
Practical and White-Box Anomaly Detection

through Unsupervised and Active Learning

Yao Wang†¶, Zhaowei Wang‡, Zejun Xie‡, Nengwen Zhao†¶, Wenchi Zhang‡,

Junjie Chen§, Kaixin Sui‡, Dan Pei†¶*
†Tsinghua University, 100084 ‡BizSeer, 100083 §Tianjin University, 300354

¶Beijing National Research Center for Information Science and Technology (BNRist), 100084
†{wangyao18, znw17}@mails.tsinghua.edu.cn, peidan@tsinghua.edu.cn §junjiechen@tju.edu.cn
‡1160300903@stu.hit.edu.cn, 2017201625@ruc.edu.cn, {zhangwenchi, suikaixin}@bizseer.com

Abstract—To ensure quality of service and user experience,
large Internet companies often monitor various Key Performance
Indicators (KPIs) of their systems so that they can detect
anomalies and identify failure in real time. However, due to a
large number of various KPIs and the lack of high-quality labels,
existing KPI anomaly detection approaches either perform well
only on certain types of KPIs or consume excessive resources.
Therefore, to realize generic and practical KPI anomaly detec-
tion in the real world, we propose a KPI anomaly detection
framework named iRRCF-Active, which contains an unsupervised
and white-box anomaly detector based on Robust Random Cut
Forest (RRCF), and an active learning component. Specifically,
we novelly propose an improved RRCF (iRRCF) algorithm to
overcome the drawbacks of applying original RRCF in KPI
anomaly detection. Besides, we also incorporate the idea of
active learning to make our model benefit from high-quality
labels given by experienced operators. We conduct extensive
experiments on a large-scale public dataset and a private dataset
collected from a large commercial bank. The experimental resulta
demonstrate that iRRCF-Active performs better than existing
traditional statistical methods, unsupervised learning methods
and supervised learning methods. Besides, each component in
iRRCF-Active has also been demonstrated to be effective and
indispensable.

Index Terms—Key Performance Indicators, Unsupervised
Anomaly Detection, Time Series, Active Learning, RRCF

I. INTRODUCTION

To provide high-quality services and guarantee user experi-

ence, technology and financial corporations have been closely

monitoring various Key Performance Indicators (KPIs), in-

cluding business KPIs (high-level) and server KPIs (low-level).

Abnormal patterns or behaviors in KPIs may indicate potential

failures of systems or applications. Therefore, detecting KPI

anomalies is crucial for immediate failure discovery and

troubleshooting. However, designing a well-performed KPI

anomaly detection in practice faces the following challenges.

First, based on our observation, the numbers of KPIs that are

required to be monitored is huge in large companies [1], [2].

Take a commercial bank as an example, there are millions

of indicators that need to be monitored in a single business

line. Besides, diverse KPI patterns exist in the real world,

for example, seasonal, stationary and variable. Fig. 1 presents

some typical patterns from our datasets (to be introduced in

* Dan Pei is the corresponding author.

§IV-A). Furthermore, some seasonal KPIs are also influenced

by irregular holidays (e.g. KPI e in Fig. 1), and consequently,

manual intervention is necessary to correct the detection

results in order to avoid future mistakes.

a

d

b

e

c

f

Fig. 1. Different KPI patterns in our datasets. The three KPIs in the first
row are from dataset α, and those in the second row are from dataset β. Red
points are anomalies labeled by operators.

In recent years, a great deal efforts have been devoted into

the research of KPI anomaly detection. Existing methods can

be classified into three categories, i.e., statistical regression

based methods (e.g. Holt-winters [3], ARIMA [4]), ensemble

supervised learning based methods (e.g. Opprentice [5]), un-

supervised learning based methods (e.g., Donut [6], Bagel [7],

Buzz [8]). However, taking accuracy, generality, efficiency and

interpretability into consideration, which are the concerns of

engineers, the performance of these methods are far from

satisfying in practice.

Based on our domain knowledge collected from practice and

discussions with engineers from several large corporations, we

conclude that a practical KPI anomaly detector should satisfy

the following requirements:

1. Unsupervised. It is difficult to obtain high-quality labeling

for a large number of KPIs, which requires rich domain

knowledge. Therefore, an unsupervised method is desired.

2. Generic. The algorithm must perform well on various KPIs.

3. Interpretable. The algorithm should be friendly to engi-

neers, so it should avoid a large number of parameter tuning

processes. In addition, users should be able to perceive the

internal details of the model, and can adjust the model

according to the actual situation to avoid repeated false

1



positives or false negatives.

4. Efficient. The resource requirements should be satisfiable

and reasonable in commodity setups. The amount of data to

be detected will increase year by year, but resources used

for anomaly detection will not increase linearly, thus a large

number of KPIs should be trained and detected with limited

resources. Unsupervised methods based on deep generative

models are not promising in this aspect.

To achieve the aforementioned design goals, in this paper,

we propose a novel and practical KPI anomaly detection

method based on two observations. First of all, after in-

vestigating many technology and financial corporations, we

found that although corporate users are unwilling to learn

parameter tuning, they can still accept a small amount of

labeling overhead. For example, users are willing to spend

2-3 minutes labeling 20-30 anomalies to get more accurate

results. Also, users expect to be able to automatically adjust

the model through label feedback when a false positive occurs,

to prevent similar situations from happening again. Second,

inspired by IF-Active [9], which incorporates feedback and

tree-based anomaly detectors, we believe that white-box and

unsupervised algorithms, coupled with active learning, can im-

prove accuracy. White-box algorithms such as Isolation Forest,

mean that we know exactly how each anomaly is generated,

thus we can accurately analyze which labels are more valuable

for model improvement. By actively recommending curve

segments with higher uncertainty, the same number of labels

can provide richer feedback information, thereby improving

the efficiency of model tuning.

Therefore, for anomaly detection to perform better in this

context, we need an unsupervised, white-box, stable anomaly

detection algorithm without parameter tuning. This algorithm

is assisted by active learning to improve feedback efficiency

and it can handle a large number of KPIs while requiring

limited resources.

During the design of this solution, we encountered the

following challenges.

1. Unsupervised white-box algorithms can be divided into

two main categories. Basic statistical methods (such as

ARIMA, 3-sigma, Holt-Winters) [3], [4] cannot be dy-

namically adjusted based on user feedback. Algorithms of

constructing complex models (such as Isolation Forest) [10]

need operators to design adjustment solutions based on the

characteristics of the algorithms. We chose Robust Random

Cut Forest (RRCF) [11], which was published later with

better theoretical results. RRCF performs normally on our

dataset, and its capacity must be lifted.

2. The RRCF algorithm frequently optimizes the tree model

based on the detected outliers, so the performance is poor

when processing a large number of indicators. We need

to improve the speed of RRCF so that it can cope with

real-world situations.

3. Labels are just pieces of outliers, and the overhead of label-

ing is quite heavy, so we need a carefully designed solution

to convert labels into an optimization strategy for the model

and to improve the efficiency of this transformation.

In this paper, we propose iRRCF-Active on top of RRCF,

on which we made the following improvements to solve the

above-mentioned challenges.

1. The algorithm capacity is improved because of several im-

provements to RRCF, which include redesigning CoDisp

calculation methods, optimizing the defects of the tree

structure, and strengthening the feature selection stage.

With these adjustments, iRRCF-Active can perform well

on a variety of curves elaborated later in §IV.

2. The original RRCF is slow so it needs to be optimized.

We improved the automatic update process of the original

RRCF, and cached outliers from typical KPIs that are

valuable for learning, thus the frequency and time of model

updates are reduced.

3. RRCF itself cannot learn from feedback. We designed a

label feedback strategy for RRCF. Besides, our approach

proactively recommends the most valuable possible seg-

ments to users, to boost user’s labeling efficiency.

The contributions of this paper can be summarized as

follows:

1. To the best of our knowledge, iRRCF-Active is the first to

propose a framework that uses a white-box unsupervised

tree-model with the help of active learning in the field of

time series anomaly detection.

2. Our implementation of this framework by improving RRCF

results in lower latency and higher accuracy. iRRCF-Active

improves the anomaly detection best F1-score by 0.19 to

0.5 for datasets α and β, and reduces the detection time by

up to 58%.

3. We design an active learning solution for time series

anomaly detection, which can actively recommend seg-

ments for labeling based on uncertainty, thereby enhancing

the efficiency of transforming labels into model improve-

ment.

II. BACKGROUND

A. Key Performance Indicator

A key performance indicator(KPI) is a time series composed

of (timestamp, value) pairs. A KPI can be denoted as

{x1, x2, . . . , xn}, where xi is the value corresponding to time

index t for t ∈ {1, 2, . . . , n}, n is the timestamp of the last

time this time series was monitored. KPIs can be collected

from many sources, such as networks, transaction links, re-

quest logs, and other monitoring systems [5]. Compared with

traditional time series, KPIs contain a larger amount of data

which can reflect many applications and business changes,

and KPIs with similar collection sources often have similar

characteristics [12]. For example, our dataset contains many

types of KPIs, as shown in Fig. 1. Among these types, Internet

traffic KPIs often demonstrate seasonal patterns, and low-

frequency trading KPIs usually have more glitches.

B. KPI Anomaly Detection

An anomaly in a KPI often appears as a sudden spike,

sudden dip, or jitter, etc., as shown in red in Fig. 1, which

2



indicates an unexpected pattern that violates expectations

based on history. Operators can deploy detectors according

to their domain knowledge to identify KPI anomalies, but a

KPI anomaly is difficult to be described with pre-defined rules

[5], since it depends on the context in which standard formu-

las cannot represent them [13]. Consistent with the general

definition of outliers [14], KPI anomalies are observations

that differ significantly from other observations [15]. When

labeling anomalies, the domain expert will visually scan the

KPI to determine its normal pattern, and consider those points

that are significantly different from the normal counterparts

as abnormal [16]. Therefore, understanding the distribution of

the normal data is the key to unsupervised anomaly detection.

Existing time series anomaly detection methods can be

classified into three categories, i.e., statistical regression based

methods, ensemble supervised learning based methods, unsu-

pervised learning based methods.

1) Statistical regression based methods (e.g. Holt-winters,

3-sigma, etc.) [3], [4], [17], [18] have been proposed and

improved, but each method fits to only KPIs with specific

patterns. For example, Moving Average (MA) can only deal

with KPIs that do not change drastically, and 3-sigma can

only deal with KPIs with a concentrated distribution. Thus

these methods are difficult to be generalized. Besides, after

many iterations of improvements, these methods still demand

extensive manual fine-tuning.

2) Supervised-learning based methods (e.g. Opprentice) [5],

[19] ensemble several traditional statistical methods into a

powerful classification model, which heavily rely on labeled

data and the quality of labeling. However, it is time-consuming

and tedious to acquire high-quality labels, considering the

amount of KPIs and the requirement of expert knowledge

for labeling [16], which prevents supervised learning based

methods from being deployed in scale.

3) Unsupervised-learning based methods is pretty popular in

recent years, for example Donut [6] based on deep generative

models achieved outstanding results in seasonal KPI anomaly

detection. Nevertheless, with the adoption of neural networks,

the resources required for training are much more than that

required by traditional methods, and GPU participation is often

required. This amount of resource consumption is usually

impractical in production environments with millions of KPIs

to be monitored.

Other unsupervised learning based methods [10], [11], [20],

[21] generally outperform statistical regression based methods,

but are surpassed by deep generative model based methods

[6], [8], [15], [22] in certain cases, such as KPIs with obvious

periodicity. Note that even with the help of KPI clustering

algorithms like ROCKA [23], unsupervised deep generative

models still cannot handle a large number of KPIs. This is

because ROCKA cannot guarantee a fixed number of KPI

clusters. Once the number of clusters is specified to limit

resource usage, the effectiveness of the algorithm may be

reduced due to the diversity of the curves within the cluster.

Therefore, clustering can only be used as an auxiliary means

of improving resource utilization, not to mention that neural

networks require additional GPU resources unlike other algo-

rithms.

A comparative summary is shown in TABLE I, which will

be detailed later in §IV. Therefore, none of the current algo-

rithms can meet all the requirements above, and production

anomaly detection has not been implemented in enterprise-

level practice.

Yet, we notice that those unsupervised algorithms that do

not use neural networks are not flawed in the above three

characteristics, but they are not excellent enough to com-

pete with unsupervised algorithms that use neural networks.

However, due to the use of labels, the effects of supervised

algorithms such as Opprentice are close to methods using

neural networks like Donut. Obviously, one disadvantage of

unsupervised learning is that they are unable to learn feedback

from expert operators, in addition to the difficulty of promotion

without enough apparent outliers. If they can somehow learn

at least some expert knowledge, their results may be greatly

improved, with fewer additional resources required than neural

networks do.

TABLE I
COMPARISON AMONG ANOMALY DETECTION APPROACHES

With characteristic 1 2 3 4 iRRCF-Active

High Capacity No Yes Some Yes Yes
Avoid parameters tuning No Yes Yes Some Yes
Avoid Labeling Yes No Yes Yes Yes
High detection speed Yes Some Some Some Yes
Train with limited resources Yes Some Yes No Yes
Adjustable No Yes Yes No Yes

1: traditional statistic method, e.g., time series decomposition, ARIMA
2: supervised ensemble method, e.g., Opprentice
3: unsupervised method, e.g., RRCF
4: unsupervised method with deep generative model, e.g. Donut

C. Active Learning with Anomaly Detection

Active learning [24] utilizes a strategy to query the most

valuable unlabeled samples and passes them to the experts

for labeling, and trains a classification model based on this to

improve accuracy. It is closely related to the problem we are

trying to solve. In the time series anomaly detection scenario,

labeling can improve the algorithm’s effect, but it is relatively

difficult to obtain. IF-Active [9] takes advantage of the Isola-

tion Forest supplemented by a simple active learning strategy,

which has produced good results, but it is not designed for time

series anomaly detection scenarios. In this paper, we present

three ideas for actively recommending labeling of time series,

and we offer specific implementations based on RRCF. More

complex active learning strategies may lead to better results

and we will leave them for future work.

D. Clustering of KPIs

Millions of KPIs incur huge challenges for anomaly de-

tection. Fortunately, many KPIs are similar becasue of their

implicit associations and similarities [23]. For example, Fig. 2

shows the TPS metric collected from two different hosts that

are quite similar in shape. If we can identify similar KPIs and

group them into several clusters, the overhead that originates

from KPIs quality can be reduced.

3



0

2000

4000

6000

8000

10000

12000

14000

16000

12/31 01/01 01/01 01/02 01/02 01/03 01/03 01/04 01/04 01/05

T
p
s

10.0.0.33
10.0.0.34

Fig. 2. The TPS metric of two different hosts

Time series clustering is a popular field that has attracted

a lot of attention in the past 20 years. [25] summarizes

a number of approaches on this topic. In this paper, we

use Dynamic Time Wrapping (DTW) [26] to compute the

similarity between KPIs, and use DBSCAN [27] to pre-cluster

the KPIs. DBSCAN does not require a predefined number

of categories, and can control the degree of similarity within

categories by adjusting the clustering radius, which is suitable

for our scenario. Therefore, we can train a model for a KPI

group instead of a single KPI if possible, which will reduce

training resources requirements.

E. Robust Random Cut Forest

Robust Random Cut Forest(RRCF) [11] was proposed to

improve Isolation Forest [10]. RRCF is designed to handle

large volumes of streaming data. It reduces the influence of

irrelevant dimensions in the input data, and gracefully handles

duplicates and near-duplicates that could otherwise mask the

presence of outliers. In the process of constructing the tree,

RRCF tends to select features with very large differences as

the cut points. RRCF also maintains a rolling pool and utilizes

each detected data to adjust the model. RRCF has already

been implemented and used for anomaly detection in Amazon

Kinesis real-time analytic engine [28]. Users can write SQL-

like statements to implement anomaly detection for a single

stream, but it still cannot process a large number of KPIs with

low latency in production.

III. ARCHITECTURE

The overall architecture of our proposed iRRCF-Active is

demonstrated in Fig. 3. Obviously, our approach contains three

components, i.e., training, detection and feedback. Specifically,

in the stage of training, we first preprocess KPIs and extract

powerful features from each KPI, then we novelly propose

an improved RRCF (iRRCF) algorithm as outlier detector

to overcome the drawbacks of original RRCF, and use the

extracted features to train an initial iRRCF model. In the

stage of detection, iRRCF could provide an anomaly score

for each point, which characterizes the degree of anomaly. To

enhance the detection performance, iRRCF-Active leverages

the technique of active learning and provides some important

KPI segments to operators, so that they could spend little time

labeling some key points, which can significantly improve

detection performance. In the stage of feedback, operators

can check the anomalous points given by iRRCF and provide

feedback (false positives and false negatives), so that the

iRRCF model can be further enhanced.

Training

Unlabeled

KPIs

Feature

Selection

Improved

RRCF

Active LearningRecommand

Anomalies

Detection

Candidate

Anomalies
Operators

Analyst

Convert Feedback

to Model Optimizations

iRRCF-Active

Feedback

Optimized

Detection

Anomalies

Labels

(Optional)Labels (Optional

but recommand)

Pre-

clustering

Fig. 3. Overall architecture of iRRCF-Active

A. Training

1) Preprocessing: Based on our observation, the number

of KPIs is overwhelming in large companies, which brings

great challenge for detecting anomalies for each KPI. A

common practice is adopting the technique of time series

clustering to cluster similar KPIs together [12]. In this way,

similar KPIs with similar patterns could adopt a same anomaly

detection algorithm. In our approach, we adopt Dynamic Time

Warping (DTW) [26] to compute the similarity between two

KPIs, and employ DBSCAN [27] to cluster the large number

of KPIs. It is because DTW is state-of-the-art time series

distance measurement, and DBSCAN does not require the

number of clusters as prior knowledge. Besides, before KPI

clustering, we need to preprocess each single KPI, including

missing value imputation with linear interpolation and min-

max normalization.

Notice that KPI clustering is an optional component in

iRRCF-Active, and the main purpose is to save the time

cost of training a model for each KPI individually. Its effect

depends on the characteristics of the dataset. Therefore, the

clustering step can be omitted on datasets without obvious

commonalities.

2) Improved RRCF: The capacity of original RRCF is

not enough for production, and its detection speed needs to

be improved. In our iRRCF-Active framework, we novelly

propose an improved RRCF algorithm (iRRCF), which can

overcome some drawbacks of the original RRCF, and the

major differences are displayed in TABLE II. In the following,

we will introduce each improvement in detail.

Feature Representation. Original RRCF uses the most

recent points in history as its features, so it is difficult to obtain

time-related characteristics (such as periodicity, trend changes,

etc.) of the data. We selected six classical and common time

series features as candidate sets, as shown in TABLE III. These

features cover general time series characteristics and are easy

to calculate. Since different KPIs often have distinct statistical

characteristics, these characteristics may not be suitable for or

applicable to each KPI. Therefore, we design a set of statistical

indicators and calculate their values for each KPI. Next, we

determine which characteristics are appropriate to the KPI

based on this set of indicators. The effectiveness of feature

extraction and feature selection will be demonstrated in §IV.

4



TABLE II
DIFFERENCES BETWEEN OUR PROPOSED IRRCF AND ORIGINAL RRCF

Process Original RRCF iRRCF

Features representation Recent points in history Time series statistical features with feature selection
Node cut dimension selection Only consider range of dimensions Also consider maximum distance of dimensions
Node cut threshold selection Cut at randomly selected interval Cut at the most sparse interval
Anomaly score calculation Only consider siblings Also take node depth into consideration

TABLE III
FEATURES AND THEIR APPLICABLE CONDITIONS

Feature Applicable Condition

Median Few spikiness [29]
Standard deviation Stationary
Difference from previous period point Seasonal
Difference from previous point Trendiness
Second-order difference from the first point Meet the above 4 points
Third-order exponential average Predictability

Node Cut Dimension Selection. After extracting the multi-

dimensional features of the training set, the original RRCF

will randomly select dimensions and cut on them to build

multiple decision trees. The tree in Fig. 4(a) first selects more

distinguishing features (marked in red), so it only needs two

layers to distinguish all samples. Due to the poor feature

discrimination, the level of the tree in Fig. 4(b) is higher. This

difference will be more obvious when the number of samples

is larger. The original RRCF algorithm tends to choose the

feature with greater range as the criterion for cut. That is, the

probability of choosing the i-th dimension with feature set

S is li∑
j
lj

, where li = maxx∈S xi − minx∈S xi and S is in

ascending order. Such a basis, however, does not well reflect

the distinguishing degree of features. A series that exhibits

periodic characteristics tends to have a larger range than that

of those with stable patterns. Some features may have a large

range, but normal data is evenly distributed. Some features

have a small range, but abnormal points and normal points

are clearly gathered respectively, and cut in these features can

help distinguish anomalies more directly. In order to increase

the ability of feature discrimination in iRRCF, we introduce the

maximum distance gi = maxx∈Sxj −xj−1 for the dimension

i. We choose an arbitrary dimension that is proportional to

pi =
gi∑
j
gj

+ li∑
j
lj

.

Feature 1

Feature 2 Feature 2

<
�
7
.4
4

≥

�
�
��
�

<

34
.8
1

≥
34
.8
1

<
10
7.
65

≥107.65

Feature 3

Feature 4

<
82
.7
7

<
89
7.6
4

≥ 897.64

Feature 2

<
4.
96

≥
4.96

≥
82.77

(a) Fig. A (b) Fig. B

Fig. 4. Different node cut dimension selection strategies lead to trees with
distinct structures and accuracy. Distinguishing features are marked in red.

Node Cut Threshold Selection. Original RRCF randomly

chooses a value between maximum and minimum feature

value as the cut threshold. For a feature with high discrimina-

tion, its data often has aggregated distribution, so the result of

cutting in sparse is much better than that in dense. Therefore,

in iRRCF, after selecting the dimensions for cut, we focus

on the data distribution specifically in this dimension and we

increase the probability of cutting in the sparse distribution.

Formally, the process can be summarized as follows:

1) Divide the feature extracted from the training set into N

intervals [l0, h0, l1, h1, . . . , lN−1, hN−1]
2) Compute the density of feature in every interval di =

Count(p, p ∈ [li, hi])
3) Choose a random interval i proportional to di∑

j
dj

4) Choose Xi ∼ Uniform[li, hi]

Anomaly Score Calculation. In RRCF, each sample will

fall to a leaf node in the tree and original RRCF forest

will calculate an anomaly score CoDisp for each sample to

characterize the degree of anomaly. The CoDisp is calculated

according to the following steps:

1) Find the leaf node Node of the sample xi in each tree T

2) Count the number of samples in the subtree rooted by

sibling and parent of Node, denoted by SNode.sibling and

SNode.parent, and calculate CoDispNode =
SNode.sibling

SNode.parent

3) Go up one level in the tree, Node = Node.parent

4) Repeat 2 to 3 for N times, where N is the number of

features used

5) CoDispT is the max value of each CoDispNode

6) The final CoDispxi
for sample xi is CoDispT , T ∈

forest

Due to space limit, more details about anomaly score

calculation of original RRCF can be found in [11]. Obviously,

the samples represented by sibling nodes are different from

the current samples in specific dimensions. If the number

of sibling samples is larger, the probability that the current

sample is an outlier is also higher. However, such a strategy

does not take the depth of the nodes in the tree into account.

Usually, the greater the depth, the larger the number of cuts

and the lower the possibility of anomalies. Therefore, in

iRRCF, we incorporate the node depth when calculating the

anomaly score, that is, the CoDispNode in step 2) above is

adjusted to CoDispNode =
SNode.sibling

SNode.parent×Node.depth
.

B. Detection

After the stage of model training, iRRCF model will provide

an anomaly score for each point including both historical

points and incoming online data points. Intuitively, incorpo-

rating some labels into our unsupervised learning models can

5



significantly improve the performance, since labels can instruct

the model to know what are anomalies accurately. Therefore,

to enhance our approach, we propose to incorporate some

labeling into iRRCF, so that iRRCF can be optimized to obtain

better detection performance.

1) Candidate Labels Recommendation: In order to collect

user feedback and improve labeling efficiency, in iRRCF-

Active, we propose an active learning method to recommend

to operators those anomalous fragments that can enhance

model optimization efficiency. We sort the training set based

on anomaly scores given by iRRCF, and select anomalous

fragments at different positions according to three strategies.

The anomalies of time series data usually appear in the form

of continuous time segments. Hence, instead of letting the

operator give feedback to a single point, we recommend

continuous abnormal points to the operator as an abnormal

segment. There are three popular recommendations strategy in

the field of active learning, which are introduced as follows.

a) Select 30 the most abnormal segments. Obtaining such

labels can further confirm obvious anomalies and eliminate

false positives.

b) Select 30 the most uncertain abnormal fragments. Anomaly

detection of time series is a binary classification problem.

Gaining such labels can further improve the boundaries of

the classification result and can also improve the accuracy

of identifying ambiguous anomalies.

c) Divide the data into 10 groups based on anomaly scores,

and select 3 abnormal fragments in each group with a

medium probability. Obtaining such labels can capture

the preferences of operators towards different degrees of

abnormality produced by the algorithm evaluation, and then

can help determine which group is more possible to be the

boundary point between abnormal and normal cases.

Detailed implementations of these strategies in iRRCF are

displayed in Fig. 5. Based on the experiments in Section §IV,

strategy a is demonstrated to be more effective than other two

strategies. Therefore, we adopt strategy a in our model.

C

B

A

Choose top 30 anomlay fregements

Choose the most uncertain anomlay fregements, which is the nearest 30 anomaly

fregments around threshold

Divide the distribution of anomalous score equally into 10 intervals, and randomly

select 3 anomaly fregments within each interval

Fig. 5. Candidate labels recommendation process

2) Model Optimization: Original RRCF maintains a dy-

namic tree collection based on real-time data. When a new data

point arrived, RRCF performs an insertion process and uses

this data point to update each tree in the model. This process

incurs additional calculations which slow down the inspection

process. Considering the number of anomalies is relatively

small in practice, the tree can be selectively updated according

to the degree of abnormality of the data. In order to ensure that

the model can cover the changes of extreme features in time,

two types of data points need to be updated. One type is the

first anomalous point in a continuous anomalous segment, and

the other is a point that is judged to be normal but extremely

abnormal in a specific dimension. We collectively refer to these

two types of points as extreme. In addition, in order to obtain

the slowly changing trend of some special curves, iRRCF-

Active will also update the model with normal points at a

lower frequency when the two types of data points have not

appeared for a long time. Our scheme is shown in Algorithm 1.

Algorithm 1 Obtain Anomaly Score and Update Model

Require: New data point p, the original tree tree

1: function GET SCORE(p, tree)

2: Node← tree.root

3: if isinstance(Node, LEAF ) then

4: if p is extreme or already skip 100 points then

5: INSERT POINT(p, tree)

6: end if

7: return CODISP(p)

8: end if

9: if p[Node.dim] <= Node.threshold then

10: return GET SCORE(p, Node.left)

11: else

12: return GET SCORE(p, Node.right)

13: end if

14: end function

C. Feedback

In order to benefit iRRCF-Active from user feedback, we

design two model optimization strategies based on labels. The

use of labeling is not limited to the training phase. Users

may apply a set of historically accumulated labels in the

training phase. After starting real-time detection, they may

label a single case due to poor results. Therefore, the feedback

strategy must be simultaneously applicable to a group or a

single label.

a) Original RRCF includes multiple trees that are randomly

constructed, and their classification accuracy scores are

different. With the help of user feedback, iRRCF-Active

evaluates which trees are more reliable in terms of classifi-

cation, and accordingly give higher weights to these trees.

The process of adjusting model based on a set of labels is

described in Algorithm 2.

b) Original RRCF requires that the proportion of the normal

data is much larger than that of the anomalous data. In

iRRCF-Active, the influence of normal samples is boosted

by repeatedly applying the normal samples 10 times to

update the model. At the same time, for samples marked

as abnormal, the node corresponding to the sample in each

tree can be marked as abnormal. In subsequent detection, if

a sample corresponds to abnormal nodes in more than half

of the trees, it can be determined as abnormal. Therefore,

iRRCF-Active does not update with a point that has been

determined to be abnormal. When there are many abnormal

points in labels, the data requirements of original RRCF

6



will not be destroyed, and the model can also learn the

characteristics of the abnormality.

Algorithm 2 Update Weight of Trees based on Labels

Require:

1: Number of trees in forest m

2: Number of labels n

3: Anomaly score metric CoDisp M [i][j] for label i calcu-

lated from tree j

4: labels provided by users label

5: function GET TREE WEIGHT(m, n, CoDisp M , label)

6: tw ← Zeros(1,m)
7: for i = 0→ n do

8: if label[i] == 1 then

9: tw[:]← tw[:] + δ × CoDisp M [i, :]
10: end if

11: end for

12: return tw

13: end function

Based on the experiments in Section §IV, Strategy a is a

better fit for our improved RRCF.

IV. EVALUATION

A. Datasets

Our experiments are conducted on two datasets. Dataset

α is a public dataset(AIOps competition [30], [31]) with 29

KPIs and 5,922,913 points that consist of 79,554 anomaly

points, corresponding to 1,212 consecutive anomalous seg-

ments. Dataset β contains 10 well-maintained KPIs from a

large commercial bank with 375,847 points that consist of 701

anomaly points, corresponding to 43 consecutive anomalous

segments. The sampling interval for KPIs in these two datasets

is 1 minute, the time span of dataset α is 7 months, and the

time span of dataset β is 1 month. The labels of each KPI in

two datasets are manually confirmed by experienced operators.

B. Evaluation Metrics

Following [6], [7], we adopt the revised F1-score proposed

by [6] as the evaluation metric. In the KPI anomaly detection

scenario, the real failure is often a continuous anomalous

segment, and the operator is more concerned about whether

the fault notification is timely. Therefore, as long as the

anomaly detection method can trigger an alarm within a

short period of time after the failure starts (i.e., before the

maximum allowable delay), the modified F1-score considers

that the entire anomalous segment is successfully detected.

Similarly, if the first alarm given by the algorithm for a fault

happens later than the maximum allowable delay, the entire

anomalous segment corresponding to the fault is considered as

false negatives. Figure 6 illustrates the way of measurements

described above. For convenience, we still refer to the modified

F1-score as F1-score.

Similar to [6], [7], [32], in order to show the best potential

performance of the model, we use the best F1-score, which is

calculated from the threshold to obtain the best performance

on the test set. In other words, we use all possible thresholds

to calculate the improved F1-score on the test set and use the

best score as our evaluation indicator.

0 0 1 1 1 0 0 1 1 1 1truth

point-wise alert

adjusted alert

1 0 0 1 1 1 0 0 0 1 1

1 0 1 1 1 1 0 0 0 0 0

maximum allowed delay = 2

Fig. 6. Illustration of the evaluation metric

During the experiment, we divided each KPI equally with

respect to time. The first half is used as the training set and

is not used for testing. The second half is used as the test

set and is unknown during the training process. During the

test, the second half of each KPI is used to simulate an online

detection process, and no information of the next data point

is utilized when detecting the previous point.

All experiments are performed on all KPIs and repeated for

10 times. They were run on a same machine with each KPI

evaluated serially. The machine has 22 CPU cores (2.2 GHz

per core) with 48GB RAM.

All time units of training and detection in the experiment

are the average minutes consumed by each KPI in the dataset.

C. Overall Performance

To demonstrate the effectiveness of our proposed iRRCF-

Active in KPI anomaly detection, we compare it with several

state-of-the-art anomaly detection methods, i.e., IF-Active [9],

original RRCF (traditional unsupervised algorithm), Random

Forest (RF, classic supervised method), and Donut (unsuper-

vised algorithm based on deep generative model). The reason

why we choose RF instead of Opprentice [5] is because the

latter needs to calculate a large number of features, which is

extremely time-consuming and unrealistic to apply in practice.

The comparison results are displayed in TABLE IV.

TABLE IV
OVERALL PERFORMANCE

Method
Best F1-score Train Time Detection Time
α β α β α β

Donut 0.72 0.46 10.9 1.7 2.1 0.43
IF-Active 0.76 0.58 1.4 0.43 1.2 0.25

Isolation Forest 0.58 0.28 0.17 0.09 0.11 0.06
Random Forest 0.69 0.44 0.4 0.14 0.5 0.07
Original RRCF 0.70 0.31 0.48 0.37 12.1 3.8

iRRCF-Active 0.89 0.81 0.93 0.88 7.8 1.6

Obviously, our iRRCF-Active can achieve the best perfor-

mance, with 0.89 and 0.81 F1-score on average on each

dataset, larger than compared methods. The training time

of iRRCF-Active is slightly longer than other unsupervised

methods, but it is still acceptable and far below Donut. The

detection time of iRRCF-Active is reduced by up to 58%

compared to the original RRCF, which further improves the

processing capacity of streaming data.

7



D. Feature Selection and Clustering

In TABLE V, we compare the effect of feature selection

on RRCF. Experiments show that the six features we selected

and the feature selection stage all improve the effectiveness of

RRCF.

We also tried the pre-clustering introduced in §III-A1 on

both datasets, and used the features selected by the KPI closest

to the cluster center as the features selected by the cluster. The

29 KPIs of dataset α are clustered into 12 groups, and the 10

KPIs of dataset β are clustered into 6 groups. As the number of

models to be trained is reduced, the time consumed for training

is also significantly reduced more than 50%. Large internet

companies or banks will have far more KPIs than our dataset.

Creating a separate model for each cluster can significantly

reduce modeling costs, and the gains achieved in reality will

far exceed the proportion we evaluate in experiments.
TABLE V

EFFECTIVENESS OF FEATURE SELECTION AND CLUSTERING

Method
Best F1-score Train Time Detection Time
α β α β α β

Original RRCF 0.70 0.31 0.48 0.37 12.1 3.8
1 0.73 0.44 0.51 0.44 13.9 4.0
2 0.74 0.47 0.41 0.32 11.2 3.6
3 0.71 0.40 0.2 0.13 10.9 3.5

1: Original RRCF with all 6 features mentioned in §III-A2
2: Method 1 with feature selection
3: Method 2 with pre-clustering stage in §III-A1

However, since the datasets we use are not collected from

a single source, and the internal KPIs are not quite similar,

the trade-off after clustering is also high. Therefore, to obtain

better results in the following experiments, we did not choose

to turn on the optional stage.

E. Improved RRCF

We evaluated the RRCF optimizations mentioned in

§III-A2, and the results are presented in TABLE VI. As

can be seen, most of the optimizations for the algorithm

have achieved good results. However, comparing the results

using all optimizations with each individual optimization, it

can be seen that the improvement in performance is not

superimposed. In dataset α, the optimization effect of §III-A2

has approached the effect of overall optimization. This does

not mean that only this optimization point is the most effective.

In dataset β, the improvement of §III-A2 is the only one

of all optimizations that does not increase, but the overall

optimization improvement is still outstanding.

The improvement of the detection process in §III-B2 sig-

nificantly reduces the time consumed for detection, and this

reduction in dataset β has even reached 65%. At the same

time, because the frequency of using normal points to update

the tree is greatly reduced, the algorithm’s sensitivity to some

trend changes that fall within the normal range will decrease,

so the effect is slightly reduced.

It is worth noting that the effect of §III-B2 in dataset β

has been improved compared to that before improvement. Our

analysis found that there are many slight spikes and dips in

dataset β. Most of them are in the normal range, but a few

TABLE VI
EFFECTIVENESS OF RRCF

Method
Best F1-score Train Time Detection Time
α β α β α β

1 0.74 0.47 0.41 0.32 11.2 3.5
2 0.75 0.48 0.51 0.37 11.9 4.1
3 0.78 0.43 0.58 0.44 11.2 4.0
4 0.76 0.48 0.86 0.48 12.0 4.3
5 0.79 0.59 0.93 0.74 12.0 4.3
6 0.78 0.65 0.93 0.75 7.8 1.5

1: Original RRCF with feature selection
2: Method 1 with CoDisp calculation optimization in §III-A2
3: Method 1 with node cut dimension selection optimization in §III-A2
4: Method 1 with node cut threshold selection optimization in §III-A2
5: Method 1 with all optimizations above
6: Method 5 with model update progress optimization in §III-B2

abnormal extreme values are mixed in these normal points. In

the original RRCF, all points are used to update the tree, thus

the recall rate of the model is reduced compared to when the

model is only updated by those extreme values.

F. Feedback Strategy

We propose two different user feedback strategies in §III-C.

TABLE VII shows the improvement effects of these two

strategies and their combinations after applying all the algo-

rithmic optimizations. The number of labels used for model

optimization is consistent with that of actively recommended

labels in the overall scheme of iRRCF-Active, and the labels

used are randomly selected from the label set. The results

demonstrate that Strategy a in §III-C is more suitable for the

improved RRCF, since it performs better than the other two

strategies with same labels on both datasets.

TABLE VII
USER FEEDBACK STRATEGY

Method
Best F1-score Train Time Detection Time
α β α β α β

1 0.78 0.65 0.93 0.75 7.8 1.5
2 0.84 0.74 0.96 0.83 8.0 1.6
3 0.83 0.71 0.89 0.77 8.1 1.7
4 0.82 0.69 0.93 0.78 8.3 1.7

1: iRRCF-Active without any user label feedback strategy
2: iRRCF-Active with label feedback strategy a in §III-C
3: iRRCF-Active with label feedback strategy b in §III-C
4: iRRCF-Active with both strategies

G. Label Recommendation Strategy

We propose three points of active recommendation la-

beling and specific implementations for RRCF in §III-B1.

TABLE VIII compares the labeling quality recommended by

these three strategies under the same optimization conditions

and the best labeling feedback strategy a in §III-C. The results

illustrate that the implementation of Strategy a in §III-B1 is

more suitable for the improved RRCF.

TABLE VIII
LABEL RECOMMENDATION STRATEGY

Method
Best F1-score Train Time Detection Time
α β α β α β

1 0.78 0.65 0.93 0.75 7.8 1.5
2 0.89 0.81 0.93 0.88 7.8 1.7
3 0.86 0.78 0.89 0.82 7.6 1.6
4 0.83 0.77 0.90 0.81 7.9 1.6

1: iRRCF-Active without any user label feedback strategy
2: iRRCF-Active with label recommendation strategy a in §III-B1
3: iRRCF-Active with label recommendation strategy b in §III-B1
4: iRRCF-Active with label recommendation strategy c in §III-B1

8



The experimental results show that our active learning phase

improves the best F1-score by at least 0.1 on both datasets.

V. CONCLUSION

This paper proposes a white-box and unsupervised KPI

anomaly detection method based on RRCF model and active

learning. Specifically, we novelly design several improvements

to overcome the drawbacks of original RRCF in our scenario.

Besides, due to the labeling overhead, we leverage the tech-

nique of active learning and operators only need to a few

data, which can significantly improve the performance of our

method. Extensive experiments on a large-scale public dataset

and a private dataset from a large commercial bank demon-

strate that our proposed iRRCF-Active outperforms various

state-of-the-art methods, and the best F1-score can achieve

0.81 and 0.89 on two datasets. Also, each component in

iRRCF-Active has also been demonstrated to be effective. In

summary, our proposed iRRCF-Active is indeed practical and

can assist the real deployment of KPI anomaly detection in

practice.

VI. ACKNOWLEDGMENT

We appreciate Lingzhi Wang, Christopher Zheng and Jing

Zhu for their insightful suggestions and support. Suggestions

and valuable feedback from the reviewers also helped us

improve our work. This work has been supported by the

National Key R&D Program of China(2019YFB1802504) and

the Beijing National Research Center for Information Science

and Technology (BNRist) key projects.

REFERENCES

[1] S. Zhang, Y. Liu, D. Pei, Y. Chen, X. Qu, S. Tao, Z. Zang, X. Jing, and
M. Feng, “Funnel: Assessing software changes in web-based services,”
IEEE Transactions on Services Computing, vol. 11, no. 1, pp. 34–48,
2016.

[2] Y. Sun, Y. Zhao, Y. Su, D. Liu, X. Nie, Y. Meng, S. Cheng, D. Pei,
S. Zhang, X. Qu et al., “Hotspot: Anomaly localization for additive
kpis with multi-dimensional attributes,” IEEE Access, vol. 6, pp. 10 909–
10 923, 2018.

[3] C. Chatfield, “The holt-winters forecasting procedure,” Journal of the

Royal Statistical Society: Series C (Applied Statistics), vol. 27, no. 3,
pp. 264–279, 1978.

[4] H. Z. Moayedi and M. Masnadi-Shirazi, “Arima model for network traf-
fic prediction and anomaly detection,” in 2008 International Symposium

on Information Technology, vol. 4. IEEE, 2008, pp. 1–6.

[5] D. Liu, Y. Zhao, H. Xu, Y. Sun, D. Pei, J. Luo, X. Jing, and
M. Feng, “Opprentice: Towards practical and automatic anomaly de-
tection through machine learning,” in Proceedings of the 2015 Internet

Measurement Conference. ACM, 2015, pp. 211–224.

[6] H. Xu, W. Chen, N. Zhao, Z. Li, J. Bu, Z. Li, Y. Liu, Y. Zhao, D. Pei,
Y. Feng et al., “Unsupervised anomaly detection via variational auto-
encoder for seasonal kpis in web applications,” in Proceedings of the

2018 World Wide Web Conference. International World Wide Web
Conferences Steering Committee, 2018, pp. 187–196.

[7] Z. Li, W. Chen, and D. Pei, “Robust and unsupervised kpi anomaly de-
tection based on conditional variational autoencoder,” in 2018 IEEE 37th

International Performance Computing and Communications Conference

(IPCCC). IEEE, 2018, pp. 1–9.

[8] W. Chen, H. Xu, Z. Li, D. Peiy, J. Chen, H. Qiao, Y. Feng, and Z. Wang,
“Unsupervised anomaly detection for intricate kpis via adversarial train-
ing of vae,” in IEEE INFOCOM 2019-IEEE Conference on Computer

Communications. IEEE, 2019, pp. 1891–1899.

[9] M. A. Siddiqui, A. Fern, T. G. Dietterich, R. Wright, A. Theriault,
and D. W. Archer, “Feedback-guided anomaly discovery via online
optimization,” in Proceedings of the 24th ACM SIGKDD International

Conference on Knowledge Discovery & Data Mining. ACM, 2018, pp.
2200–2209.

[10] F. T. Liu, K. M. Ting, and Z.-H. Zhou, “Isolation forest,” in 2008 Eighth

IEEE International Conference on Data Mining. IEEE, 2008, pp. 413–
422.

[11] S. Guha, N. Mishra, G. Roy, and O. Schrijvers, “Robust random cut
forest based anomaly detection on streams,” in International conference

on machine learning, 2016, pp. 2712–2721.
[12] J. Bu, Y. Liu, S. Zhang, W. Meng, Q. Liu, X. Zhu, and D. Pei, “Rapid

deployment of anomaly detection models for large number of emerging
kpi streams,” in 2018 IEEE 37th International Performance Computing

and Communications Conference (IPCCC). IEEE, 2018, pp. 1–8.
[13] M. Thill, W. Konen, and T. Bäck, “Online anomaly detection on the

webscope s5 dataset: A comparative study,” in 2017 Evolving and

Adaptive Intelligent Systems (EAIS). IEEE, 2017, pp. 1–8.
[14] A. C. Atkinson and D. M. Hawkins, “Identification of outliers,” Biomet-

rics, vol. 37, no. 4, p. 860, 1981.
[15] G. Yu, Z. Cai, S. Wang, H. Chen, F. Liu, and A. Liu, “Unsupervised

online anomaly detection with parameter adaptation for kpi abrupt
changes,” IEEE Transactions on Network and Service Management,
2019.

[16] N. Zhao, J. Zhu, R. Liu, D. Liu, M. Zhang, and D. Pei, “Label-less: A
semi-automatic labelling tool for kpi anomalies,” in IEEE INFOCOM

2019-IEEE Conference on Computer Communications. IEEE, 2019,
pp. 1882–1890.

[17] Y. Chen, R. Mahajan, B. Sridharan, and Z.-L. Zhang, “A provider-
side view of web search response time,” in ACM SIGCOMM Computer

Communication Review, vol. 43, no. 4. ACM, 2013, pp. 243–254.
[18] F. Knorn and D. J. Leith, “Adaptive kalman filtering for anomaly

detection in software appliances,” in IEEE INFOCOM Workshops 2008.
IEEE, 2008, pp. 1–6.

[19] N. Laptev, S. Amizadeh, and I. Flint, “Generic and scalable framework
for automated time-series anomaly detection,” in Proceedings of the 21th

ACM SIGKDD International Conference on Knowledge Discovery and

Data Mining. ACM, 2015, pp. 1939–1947.
[20] Y. Zhang, S. Debroy, and P. Calyam, “Network-wide anomaly event

detection and diagnosis with perfsonar,” IEEE Transactions on Network

and Service Management, vol. 13, no. 3, pp. 666–680, 2016.
[21] S. M. Erfani, S. Rajasegarar, S. Karunasekera, and C. Leckie, “High-

dimensional and large-scale anomaly detection using a linear one-class
svm with deep learning,” Pattern Recognition, vol. 58, pp. 121–134,
2016.

[22] J. Dromard, G. Roudière, and P. Owezarski, “Online and scalable
unsupervised network anomaly detection method,” IEEE Transactions

on Network and Service Management, vol. 14, no. 1, pp. 34–47, 2016.
[23] Z. Li, Y. Zhao, R. Liu, and D. Pei, “Robust and rapid clustering

of kpis for large-scale anomaly detection,” in 2018 IEEE/ACM 26th

International Symposium on Quality of Service (IWQoS). IEEE, 2018,
pp. 1–10.

[24] B. Settles, “Active learning literature survey,” University of Wisconsin-
Madison Department of Computer Sciences, Tech. Rep., 2009.

[25] T. W. Liao, “Clustering of time series data—a survey,” Pattern Recog-

nition, vol. 38, no. 11, pp. 1857–1874, 2005.
[26] D. J. Berndt and J. Clifford, “Using dynamic time warping to find

patterns in time series.” in KDD workshop, vol. 10, no. 16. Seattle,
WA, 1994, pp. 359–370.

[27] D. Birant and A. Kut, “St-dbscan: An algorithm for clustering spatial–
temporal data,” Data & Knowledge Engineering, vol. 60, no. 1, pp.
208–221, 2007.

[28] M. Bartos, A. Mullapudi, and S. Troutman, “rrcf: Implementation of the
robust random cut forest algorithm for anomaly detection on streams,”
Journal of Open Source Software, vol. 4, no. 35, p. 1336, 2019.

[29] R. J. Hyndman, E. Wang, and N. Laptev, “Large-scale unusual time
series detection,” in 2015 IEEE international conference on data mining

workshop (ICDMW). IEEE, 2015, pp. 1616–1619.
[30] http://iops.ai/dataset detail/?id=10.
[31] http://iops.ai/competition detail/?competition id=5&flag=1.
[32] N. Zhao, J. Zhu, Y. Wang, M. Ma, W. Zhang, D. Liu, M. Zhang, and

D. Pei, “Automatic and generic periodicity adaptation for kpi anomaly
detection,” IEEE Transactions on Network and Service Management,
vol. 16, no. 3, pp. 1170–1183, 2019.

9


