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Service quality
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Online service systems have become
indispensable parts of our daily life

Search
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Shopping

Social
Network

Service quality and user
experience is vital

one-hour 
downtime 

Loss $100 million !
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e.g., CPU utilization exceeds 90% log file has error keywords

Monitoring data Alert rules



Alert Fatigue

The number of alerts in a large commercial 
bank  in a given month. 

However, due to the large scale and complexity of online service system, the 
number of alerts is way more than what on-call engineers can investigate 
(Alert fatigue)
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Alert severity
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Manual rules are used to classify alerts into different priority levels

Fixed threshold for KPIs:
• CPU utilization over 95% is error
• CPU utilization over 80% is warning

P2-ErrorP1-Critical P3-Warning

Keywords matching for logs: 
• Fail, warning, error…



Alert severity
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However 

1. Simple manual rules cannot sufficiently capture the patterns of complex and interacting factors 
that influence the priorities of the alerts. 

1) there are many types of alerts
2) new types of alerts might be added due to system changes
3) engineers might have different priority preferences 

2. It is labor intensive for engineers to manually define and maintain rules



Alert severity
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Manual rules are used to classify alerts into different priority levels

Fixed threshold for KPIs:

• CPU utilization over 95% is error

• CPU utilization over 80% is warning

ErrorCritical Warning INFO

Keywords matching for logs: 

• Fail, warning, error…

Rule-based approach performs not well,often results in missed severe alerts and 

lengthened time-to-repair, or results in wasted troubleshooting time on non-

severe alerts.



User complaint
10:45

Response time increases
to 500ms (P2-error).

10:14 11:20

Diagnose
and repair

Recovery
10:20

Alert Alert

Localize root
cause: database

Therefore, it is in an urgent need to design an effective algorithm that fully utilizes 
comprehensive factors to identify severe alerts accurately from numerous alerts.

• Failure was discovered at 10:45 by user 
complaint

• Before that, there are some related alerts 
indicating the failure, but they are P2-error

• wasting 31 minutes of repair time
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Motivation case study

A missing failure case due to the 
unsuitable rule-based strategy 



Challenges
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Labeling 
overhead 

1

Large varieties 
of alerts 

2

Complex and 
dynamic online 
service systems 

3

Imbalanced 
data 

4

A large
number of
alerts every
day

Adapt to the
dynamic
environment

Only a small 
portion of 
alerts are 
severe

Manually define
rules for each
kind of alerts is
unrealistic



Key idea
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The severity of alert is
influenced by various factors Identifying severe alerts

Feature engineering Learning to rank

AlertRank



Contributions
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This work is the first one that proposes an automatic and adaptive approach for 
identifying severe alerts for online service systems. 

We design a comprehensive set of features from multiple data sources to 
characterize the severities of alerts.

We formulate the problem of identifying severe alerts as a ranking model, which can 
handle class imbalance and instruct engineers to repair which alert first 

Experiments on real-world datasets show AlertRank is effective with a F1-score of 
0.89 on average. 
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Core idea:
• Multi-feature fusion: alert features and KPI features
• Learning to rank problem
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Overview



1. None. (0; 65.1%)
2. This alert is in white list. (0.1; 4.2%)
3. This alert has been recovered automatically. (0.2; 7.8%)
4. Contact the service engineers and there is no effect on business. (0.4; 10.6%)
5. Known reasons. This alert has been resolved. (0.6; 6.4%)
6. Contact the service engineers and there is an effect on business. Already resolved. (0.8; 3.8%)
7. Create a ticket. (1; 2.1%)

Severity score
16

Data prepare

Obtain severity labels automatically from historical resolution records and tickets.

Severe or non-severeBinary
label

Continuous
label
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Textual features:
• Topic: topic 

model
• Entropy: IDF

1

Temporal features:
• Frequency
• Seasonality
• Alert count
• Inter-arrival time

2

Feature engineering

Other features：
• Rule-based 

severity 
• Alert time 
• Type

3

KPI features：
• Service health

status
• Server health

status

4

Alert features KPI features
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Alert features

• Alert preprocessing
• Tokenization 
• Alert parsing: remove parameters

• Textual features
• Topic : Biterm Topic Model 
• Entropy: based on Inverse Document Frequency 

Extracted topics by BTM and some 
corresponding representative keywords
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KPI features

An example of business KPIs LSTM model

Anomaly score characterize the health status of servers and applications



The qualitative relationship between severity scores and some representative features. 
20

Feature analysis



Feature engineering Ranking model

Model: XGBoost ranking
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Learning to rank

Features

Labels

1. None. (0; 65.1%)
2. This alert is in white list. (0.1; 4.2%)
3. This alert has been recovered automatically. (0.2; 7.8%)
4. Contact the service engineers and there is no effect on business. (0.4; 10.6%)
5. Known reasons. This alert has been resolved. (0.6; 6.4%)
6. Contact the service engineers and there is an effect on business. Already resolved. (0.8; 3.8%)
7. Create a ticket. (1; 2.1%)

a b c

d e …

Incoming
alerts

b de a c

Ranking list
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Research questions 
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How effective is AlertRank in identifying severe alerts? 1

How much can the alert features and KPI features contribute to 
the overall performance? 2

Is the ranking model adopted in AlertRank effective? 3

Is the incremental training pipeline useful? 4



Datasets and metrics
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Datasets:
• Three datasets with time span of 6

months from a large commercial bank
• Label: based on tickets
• First 5 months as training set, and last

one month as testing set

Metrics:
• Online evaluation
• Precision, recall and F-score
• Top-k precision



Overall performance
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Baseline methods

• Rule-based: P1-critical, P2- error and P3-warning. Usually, engineers mainly 

focus on P1 alerts 

• Bug-KNN: utilizes KNN to search for historical bug reports that are most similar 

to a new bug through topic and text similarity. 

AlertRank outperforms other

baseline method, and achieves 

the F1-score of 0.89



Feature contribution
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0.89

0.76

0.89

0.36

Alert features alone KPI features alone

• Our model benefits from the 
ensemble features extracted 
from multiple data sources 

• Alert features are more powerful 
than KPI features. 



Effectiveness of ranking model
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The ranking model adopted in 
AlertRank is indeed effective 
compared with classification 
models. 



Incremental training pipeline 
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Incremental training is indeed 
essential to keep our models in tune 
with highly dynamic online systems 

Online service system is 
under constant change

Adding new alert 
types and rules 

e.g., new applications deployment, 
software upgrade, or configuration 
change
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Success story
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Using traditional rule-based strategy, engineers need to investigate more alerts, and waste much time in 
investigating non-severe alerts (low precision) but still miss many severe alerts (not high recall). 1

AlertRank can significantly reduce the number of alerts which engineers need to investigate, while 
ensuring high precision and recall2



It is time consuming and error prone for on-call engineers to investigate each alert 
manually without any guidelines. 

We novelly propose a ranking-based framework with multi-feature fusion named 
AlertRank that identifies severe alerts automatically and adaptively 

1

2

3
AlertRank can significantly reduce the number of alerts which engineers need to 
investigate while ensuring high precision and recall. 
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Conclusion
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