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Abstract
Batch jobs’ run time at cloud is of essence for operators. To
swiftly manage batch jobs with limited resources in the cloud,
we design Batman, a framework that learns from a borderline
run time of batch jobs, makes predictions of online batch job
run time, and auto-scales cloud resources according to on-
line predictions. With Batman, batch jobs can be accelerated
within the run time borderline.

Introduction
Keeping pace with the rapid development of cloud comput-
ing, a growing need of running batch jobs at cloud for many
industries emerges. Batch jobs, such as big data analytics,
usually run for a long time and are executed recurrently
(e.g., for nearly every day) (Chase et al. 2019). To improve
resource utilization, it is a common strategy to deploy batch
jobs and online services in a co-location mode. As an in-
evitable consequence, the lengths of run time of batch jobs
executed on different days vary due to the jobs’ complex en-
vironment. Operators always have an expectation of run time
of batch jobs because the run time is critical to business op-
erations. If the run time exceeds operators’ expectation, they
need to manually scale the current system up with more re-
sources (CPU cores and/or memory) and resume the remain-
ing part of batch jobs. This described procedure, however, is
both labor-intensive and error-prone. Therefore, automati-
cally managing batch jobs considering their run time is an
important and meaningful task.

Previous work develops and focuses on a run time dead-
line driven strategy to schedule batch jobs (Ferguson et al.
2012), according to which operators need to manually spec-
ify a run time deadline and subsequently allocate the com-
puting resources. Nevertheless, it is unfeasible to configure
a fixed deadline for every batch job considering the over-
whelmingly large number of batch jobs and their distinct
workloads which unavoidably influence their run time.

By reviewing the current practice of a top-tier banking IT
system in China, which houses thousands of batch jobs in its
private cloud, We observe that run time of batch jobs does
follow certain patterns, such as the periodicity and trend.
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Operators do not set specific deadlines for these jobs but
they do care how long these jobs normally take to finish,
which can be called run time borderline. Therefore, to be
fully automatic, a batch job management system must have
the ability of predicting the run time borderline of batch jobs,
which also called offline prediction. Besides, if a batch job
run time exceed the borderline, we cannot go back in time
and speed it up. Thus, a batch job management system must
accurately predict batch job run time in an online mode. We
present some major challenges.
• Accurate offline prediction: It is intuitive that the work-

loads of batch jobs can significantly impact the jobs’
run time given the same running environment. Besides,
a batch job comprises a number of tasks, which may have
complicated dependency relationships. The orchestration
of these tasks changes over time. Therefore, the border-
line run time may vary because of workloads and date,
which need to be accurately predicted.

• Agile online prediction: It is challenging to precisely
predict a batch job’s run time due to the co-location of
batch jobs and online services. Workload values of on-
line services, which are given the first priority to ensure
the quality of services, very often have spikes and fluctu-
ations. Consequently, certain resources of running batch
jobs may be occasionally taken by online services. Thus,
batch jobs’ run time can greatly vary. let alone there are
thousands of batch jobs in our partnered banking IT sys-
tem. Hence, we look forward to an agile online prediction
in order to scale up resources when they are needed.

• Auto-scaling strategy: If a batch job’s predicted run time
exceeds the borderline, we must design an auto-scaling
approach so that the job is guaranteed to finish on time.
This approach should be robust enough to allocate mini-
mum resources as well as finish batch jobs on time.
To address the aforementioned challenges, in this work,

we design a framework Batman to predict batch jobs run
time and auto-scale resources in the cloud. First, we charac-
terize three years’ records of batch jobs’ run time. To accu-
rately predict run time borderline, we summarize the pattern
of critical paths which are series of tasks adding up to the
longest overall duration for each run of a batch job. Then, we
adopt a CNN-LSTM model to predict online batch jobs’ run
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Figure 1: Framework of Batman.

time with the input of system metrics collected from batch
job running environment. Finally, if online prediction time is
more than borderline, an auto-scaling strategy is utilized to
accelerate this job to finish on time with minimum resource.

Design
As Fig.1 shows, our framework consists of a master node
and worker nodes. A node is a machine or virtual machine. A
pod is the smallest creation and deployment unit comprising
one or more containers that are tightly coupled and share
resources. Batch jobs are running in pods of worker nodes.

Offline Prediction
Based on three years’ batch job records from a banking sys-
tem, we observe that the run time of a batch job highly de-
pends on its component tasks. The dependency of these tasks
are very complex. Specifically, one task may depend on an-
other one or more task(s) to be executed or depend on a spe-
cific time to be executed. Moreover, some of the tasks are
executed in a periodic manner. For instance, some tasks are
run only on a particular date of a month and this can be au-
tomatically summarized with a calendar. Therefore, we gen-
erate a critical path of tasks, i.e., a series which accumulates
and represents the overall longest duration for each run of
a batch job. The pattern of a critical path can be summa-
rized by its period. With the input of historical job run time
and critical path, Batman adopts Long Short-Term Memory
(LSTM) and can predict run time borderlines.

Online Prediction
In the online mode with a batch job, Batman can match a
critical path according to its period. We observe that the sys-
tem metrics collected from the batch job running environ-
ment can indicate a job’s run time. However, the relationship
between system metrics and job run time is sophisticated and
non-linear. With the input of configurations of the batch job
(e.g., the number of nodes and pods), system metrics, run
time of each task on the critical path and each task’s exe-
cution time (i.e., the day, week, month and holiday informa-
tion), Batman utilizes Convolutional Neural Network (CNN)
layers for input feature extraction combined with LSTM to
support sequence predictions in a constant time.

Auto-Scaling
For a running batch job, Batman predicts the offline border-
line once, denoted as B. Batman also predicts the run time
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Figure 2: Batch job run time offline prediction result.

Table 1: Summary Coefficient of Variation (CoV) of batch
jobs prediction dataset.

Dataset A B C D E F G H
CoV 0.07 0.13 0.29 0.44 0.81 0.98 1.43 3.93

in an online mode and obtains T with the tasks in execution.
If T − B > γ, where γ is a preset threshold, Batman will
control the system to scale up pods or scale out nodes based
on online prediction.

Preliminary Results
We choose eight datasets of batch jobs with three years’
records from the bank sampled based on their coefficient of
variation (CoV) distribution. As shown in Tab.1, the larger
the values, the more fluctuations in the datasets which are
thus more difficult to predict. We implement a prototype of
Batman and evaluate the offline prediction model against
five other baseline methods. We use the average logarithm
of the Mean Squared Error (MSE) as the metric to mea-
sure the accuracy of these prediction model. The smaller
the MSE, the higher the prediction accuracy. We use one-
hour prediction horizon in this experiment. As Fig.2 shows,
we compare Batman with five algorithms, i.e., Kernel Re-
gression (KR), Kernel Ridge Regression (KRR), Epsilon-
Support Vector Regression (SVR), Linear Regression (LR)
and Ensemble method (of KRR, SVR and LR). We note Bat-
man is more accurate than other algorithms on all datasets.
Using Batman, we can robustly predict the run time of batch
jobs. More design and evaluation in terms of online predic-
tion and auto-scaling are left for future work.
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