowledge, this paper is the first one that

proposes an automatic and adaptive approach for identifying
severe alerts for online service systems.

• We design a comprehensive set of features from multiple
data sources to handle complex online services. These
features include textural (topic [10] and entropy [11]) and
temporal features (frequency, seasonality [12], count, inter-
arrival time [13]) from alerts, and univariate and multivariate
anomaly features from metrics [14], which are interpretable
and can further help engineers diagnose incidents.

• Different from traditional classification models, we formu-
late the problem of identifying severe alerts as a ranking
model, which can handle class imbalance and instruct engi-
neers to repair which alert first [15].

• We novelly proposes to use historical tickets as the testing
labels, and propose to use clustering-based approach (with
only cluster-level labels) to automatically assign severity
score labels for all alerts as the training labels for ranking.

• Experiments on real-world datasets show AlertRank is effec-
tive with a F1-score of 0.89 on average. Furthermore, our
real deployment demonstrates AlertRank can significantly
save the manual efforts for on-call engineers.

II. BACKGROUND

A. Alert Management System

Fig. 3 provides a high-level summary of an IT operations
ecosystem consisting of service architecture, monitoring sys-
tem, and alert management system [3]. The monitoring system
collects various data (e.g., KPIs, logs and events) continuously
from service components. To ensure service availability and
stability, service engineers manually define many rules to
check monitoring data and trigger alerts [5]. With alerts
received, the alert management system processes them through
some common techniques, such as alert aggregation and corre-
lation, to filter duplicated and invalid alerts. For the remaining
alerts, as introduced in §I, on-call engineers usually first exam-
ine alerts with high priorities (P1). If an alert is severe and hard
to repair in time, an incident ticket is created [7]. However,
as mentioned in §I, the rule-based severity classification may
fail in practice. In this paper, we tackle the critical problem
of identifying severe alerts accurately and adaptively, so as to
assist engineers in fixing true severe alerts responsively and
preventing potential failures.

B. Data Description

1) Alert: Alert data, as the main data objects in our study,
have multi-dimensional attributes. Table I presents an example
alert with several major attributes. “Content” specifies the
detailed information of the alert, and “Resolution Record”
records how the alert was resolved in detail, which usually
written by on-call engineers or generated by system automat-
ically. “Resolution Record” can be used to label a severity
score for each alert, which will be introduced in §III-A2. We



Monitoring System Alert Management System
Front End

Data
Collection

KPIs;
Logs;
Events … Write Alert Rules

Alerts

On-call
Engineers

Storage
Manager

Job
Scheduler

Resource
Manager

Compute & Storage

Service Users

Se
rv
ic
e
C
om
po
ne
nt
s

Monitoring

Service Engineers
Contact

Alert
Processing Diagnosis

Severe
Alerts

Tickets

Valid
Alerts

Fig. 3: Summary of the service architecture, monitoring system, alert management system and different people involved [3].

will extract alert textual and temporal features from “Content”
and “Time” attributes respectively (§III-B).

TABLE I: An example alert.
Time Severity Type

2019-02-20 10:04:32 P2-error Memory
AppName Server Close Time
E-BANK IP(*.*.*.*) 2019-02-20 10:19:45

Content
Current memory utilization is 79% (Threshold is 60%).

Resolution Record
Contact the service engineers responsible for E-BANK and get a

reply that there is no effect on business, then close the alert.

2) Key Performance Indicator: KPIs (Metrics) are another
crucial data type in service management, which are collected
continuously at a fixed time interval, e.g., every minute, to
measure the health status of servers (e.g., CPU utilization)
or business (e.g., response time) [2], [16]. KPI anomalies
(e.g., sudden spike or dip) may indicate some problems about
business and servers. In addition to alert data, we also extract
KPI anomaly features from important business KPIs and server
KPIs to characterize the overall status of the system (§III-C).

3) Ticket: In general, tickets are created either from alerts
or from failures. When investigating an alert, if engineers find
it is hard to fix the alert in time, or the alert has a significant
business impact, they create a ticket from this alert so as to
follow up with a repair process [7], [17], [18]. On the other
hand, failures, e.g., the case in Fig. 2, are critical in service
management, because they directly affect service stability. A
failure is usually reported by users or discovered by service
engineers, instead of being reported by any alerts in advance.
Engineers will create a ticket and repair the failure quickly.
Often, when diagnosing a failure and localizing its root cause,
engineers may find some early alerts which have been ignored
by mistake (e.g., alert in Fig. 2). Thus, we can determine the
alert is severe or not by whether it is associated with a ticket.

III. DESIGN

A. Overview

1) AlertRank Overview: Fig. 4 illustrates the architecture
of AlertRank. In the offline learning module, inspired by the
idea of multi-feature fusion, we carefully extract a set of
interpretable features from historical alerts (textural and tem-
poral features) and KPIs (univariate and multivariate anomaly
features), based on domain knowledge in our context. Then
a ranking model is constructed with the popular XGBoost
ranking algorithm [9]. The severity scores used for training

TemplatesAlerts

KPIs

Pre-
processing

Feature Extraction

Data
Selection

Feature
Vector

• Textual
• Temporal
• Others

• Univariate
• Multivariate

Online
data

Feature
Extraction

Ranking
Model

Score

Crucial
KPIs

Ranking
Model

Ranking
List

Offline
Learning

Online
Ranking

Periodic Update

Feature
Vector Operators

Records

Fig. 4: AlertRank overview.

are obtained by resolution records in Table I, which will be
introduced in §III-A2 in detail. In the online ranking, the
features extracted from incoming alerts and corresponding
KPIs are directly fed into the trained ranking model. The
model ranks the incoming alerts based on the output severity
scores, so that on-call engineers can first examine alerts with
higher severity scores. The alerts whose severity scores exceed
a specific threshold is considered severe and the threshold is
chosen based on the performance on training set. In addition,
to make our model adaptive to the dynamic IT environment,
we build an incremental training pipeline where our model is
trained with latest data periodically so that changes can be
captured properly in time.

2) Automatic Labeling: As discussed in §I, labeling over-
head is a big challenge for our problem. In AlertRank, we
novelly utilize the historical tickets and resolution records to
obtain the labels without manual efforts.

Binary label. The problem which this paper aims to solve
is identifying severe alerts. Thus we need give each alert a
binary label (severe/non-severe) for evaluation (§IV-B). As
stated in §II-B3, each alert can be labeled as severe or non-
severe according to whether it is associated with a ticket.

Continuous label. To train the ranking model, we also label
each alert with a specific severity score (between 0 and 1)
based on its resolution record, which is more comprehensive
than simple binary label. It is because that the real severity
of each alert varies in all severe/non-severe alerts. As stated
in §II-B1, resolution records are written by on-call engineers
or generated by system automatically. In general, there are
several different types of resolution records which indicate
different severities. We adopt TF-IDF vectorization [11] and
k-means [19] to cluster resolution records, and the value of k is
determined by silhouette coefficient (k=7) [20]. The clustering
centroids are presented in Fig. 5 and experienced engineers
give a severity score for each cluster. In this way, each alert
can be automatically assigned a severity score based on its



1. None. (0; 65.1%)
2. This alert is in white list. (0.1; 4.2%)
3. This alert has been recovered automatically. (0.2; 7.8%)
4. Contact the service engineers and there is no effect on business. (0.4; 10.6%)
5. Known reasons. This alert has been resolved. (0.6; 6.4%)
6. Contact the service engineers and there is an effect on business. Already resolved. (0.8; 3.8%)
7. Create a ticket. (1; 2.1%)

Fig. 5: The clustering centroids of dataset in bank C and the
corresponding (severity score; percentage).

resolution record, so as to save considerable manual efforts.
Besides, during our study of the 18-month-long dataset, we
observe that the patterns of resolution records generally remain
unchanged unless new on-call engineers are involved.

B. Alert Features Extraction

1) Alert Preprocessing: Before extracting alert features, we
first preprocess alert data as follows.

Tokenization. The textual descriptions of alerts (“Content”
in Table I) usually combine words and symbols (e.g., punc-
tuation). Tokenization filters out these symbols and divides
the remaining text into tokens. We further remove stop words,
those highly frequent words like “to”, “are” and “is”, since
they are useless in identifying severe alerts.

Alert parsing. The description of an alert is semi-structured
text generated by the monitoring system with two types of
information: a constant string that describes an abstract alert
event, and parameters that record some system variables (e.g.,
IP address, KPI value, file path, instance name, etc.). A
common practice is parsing alerts which extracts the constant
string to form an alert template. For example, in Fig. 6, alerts
A1 and A4 can fit into the template T1 and T2, respectively.
The remaining parts are variables (the underscored text). Note
that it does not matter to ignore some KPI values (e.g., 67%
and 73%) since they are reflected in the rule-based severity
(“Severity” in Table I).

Parsing methods have been well studied in log data but have
not been applied in alerts. We adopt FT-tree [21], one of the
state-of-the-art log parsing methods, to match each alert to
a specific alert template. Based on the key observation that
a “correct” alert template is usually a combination of words
that occur frequently in alerts, FT-tree dynamically maintains
a tree structure of such frequent words that implicitly defines
the set of alert templates. In addition to high accuracy, FT-tree
is naturally incrementally retrainable, because this implicitly-
defined set of alert templates dynamically and incrementally
evolves with the arrival of new types of alerts (e.g., due to the
aforementioned software upgrades) [21].

2) Textual Feature: After alert preprocessing, the semi-
structured alerts are transformed into normalized templates.
Then we extract some textual features from the alert templates.

Topic. Intuitively, each alert template can be regarded as a
document describing one or more topics of IT operations. We
can apply a topic model [22] to extract the hidden semantic
features. Many topic models have been proposed in the lit-
erature, for example, Latent Dirichlet Allocation (LDA) [23].
A conventional topic model, such as LDA, typically works

Alert Templates:
T1: Memory utilization current value is *. It exceeds the threshold.
T2: TCP CRITICAL - * second response time on port *
T3: The number of processes is abnormal (instance: *), current value is *.

Alert Contents:
A1: Memory utilization current value is 67%. It exceeds the threshold.
A2: TCP CRITICAL - 0.7 second response time on port 3306.
A3: The number of processes is abnormal (instance: TimeoutCtrl), current value is 0.
A4: TCP CRITICAL - 0.8 second response time on port 3302.
A5: Memory utilization current value is 73%. It exceeds the threshold.

Fig. 6: Explanation of alert template extraction.

well with documents consisting of rich text, while our alert
text is usually very short. Thus, we adopt Biterm Topic
Model (BTM) [10], an algorithm designed specifically for
short texts, which has shown better performance than LDA
in short texts. BTM explicitly models the word co-occurrence
patterns (i.e., biterms), rather than documents, to enhance the
topic learning [10]. Given a predefined number of topics,
BTM discovers hidden topics and keywords corresponding
to each topic. The number of topics in our problem is
selected based on coherence score (n topics=14), which is
a metric to evaluate the quality of extracted topics [24]. Fig. 7
presents some examples of extracted topics and corresponding
keywords from our experimental dataset. For example, we can
infer that T#1 and T#2 are related to oracle database and
syslog, respectively. BTM can output the probability that an
alert belongs to each topic. Fig. 8(a) shows the relationship
between alert topics and severity scores, and we can observe
that the alerts belonging to different topics indicate different
severities. Considering that an alert may have mixture topics,
we utilize the output probabilities as topic features.

T#1: oracle, connection, database, space, pool, process, lock
T#2: syslog, alert, error, stack, records, hardware, warning
T#3: monitor, environment, server, temporal, battery, power, voltage
…
T#13: unaccessible, export, response, packet, password, order, accounting
T#14: switch, virtual, communication, connection, health, network, report

Fig. 7: Extracted topics by BTM and some corresponding
representative keywords.

Entropy. Considering that alert is a bag of words and
different words have different importance (entropy) in iden-
tifying severe alerts. For example, the word “timeout” is
more informative than “port”. Therefore, in addition to topic
features, we also consider the entropy of each alert template.
IDF (Inverse Document Frequency) is widely utilized in text
mining to measure the importance of words, which down-
grades frequent words while increasing the weights of rare
words [11]. For each word, the IDF value is calculated as
IDF (w) = log N

Nw+1 , where N refers to the total number
of alerts and Nw is the number of alerts containing the word
w. Intuitively, if a word frequently appears in historical alerts,
its discriminative power is much lower than the one that only
appears in a small number of alerts [1]. Based on the IDF of
each word calculated from the training data, we can compute
the entropy of each alert as

∑
w IDF (w)

#w , where #w is the
number of words in this alert. Fig. 8(b) shows the alerts with



1 2 3 4 5 6 7 8 9 10 11 12 13 14
Topic

0

0.1

0.2

0.3
Se

ve
rit

y 
sc

or
e

(a)

0 100 200 300
Entropy

0
0.2
0.4
0.6
0.8

1

Se
ve

rit
y 

sc
or

e

(b)

0 0.01 0.02 0.03 0.04 0.05
Frequency

0

0.1

0.2

0.3

0.4

Se
ve

rit
y 

sc
or

e

(c)

0 0.1 0.2 0.3 0.4 0.5 0.6
Seasonality

0

0.1

0.2

0.3

Se
ve

rit
y 

sc
or

e

(d)

0 200 400 600 800
Alert count

0

0.1

0.2

0.3

Se
ve

rit
y 

sc
or

e

(e)

0 200 400 600 800 1000
Inter-arrival time(s)

0

0.1

0.2

0.3

Se
ve

rit
y 

sc
or

e

(f)

P1 P2 P3
Rule-based severity

0

0.2

0.4

Se
ve

rit
y 

sc
or

e

(g)

0 5 10 15 20
Hour of day

0

0.1

0.2

0.3

Se
ve

rit
y 

sc
or

e

(h)

App OS Net DB
Mem MW O

Type

0
0.1
0.2
0.3
0.4

Se
ve

rit
y 

sc
or

e

(i)

0 0.2 0.4 0.6
Multivariate error of business KPIs

0

0.1

0.2

0.3

0.4

Se
ve

rit
y 

sc
or

e

(j)

0 0.2 0.4 0.6
Multivariate error of server KPIs

0

0.1

0.2

0.3

Se
ve

rit
y 

sc
or

e

(k)

Severity score 
(numeric features)

Severity score 
(categorical features)

Fig. 8: The qualitative relationship between severity scores and some representative features. The severity scores are
automatically obtained based on resolution records (§III-A2).

high entropies are more likely to be severe.
3) Temporal Feature: In addition to textual features, tempo-

ral features derived from alert time should also be considered.
Frequency. Some alerts, such as CPU overload, occur

frequently, while others, such as device outages, occur rarely.
Fig. 8(c) demonstrates the relationship between frequencies
and severity scores. In general, alerts with low frequencies
are more likely to be severe. Thus, the frequency of each alert
can be indicative to determining whether an alert is severe.

Seasonality. Based on our observation, some alerts occur
quasi-periodically. For example, running a batch task every
night may cause CPU and disk alerts. Intuitively, seasonal
alerts are less informative than irregular ones. For one alert
a, we obtain a time series C(a) = {c1(a), c2(a), · · · , ch(a)},
where ck(a) is the number of occurrences of alert a in the
k-th time bin and h is the number of time bins. Here the time
bin is set to 15 minutes. Clearly, if a is a seasonal alert, C(a)
is a periodic time series.

In our approach, we adopt Autocorrelation Function (ACF),
one of the most popular time series periodicity detection
techniques, to characterize the periodicity of the alert [25],
[26]. In detail, given a time series x with length N and
different lags l, we have

ACF (l) =

∑N−1
i=0 x(i)x(i+ l)

N
, l = 1, 2, · · · , N−1

2 (1)

It is clear that if the time series is periodic with length
T , the autocorrelation becomes high at certain lags, i.e.,
T, 2T, 3T, · · · . Therefore, a larger ACF (l) implies a stronger
seasonality. We use the maximum value of ACF (l) as the
final seasonality feature. We can observe from Fig. 8(d) that
larger seasonality value tends to have low severity score.

Alert count. We define alert count as the number of alerts
that occur during a time window (e.g., 30 minutes before the

current alert) [13]. Intuitively, engineers need to pay more
attention to alerts that burst within a short time window
(Fig. 8(e)). Besides, we also consider the numbers of alerts
with different severity levels during this time window.

Inter-arrival time. The inter-arrival time is defined as the
time interval between an alert and its proceeding one [13].
Clearly, if an alert suddenly breaks out after a system has
been running without alerts for a long time (long inter-arrival
time), it may be severe and need more attention (Fig. 8(f)).

4) Other Features: In addition to these carefully designed
features described above, we also adopt some simple features
directly from the attributes of alert data (Table I).

• Rule-based severity. Fig. 8(g) shows the relationship be-
tween the real severity scores and rule-based severity levels.
It is intuitive that both P1 and P2 alerts tend to have higher
severity scores, thus it is unreasonable to focus only on P1
alerts while ignoring P2. However, we can still utilize the
original severity as a feature.

• Alert time. Clearly, the alert time has an influence on
the importance of the alert. For example, as depicted in
Fig. 8(h), alerts that occur during busy hours (9:00-11:00
and 14:00-16:00) are more severe compared with those
that occur at night. Therefore, we adopt three features to
characterize the occurrence time of an alert, i.e., during busy
hours or not, day or night, weekday or weekend.

• Type. We also notice that alert types have impact on their
severity levels. Fig. 8(i) shows the average severity scores
under several different types of alerts (application, operating
system, network, memory, middleware and others). It is
evident that application alerts tend to have higher severity
scores, perhaps because these alerts are more closely related
to service reliability and user experience.



(a) An example of business KPIs.

LSTM

Fully Connected Layer

Fully Connected Layer

Output Vector

...

Input Vector
𝑥"𝑥"#$%&𝑥"#$%'

𝑥"%'

LSTMLSTM

(b) LSTM model.

Fig. 9: Illustration of KPI features extraction.

C. KPI Features Extraction

In addition, since KPIs can characterize the health status of
servers and applications [27], we incorporate KPIs to capture
the alert severity better. Note that although business KPIs and
server KPIs can directly trigger alerts, these alerts alone cannot
describe the health status of systems accurately, because they
are generated based on simple threshold rules. Thus, in this
study, we try to design a more accurate and generic method to
capture the KPI anomalies. In particular, we believe attention
should be given to those alerts that co-occur with anomalies
of important business KPIs or server KPIs.

However, usually a number of KPIs are measured to monitor
a service, and it is time consuming for engineers to check all
KPIs manually. In our approach, we choose some represen-
tative business KPIs (response time, success rate, transaction
volume, processing time) and server KPIs (CPU utilization,
I/O wait, memory utilization, load, network packets, the num-
ber of process, disk I/O) which are closely associated with
service availability and user experience, and adopt a multi-
KPIs anomaly detection technique to accurately measure the
overall status of business and servers. Fig. 9(a) presents an
example of three important business KPIs of a service, and
the pink bands denote the anomalies.

We utilize the state-of-the-art multi-variate time series
anomaly detection algorithm based on LSTM [14], [28].
Compared to traditional recurrent neural networks (RNNs),
LSTM has an improved capability to maintain the memory
of long-term dependencies, because it uses a weighted self-
loop to accumulate or forget past information conditioned on
its context [14]. Thus, it can learn the relationship between
past and current data values, and has demonstrated remarkable
performance in various sequential data [29]. Fig. 9(b) presents
the LSTM structure in our approach. The input vector is the
time window {xt−w+1, xt−w+2, · · · , xt}, where xi is an m-
dimension vector denoting the value of each important KPI at
time i (e.g., m=3 in Fig. 9(a)). The goal is to predict the vector
xt+1 and the prediction error can be used to characterize the
degree of anomaly. In our model, we use the overall prediction
error and also the error on each dimension (univariate and
multivariate) as features. In Fig. 8 (j) and (k), we plot
the relationship between severity scores and the normalized
overall prediction errors of business KPIs and server KPIs,
respectively. We can observe that higher prediction errors
indicate higher severity scores.

TABLE II: Features used in AlertRank.
Feature Type Feature Name #Feature
Alert Textural BTM Topics (14), Entropy (1) 15
Alert Tempo-
ral

Frequency (1), Seasonality (1),
Alert count (4), Inter-arrival time (1) 7

Alert
Attributes

Original severity (1), Alert time (3),
Type (1) 5

KPI Anomaly Univariate anomaly (11), Multivari-
ate anomaly (2) 13

Feature Engineering Summary. In conclusion, Table II
summarizes a total of 40 features adopted in AlertRank.
We design these features based on careful data analysis and
discussion with experienced engineers, thus these features are
associated with rich domain knowledge. If AlertRank will be
applied in other scenarios, some new features may need to
be introduced into our model, but the core idea and pipeline
of AlertRank is generic. Based on our feature engineering
study, we find that the relationships between alert severity
and various features are remarkably complex (Fig. 8). This
also explains why a simple rule-based strategy cannot identify
severe alerts accurately. For example, the alert in Fig. 2 is
classified into P2, but KPI anomaly features and alert time
will increase the severity of this alert. The effectiveness of
each kind of features will be demonstrated in §IV-C2.

D. Ranking Model

AlertRank proposes a machine learning framework to in-
corporate various features based on data fusion and learn a
ranking model to identify severe alerts. We novelly formulate
this problem as a ranking model, instead of binary classifica-
tion, due to the following reasons. First, dichotomous results
given by classification (severe/non-severe) are prone to false
positives or false negatives. In particular, false negatives make
some potential failures undetected, leading to downgraded
service availability. However, ranking model can prioritize
alerts based on severity scores and guide engineers to repair
which alert first, which is more user-friendly. Second, ranking
model can deal with class imbalance effectively [15]. The
effectiveness of ranking model will be presented in §IV-C3.

To train a ranking model, as introduced in §III-A2, each alert
is labeled a severity score automatically based on its resolution
record. There are three common ranking approaches, namely,
pointwise, pairwise and listwise [30]. In our problem, the
training data naturally comes as pointwise (each alert has a
severity score). Besides, the other two ranking approaches
(e.g., LambdaMART [31]) only provide the relative order of
alerts, and cannot output a specific severity score for each alert.
Therefore, we adopt the XGBoost pointwise ranking algorithm
based on regression trees [9]. XGBoost is a gradient boosting
tree based model that is widely used by data scientists and
achieves state-of-the-art performance on many problems [9].

In real practice, the alert management system receives many
streaming alerts continuously, and on-call engineers tend to
investigate alerts in batch at a regular interval (e.g., every 15
minutes). Therefore, during online testing, the trained ranking
model is applied to prioritize these incoming alerts based on
the output severity scores every 15-minute interval. An alert



is considered as severe if its predicted severity score exceeds
a threshold, and the threshold is properly selected based on
its best performance on training set. In general, engineers first
examine the alerts with higher severity scores. Furthermore,
as we mentioned in §I, in order to adapt to dynamic online
services, the ranking model is incrementally trained with the
latest training data periodically.

IV. EVALUATION

In this section, we evaluate our approach using real-world
data and aim to answer the following research questions:
• RQ1: How effective is AlertRank in identifying severe

alerts?
• RQ2: How much can the alert features and KPI features

contribute to the overall performance?
• RQ3: Is the ranking model adopted in AlertRank effective?
• RQ4: Is the incremental training pipeline useful?

A. Datasets

To evaluate the performance of AlertRank, we collect three
real-world datasets named A, B and C from a top global
commercial bank through its alert management system. Ta-
ble III summarizes these datasets. Each dataset has a time
span of six months. These alerts have been cleansed by the
alert processing module in Fig. 3 to filter out duplicate and
invalid one. As we mentioned in §III-A2, each alert is labeled
a binary class (severe/non-severe) by tickets for evaluation and
a severity score by alert resolution records for training ranking
model. We observe that each dataset contains an imbalanced
mixture of severe and non-severe alerts, with a ratio about 1 :
50. In our experiments (RQ1-RQ3), for each dataset, we use
alerts occurred in the first five months as training set, and the
last one month without new alerts as testing set.

TABLE III: Details about the experimental datasets.

Datasets Time span #Alerts #Severe alerts
A 2018/01/01∼2018/06/30 374940 7012
B 2018/07/01∼2018/12/30 429768 8482
C 2019/01/01∼2019/06/30 390437 7445

B. Metric

As stated in §III-D, the trained ranking model is applied
to rank incoming alerts based on the output severity scores
at a regular interval (e.g., 15 minutes). For each interval, an
alert is considered as severe if its severity score exceeds a
threshold. We properly choose the threshold that can maximize
the performance on training set. Therefore, precision/recall/F1-
score are calculated for evaluation. Precision measures the
percentage of identified severe alerts that are indeed severe.
Recall measures the percentage of severe alerts that are cor-
rectly identified. F1-score is the harmonic mean of precision
and recall. We take the average metrics of all intervals as
the final metrics. Besides, in order to evaluate the ranking
capability of AlertRank (RQ3), we also compute another
metric, precision@k, i.e., the precision rate of top-k alerts [15].

C. Evaluation Results

1) RQ1: How effective is AlertRank in identifying severe
alerts?

In order to demonstrate the effectiveness of AlertRank, we
compare it with two baseline methods.
• Rule-based. As introduced in §I, in practice, alerts are

separated into several severity levels (e.g., P1-critical, P2-
error and P3-warning) based on rules. Usually, engineers
mainly focus on P1 alerts while ignoring P2 and P3 alerts.

• Bug-KNN [32]. Identifying severe bug reports is a critical
issue in software engineering. Bug-KNN utilizes K-Nearest
Neighbor (KNN) to search for historical bug reports that are
most similar to a new bug through topic and text similarity.

TABLE IV: Performance comparison between AlertRank and
two baseline methods.

Datasets A B C
Methods P R F1 P R F1 P R F1

AlertRank 0.85 0.93 0.89 0.82 0.90 0.86 0.93 0.92 0.93
Rule-based 0.43 0.68 0.53 0.47 0.70 0.56 0.41 0.74 0.53
Bug-KNN 0.72 0.76 0.74 0.79 0.62 0.70 0.80 0.53 0.64

Table IV shows the precision (P), recall (R) and F1-score
(F1) comparison between AlertRank and baseline methods.
Clearly, AlertRank exhibits outstanding performance on all
datasets and achieves the F1-score of 0.89 on average, higher
than other baseline methods. The results indicate that tradi-
tional rule-based strategy is not effective, because whether
an alert is severe is influenced by various factors and simple
rules cannot capture all these factors. Besides, due to system
complexity, it is difficult to set suitable rules, and each
engineer may have his or her own preference and knowledge
to set rules [5]. In terms of Bug-KNN, it determines severe
alerts based on only the textual description of alerts. Clearly,
AlertRank, which incorporates both alert features (textual
and temporal) and KPI features achieves better performance.
Furthermore, KNN is a lazy learner because it does not learn
a discriminative function from the training data but computes
the similarity between a new alert and all historical alerts. It
suffers from extremely high computational complexity.

In summary, the results show that AlertRank is effective in
identifying severe alerts for online service systems.

2) RQ2: How much can the alert features and KPI
features contribute to the overall performance?

AlertRank incorporates two types of features: alert features
and KPI features. In this RQ, we evaluate the effectiveness of
each type and the results are presented in Table V. Our model
can achieve an average F1-score of 0.89 with high precision
and recall, when both types of features are used. With the alert
features alone, the average F1-score drops from 0.89 to 0.76.
However, if only the KPI features are used, the average F1-
score drops dramatically from 0.89 to 0.36. This indicates that
our model benefits from the ensemble features extracted from
multiple data sources and achieves the best overall results.
Besides, the results also indicate that the alert features are
more powerful than KPI features.



TABLE V: Effectiveness of the ensemble features.

Datasets A B C
Methods P R F1 P R F1 P R F1

AlertRank 0.85 0.93 0.89 0.82 0.90 0.86 0.93 0.92 0.93
Alert Only 0.82 0.79 0.80 0.75 0.80 0.77 0.67 0.77 0.72
KPI Only 0.42 0.40 0.41 0.32 0.39 0.35 0.36 0.31 0.33

3) RQ3: Is the ranking model adopted in AlertRank
effective?

As stated in §III-D, we formulate the problem of identifying
severe alerts as a ranking model. In order to illustrate the
effectiveness of ranking model, motivated by [15], we compare
our model with three popular classification models, i.e., SVM,
Random Forest (RF) [33] and XGBoost [9]. Weighted classi-
fication is a common approach to deal with class imbalance
and we adopt it to assign a larger weight to severe alerts.
The classification threshold is also selected based on its best
performance on training set.

Table VI shows the F1-score comparison and it is evident
that XGBoost ranking outperforms the classification models.
It is because that weighted classification which aims to learn
a discriminative function from the binary label is still a little
sensitive to class imbalance. Besides, the true severity of each
alert varies in all severe/non-severe alerts, while the binary
label is insufficient for model learning. However, the ranking
model which is trained with comprehensive severity scores can
mitigate the problem of imbalanced severe alerts.

In order to show the ranking ability of AlertRank, we rank
the probabilities returned by each classification algorithm [15].
We choose the time intervals with more than two severe alerts
in testing set and compute the precision@k. As shown in
Fig. 10(a)-10(c), AlertRank can effectively rank the severe
alerts and consistently achieve high precision. More impor-
tantly, we compare the precision under no false negatives as
shown in Fig 10(d). It is clear that with 100% recall, AlertRank
achieves a much higher precision than other methods. In
other words, with AlertRank, the number of alerts which need
examined by engineers will be reduced by about 20%, while
ensuring no single severe alert is missed.

In summary, the ranking model adopted in AlertRank is
indeed effective compared with classification models.

TABLE VI: F1-score comparison between XGBoost ranking
model and other classification methods.

Datasets SVMc RFc XGBoostc AlertRank
A 0.75 0.79 0.80 0.89
B 0.70 0.77 0.78 0.86
C 0.80 0.81 0.85 0.93

4) RQ4: Is the incremental training pipeline useful?
An online service system in real world is under constant

change due to new applications deployment, software upgrade,
or configuration change, etc. New alert types and rules are
also added accordingly. To address this issue, as introduced
in §III-A, AlertRank incorporates an incremental training
strategy. This RQ aims to evaluate the effectiveness of the
incremental training.

We choose dataset C in this RQ, because there is a major
software change on April 19, resulting in many new alerts
emerging after that day. The data in the first three months
is used as the training set (2019/01/01∼2019/03/31) and the
remaining as our testing set (2019/04/01∼2019/06/30). We
conduct three experiments. In one experiment, the trained
model is applied to the testing data directly without incremen-
tal update. In the other two experiments, we update the model
incrementally every day and every week, and the threshold
is updated accordingly. Besides, XGBoost based on gradient
boosting tree can friendly support incremental training.

Table VII presents the precision/recall/F1-score comparison
before and after the software change. Clearly, before April
19, the alert patterns on the testing set are similar to the
training set. Thus, incremental update has no impact on model
performance. However, after the software change, we can
observe that the model that was trained with past data does not
always perform well in the future. However, the incremental
training improves the F1-score significantly, from 0.68 to 0.88.
Moreover, we find that the daily model update delivers slightly
better performance than the weekly update.

In summary, incremental training is indeed essential to keep
our models in tune with highly dynamic online systems.

TABLE VII: Effectiveness of incremental training.

Methods W/o update Weekly update Daily update
Time P R F1 P R F1 P R F1

∼ Apr.19 0.82 0.87 0.84 0.83 0.87 0.85 0.85 0.89 0.87
Apr.19 ∼ 0.76 0.62 0.68 0.80 0.82 0.81 0.87 0.89 0.88

V. OPERATIONAL EXPERIENCE

A. Success Story

We have successfully applied AlertRank on the alert man-
agement platform in a top global commercial bank. The
deployment shows that AlertRank can identify severe alerts
more accurately than rule-based method. For example, about
the alert in Fig. 2 which is classified into P2 by mistake,
AlertRank can accurately identify this severe alert because
business KPIs anomaly features and alert time (during busy
hour) increase the severity of this alert.

To demonstrate AlertRank’s operational excellence quanti-
tatively, we count the number of alerts that need to be man-
ually examined under the rule-based strategy and AlertRank
perspectively. For rule-based method, engineers usually only
examine P1 alerts and ignore others. For AlertRank, as stated
in §III-A, engineers only check the alert whose severity
scores are higher than the threshold which is selected based
on best performance on training set (0.86, 0.82, 0.87 for
dataset A, B and C, respectively). Table VIII shows the effort
reduction achieved by AlertRank on testing set (one month).
Clearly, using traditional rule-based strategy, engineers need
to investigate more alerts, and they waste much time in
investigating non-severe alerts (low precision) but still miss
many severe alerts (not high recall). In comparison, AlertRank
can significantly reduce the number of alerts which engineers



A B C
Dataset

0
0.2
0.4
0.6
0.8

1

Pr
ec

isi
on

(a) Precision@1.

A B C
Dataset

0
0.2
0.4
0.6
0.8

1

Pr
ec

isi
on

SVMc RFc

(b) Precision@2.

A B C
Dataset

0
0.2
0.4
0.6
0.8

1

Pr
ec

isi
on

XGBoostc AlertRank

(c) Precision@3.

A B C
Dataset

0
0.2
0.4
0.6
0.8

1

Pr
ec

isi
on

(d) Precision (when recall=1).

Fig. 10: Demonstration of the ranking ability of AlertRank.

need to investigate, while ensuring high precision and recall.
Therefore, AlertRank can save the manual effort for on-call
engineers significantly while retaining alert quality.

TABLE VIII: Comparison of the number of alerts that need
to be investigated (#alerts) and precision/recall (P/R).

Datasets A B C

Rule-based #Alerts 1996 2536 2094
P/R 0.43/0.68 0.47/0.70 0.41/0.74

AlertRank #Alerts 1380 1869 1148
P/R 0.85/0.93 0.82/0.90 0.93/0.92

B. Efficiency

In order to embed our framework in the alert management
platform to help engineers detect severe alerts in real time, we
carefully evaluate the response time of AlertRank. Based on
our experiments, AlertRank can rank 100 alerts in about 2.4
second, which is very acceptable to engineers. It is because the
same alert templates can share the textual features and some
temporal features extracted in training set, which save much
time in feature extraction when online ranking. Besides, the
ranking model can be trained offline with historical data and
then be applied to online data directly. It takes about twenty
minutes to train a model with three-month data on Intel Xeon
CPU E5-2620 machine with 10 cores.

VI. RELATED WORK AND LIMITATION

A. Related Work

Despite a great deal of efforts have been devoted into
alert management, including aggregation [34], correlation [35],
[36] and clustering [37], effective approaches to identifying
severe alerts have remained elusive. [5] proposed a simple alert
ranking strategy based on the linear relationships between alert
thresholds. However, the assumption of a linear relationship
between two KPIs may not always hold in reality. [6] proposed
to learn a rule-based strategy from historical data to distinguish
real alerts from non-actionable alerts. Both of the two methods
only consider the KPIs alerts and revise the threshold strategy.
However, there are various of alerts in practice, such as
network, database and logs. Besides, the severity of an alert
is influenced by various factors, but these rule-based methods
cannot capture the complex relationships of these factors.

Identifying severe alerts is also a relevant research topic
in the fields of intrusion detection system (IDS) [8], [38],
[39] and software engineering [32], [40]. Specifically, IDS

prioritizes alerts based on the domain knowledge about se-
curity (e.g., the source IP and destination IP) and the attack
path, which is different from our scenario. Identifying severe
bug reports is a critical issue in software engineering. Most
methods in this area aim to extract some textual features (e.g.,
frequency and emotion) from bug reports [32], [40], then apply
machine learning techniques to determine the bug severity. In
our scenario, alert severity is much more complicated than
bugs, because we need to consider various factors due to
the complex and highly dynamic online service environments.
Thus these methods do not perform well, which has been
demonstrated in §IV-C1.

B. Limitation

One limitation of this paper is we do not provide too much
details about parameter selection (e.g., the number of topics,
the number of resolution record clusters, etc), because of the
limit of space. Research on the influence of different parame-
ters on algorithm performance can be our future work. Besides,
more reasonable and generic labeling method, incorporating
feature selection technique and selecting the decision threshold
more adaptively can also be our future work.

VII. CONCLUSION

Large-scale online service systems generate an overwhelm-
ing number of alerts every day. It is time consuming and
error prone for engineers to investigate each alert manually
without any guidelines. In this paper, we novelly propose
a ranking-based framework named AlertRank that identifies
severe alerts automatically and adaptively. One key component
of AlertRank is a set of powerful and interpretable features
to characterize the severities of alerts. These features include
textural and temporal features from alerts, and univariate and
multivariate anomaly features from monitoring metrics. We
evaluate AlertRank using real-world data from a top global
bank, and the results show that AlertRank is effective and
achieves a F1-score of 0.89 on average, and significantly saves
efforts devoted to investigate alerts for engineers.

ACKNOWLEDGEMENT

We thank Junjie Chen for his helpful discussions on this
work. We thank Juexing Liao, Yongqian Sun and Chuanxi
Zheng for proofreading this paper. This work has been sup-
ported by the Beijing National Research Center for Infor-
mation Science and Technology (BNRist) key projects and
National Key R&D Program of China 2019YFB1802504.



REFERENCES

[1] Q. Lin, H. Zhang, J.-G. Lou, Y. Zhang, and X. Chen, “Log clustering
based problem identification for online service systems,” in Proceedings
of the 38th International Conference on Software Engineering Compan-
ion, pp. 102–111, ACM, 2016.

[2] H. Xu, W. Chen, N. Zhao, Z. Li, J. Bu, Z. Li, Y. Liu, Y. Zhao, D. Pei,
and et.al, “Unsupervised anomaly detection via variational auto-encoder
for seasonal kpis in web applications,” in WWW, 2018.

[3] V. Nair, A. Raul, S. Khanduja, V. Bahirwani, Q. Shao, S. Sellamanickam,
S. Keerthi, S. Herbert, and S. Dhulipalla, “Learning a hierarchical
monitoring system for detecting and diagnosing service issues,” in
Proceedings of the 21th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 2029–2038, ACM, 2015.

[4] J. Xu, Y. Wang, P. Chen, and P. Wang, “Lightweight and adaptive service
api performance monitoring in highly dynamic cloud environment,” in
2017 IEEE International Conference on Services Computing (SCC),
pp. 35–43, IEEE, 2017.

[5] G. Jiang, H. Chen, K. Yoshihira, and A. Saxena, “Ranking the impor-
tance of alerts for problem determination in large computer systems,”
Cluster Computing, vol. 14, no. 3, pp. 213–227, 2011.

[6] L. Tang, T. Li, F. Pinel, L. Shwartz, and G. Grabarnik, “Optimizing
system monitoring configurations for non-actionable alerts,” in 2012
IEEE Network Operations and Management Symposium, pp. 34–42,
IEEE, 2012.

[7] W. Zhou, W. Xue, R. Baral, Q. Wang, C. Zeng, T. Li, J. Xu, Z. Liu,
L. Shwartz, and G. Ya Grabarnik, “Star: A system for ticket analysis
and resolution,” in Proceedings of the 23rd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pp. 2181–2190,
ACM, 2017.

[8] W. U. Hassan, S. Guo, D. Li, Z. Chen, K. Jee, Z. Li, and A. Bates,
“Nodoze: Combatting threat alert fatigue with automated provenance
triage.,” in NDSS, 2019.

[9] T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,”
in Proceedings of the 22nd acm sigkdd international conference on
knowledge discovery and data mining, pp. 785–794, ACM, 2016.

[10] X. Yan, J. Guo, Y. Lan, and X. Cheng, “A biterm topic model for short
texts,” in Proceedings of the 22nd international conference on World
Wide Web, pp. 1445–1456, ACM, 2013.

[11] C. Manning, P. Raghavan, and H. Schütze, “Introduction to information
retrieval,” Natural Language Engineering, vol. 16, no. 1, pp. 100–103,
2010.

[12] A. De Cheveigné and H. Kawahara, “Yin, a fundamental frequency
estimator for speech and music,” The Journal of the Acoustical Society
of America, vol. 111, no. 4, pp. 1917–1930, 2002.

[13] S. Khatuya, N. Ganguly, J. Basak, M. Bharde, and B. Mitra, “Adele:
Anomaly detection from event log empiricism,” in IEEE INFOCOM
2018-IEEE Conference on Computer Communications, pp. 2114–2122,
IEEE, 2018.

[14] K. Hundman, V. Constantinou, C. Laporte, I. Colwell, and T. Soder-
strom, “Detecting spacecraft anomalies using lstms and nonparametric
dynamic thresholding,” in Proceedings of the 24th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining,
pp. 387–395, ACM, 2018.

[15] Q. Lin, K. Hsieh, Y. Dang, H. Zhang, K. Sui, Y. Xu, J.-G. Lou, C. Li,
Y. Wu, R. Yao, et al., “Predicting node failure in cloud service systems,”
in Proceedings of the 2018 26th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations
of Software Engineering, pp. 480–490, ACM, 2018.

[16] N. Zhao, J. Zhu, R. Liu, D. Liu, M. Zhang, and D. Pei, “Label-less: A
semi-automatic labelling tool for kpi anomalies,” in IEEE INFOCOM
2019-IEEE Conference on Computer Communications, pp. 1882–1890,
IEEE, 2019.

[17] J. Chen, X. He, Q. Lin, Y. Xu, H. Zhang, D. Hao, F. Gao, Z. Xu, Y. Dang,
and D. Zhang, “An empirical investigation of incident triage for online

[18] J. Chen, X. He, Q. Lin, H. Zhang, D. Hao, F. Gao, Z. Xu, D. Yingnong,
and D. Zhang, “Continuous incident triage for large-scale online service
systems,” in 2019 34st IEEE/ACM International Conference on Auto-
mated Software Engineering (ASE), p. to appear, IEEE, 2019.

service systems,” in Proceedings of the 41st International Conference on
Software Engineering: Software Engineering in Practice, pp. 111–120,
IEEE Press, 2019.

[19] J. MacQueen et al., “Some methods for classification and analysis of
multivariate observations,” in Proceedings of the fifth Berkeley sympo-
sium on mathematical statistics and probability, 1967.

[20] P. J. Rousseeuw, “Silhouettes: a graphical aid to the interpretation and
validation of cluster analysis,” Journal of computational and applied
mathematics, vol. 20, pp. 53–65, 1987.

[21] S. Zhang, W. Meng, J. Bu, S. Yang, Y. Liu, D. Pei, J. Xu, Y. Chen,
H. Dong, X. Qu, et al., “Syslog processing for switch failure diagnosis
and prediction in datacenter networks,” in 2017 IEEE/ACM 25th Inter-
national Symposium on Quality of Service (IWQoS), pp. 1–10, IEEE,
2017.

[22] C. C. Aggarwal and C. Zhai, Mining text data. Springer Science &
Business Media, 2012.

[23] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet allocation,”
Journal of machine Learning research, vol. 3, no. Jan, pp. 993–1022,
2003.

[24] M. Röder, A. Both, and A. Hinneburg, “Exploring the space of topic
coherence measures,” in Proceedings of the eighth ACM international
conference on Web search and data mining, pp. 399–408, ACM, 2015.

[25] M. Vlachos, P. Yu, and V. Castelli, “On periodicity detection and struc-
tural periodic similarity,” in Proceedings of the 2005 SIAM International
Conference on Data Mining, SDM 2005, 04 2005.

[26] N. Zhao, J. Zhu, Y. Wang, M. Ma, W. Zhang, D. Liu, M. Zhang, and
D. Pei, “Automatic and generic periodicity adaptation for kpi anomaly
detection,” IEEE Transactions on Network and Service Management,
2019.

[27] D. Liu, Y. Zhao, H. Xu, Y. Sun, D. Pei, J. Luo, X. Jing, and
M. Feng, “Opprentice: Towards practical and automatic anomaly de-
tection through machine learning,” in Proceedings of the 2015 Internet
Measurement Conference, pp. 211–224, ACM, 2015.

[28] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[29] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521,
no. 7553, p. 436, 2015.

[30] T.-Y. Liu et al., “Learning to rank for information retrieval,” Foundations
and Trends in Information Retrieval, vol. 3, no. 3, pp. 225–331, 2009.

[31] C. J. Burges, “From ranknet to lambdarank to lambdamart: An
overview,” Learning, vol. 11, no. 23-581, p. 81, 2010.

[32] T. Zhang, J. Chen, G. Yang, B. Lee, and X. Luo, “Towards more accurate
severity prediction and fixer recommendation of software bugs,” Journal
of Systems and Software, vol. 117, pp. 166–184, 2016.

[33] C. M. Bishop, Pattern recognition and machine learning. springer, 2006.
[34] D. Man, W. Yang, W. Wang, and S. Xuan, “An alert aggregation

algorithm based on iterative self-organization,” Procedia Engineering,
vol. 29, pp. 3033–3038, 2012.

[35] S. Salah, G. Maciá-Fernández, and J. E. Dı́Az-Verdejo, “A model-based
survey of alert correlation techniques,” Computer Networks, vol. 57,
no. 5, pp. 1289–1317, 2013.

[36] S. A. Mirheidari, S. Arshad, and R. Jalili, “Alert correlation algorithms:
A survey and taxonomy,” in Cyberspace Safety and Security, pp. 183–
197, Springer, 2013.

[37] D. Lin, R. Raghu, V. Ramamurthy, J. Yu, R. Radhakrishnan, and J. Fer-
nandez, “Unveiling clusters of events for alert and incident management
in large-scale enterprise it,” in Proceedings of the 20th ACM SIGKDD
international conference on Knowledge discovery and data mining,
pp. 1630–1639, ACM, 2014.

[38] K. Alsubhi, E. Al-Shaer, and R. Boutaba, “Alert prioritization in intru-
sion detection systems,” in NOMS 2008-2008 IEEE Network Operations
and Management Symposium, pp. 33–40, IEEE, 2008.

[39] Y. Lin, Z. Chen, C. Cao, L.-A. Tang, K. Zhang, W. Cheng, and Z. Li,
“Collaborative alert ranking for anomaly detection,” in Proceedings of
the 27th ACM International Conference on Information and Knowledge
Management, pp. 1987–1995, ACM, 2018.

[40] Q. Umer, H. Liu, and Y. Sultan, “Emotion based automated priority
prediction for bug reports,” IEEE Access, vol. 6, pp. 35743–35752, 2018.


