
Automatically and Adaptively Identifying
Severe Alerts for Online Service Systems

Nengwen Zhao, Panshi Jin, Lixin Wang, Xiaoqin Yang,
Rong Liu, Wenchi Zhang, Kaixin Sui, Dan Pei

INFOCOM 2020

1

Outline

Background Design Evaluation
Operational
Experience

2

Background Design Evaluation
Operational
Experience

3

Service quality

4

Online service systems have become
indispensable parts of our daily life

Search
Engine

Online
Shopping

Social
Network

Service quality and user
experience is vital

one-hour
downtime

Loss $100 million !

Monitoring systems and Alert management
systems

Monitoring System Alert Management System

Front End

Data
Collection

KPIs;
Logs;
Events;
…

Alert Rules

Alerts

On-call
Engineers

Storage
Manager

Job
Scheduler

Resource
Manager

Compute & Storage

Service Users

Se
rv
ic
e
Co
m
po
ne
nt
s

Monitoring

Service Engineers
Contact

Alert
Processing Diagnostics

Severe
Alerts

Tickets

Valid
Alerts

5

e.g., CPU utilization exceeds 90% log file has error keywords

Monitoring data Alert rules

Alert Fatigue

The number of alerts in a large commercial
bank in a given month.

However, due to the large scale and complexity of online service system, the
number of alerts is way more than what on-call engineers can investigate
(Alert fatigue)

6

Alert severity

7

Manual rules are used to classify alerts into different priority levels

Fixed threshold for KPIs:
• CPU utilization over 95% is error
• CPU utilization over 80% is warning

P2-ErrorP1-Critical P3-Warning

Keywords matching for logs:
• Fail, warning, error…

Alert severity

8

However

1. Simple manual rules cannot sufficiently capture the patterns of complex and interacting factors
that influence the priorities of the alerts.

1) there are many types of alerts
2) new types of alerts might be added due to system changes
3) engineers might have different priority preferences

2. It is labor intensive for engineers to manually define and maintain rules

Alert severity

9

Manual rules are used to classify alerts into different priority levels

Fixed threshold for KPIs:

• CPU utilization over 95% is error

• CPU utilization over 80% is warning

ErrorCritical Warning INFO

Keywords matching for logs:

• Fail, warning, error…

Rule-based approach performs not well,often results in missed severe alerts and

lengthened time-to-repair, or results in wasted troubleshooting time on non-

severe alerts.

User complaint
10:45

Response time increases
to 500ms (P2-error).

10:14 11:20

Diagnose
and repair

Recovery
10:20

Alert Alert

Localize root
cause: database

Therefore, it is in an urgent need to design an effective algorithm that fully utilizes
comprehensive factors to identify severe alerts accurately from numerous alerts.

• Failure was discovered at 10:45 by user
complaint

• Before that, there are some related alerts
indicating the failure, but they are P2-error

• wasting 31 minutes of repair time

10

Motivation case study

A missing failure case due to the
unsuitable rule-based strategy

Challenges

11

Labeling
overhead

1

Large varieties
of alerts

2

Complex and
dynamic online
service systems

3

Imbalanced
data

4

A large
number of
alerts every
day

Adapt to the
dynamic
environment

Only a small
portion of
alerts are
severe

Manually define
rules for each
kind of alerts is
unrealistic

Key idea

12

The severity of alert is
influenced by various factors Identifying severe alerts

Feature engineering Learning to rank

AlertRank

Contributions

13

This work is the first one that proposes an automatic and adaptive approach for
identifying severe alerts for online service systems.

We design a comprehensive set of features from multiple data sources to
characterize the severities of alerts.

We formulate the problem of identifying severe alerts as a ranking model, which can
handle class imbalance and instruct engineers to repair which alert first

Experiments on real-world datasets show AlertRank is effective with a F1-score of
0.89 on average.

1

2

3

4

Background Design Evaluation
Operational
Experience

14

TemplatesAlerts

KPIs

Pre-
processing

Feature Extraction

Data
Selection

Feature
Vector

• Textual
• Temporal
• Others

• Univariate
• Multivariate

Online
data

Feature
Extraction

Ranking
Model

Score

Crucial
KPIs

Ranking
Model

Ranking
List

Offline
Learning

Online
Ranking

Periodic Update

Feature
Vector Operators

Records

Core idea:
• Multi-feature fusion: alert features and KPI features
• Learning to rank problem

15

Overview

1. None. (0; 65.1%)
2. This alert is in white list. (0.1; 4.2%)
3. This alert has been recovered automatically. (0.2; 7.8%)
4. Contact the service engineers and there is no effect on business. (0.4; 10.6%)
5. Known reasons. This alert has been resolved. (0.6; 6.4%)
6. Contact the service engineers and there is an effect on business. Already resolved. (0.8; 3.8%)
7. Create a ticket. (1; 2.1%)

Severity score
16

Data prepare

Obtain severity labels automatically from historical resolution records and tickets.

Severe or non-severeBinary
label

Continuous
label

17

Textual features:
• Topic: topic

model
• Entropy: IDF

1

Temporal features:
• Frequency
• Seasonality
• Alert count
• Inter-arrival time

2

Feature engineering

Other features：
• Rule-based

severity
• Alert time
• Type

3

KPI features：
• Service health

status
• Server health

status

4

Alert features KPI features

18

Alert features

• Alert preprocessing
• Tokenization
• Alert parsing: remove parameters

• Textual features
• Topic : Biterm Topic Model
• Entropy: based on Inverse Document Frequency

Extracted topics by BTM and some
corresponding representative keywords

19

KPI features

An example of business KPIs LSTM model

Anomaly score characterize the health status of servers and applications

The qualitative relationship between severity scores and some representative features.
20

Feature analysis

Feature engineering Ranking model

Model: XGBoost ranking

21

Learning to rank

Features

Labels

1. None. (0; 65.1%)
2. This alert is in white list. (0.1; 4.2%)
3. This alert has been recovered automatically. (0.2; 7.8%)
4. Contact the service engineers and there is no effect on business. (0.4; 10.6%)
5. Known reasons. This alert has been resolved. (0.6; 6.4%)
6. Contact the service engineers and there is an effect on business. Already resolved. (0.8; 3.8%)
7. Create a ticket. (1; 2.1%)

a b c

d e …

Incoming
alerts

b de a c

Ranking list

Background Design Evaluation
Operational
Experience

22

Research questions

23

How effective is AlertRank in identifying severe alerts? 1

How much can the alert features and KPI features contribute to
the overall performance? 2

Is the ranking model adopted in AlertRank effective? 3

Is the incremental training pipeline useful? 4

Datasets and metrics

24

Datasets:
• Three datasets with time span of 6

months from a large commercial bank
• Label: based on tickets
• First 5 months as training set, and last

one month as testing set

Metrics:
• Online evaluation
• Precision, recall and F-score
• Top-k precision

Overall performance

25

Baseline methods

• Rule-based: P1-critical, P2- error and P3-warning. Usually, engineers mainly

focus on P1 alerts

• Bug-KNN: utilizes KNN to search for historical bug reports that are most similar

to a new bug through topic and text similarity.

AlertRank outperforms other

baseline method, and achieves

the F1-score of 0.89

Feature contribution

26

0.89

0.76

0.89

0.36

Alert features alone KPI features alone

• Our model benefits from the
ensemble features extracted
from multiple data sources

• Alert features are more powerful
than KPI features.

Effectiveness of ranking model

27

The ranking model adopted in
AlertRank is indeed effective
compared with classification
models.

Incremental training pipeline

28

Incremental training is indeed
essential to keep our models in tune
with highly dynamic online systems

Online service system is
under constant change

Adding new alert
types and rules

e.g., new applications deployment,
software upgrade, or configuration
change

Background Design Evaluation
Operational
Experience

29

Success story

30

Using traditional rule-based strategy, engineers need to investigate more alerts, and waste much time in
investigating non-severe alerts (low precision) but still miss many severe alerts (not high recall). 1

AlertRank can significantly reduce the number of alerts which engineers need to investigate, while
ensuring high precision and recall2

It is time consuming and error prone for on-call engineers to investigate each alert
manually without any guidelines.

We novelly propose a ranking-based framework with multi-feature fusion named
AlertRank that identifies severe alerts automatically and adaptively

1

2

3
AlertRank can significantly reduce the number of alerts which engineers need to
investigate while ensuring high precision and recall.

31

Conclusion

32

znw17@mails.tsinghua.edu.cn

INFOCOM 2020

Thank you!

Q&A

mailto:znw17@mails.tsinghua.edu.cn

