Unsupervised Detection of Microservice Trace
Anomalies through Service-Level Deep Bayesian
Networks

Ping Liu *Y, Haowen Xu *9, Qianyu Ouyang*¥, Rui Jiao*¥, Zhekang Chen’, Xiaoying Bai*¥,
Shenglin Zhangi, Jiahai Yang *9 Linlin Mo T, Jice Zeng f, Wenman Xue T, Dan Pei* *¥
*Tsinghua University fNankai University TWeBank $BizSeer
YBeijing National Research Center for Information Science and Technology (BNRist)

Abstract—The anomalies of microservice invocation traces
(traces) often indicate that the quality of the microservice-based
large software service is being impaired. However, timely and
accurately detecting trace anomalies is very challenging due
to: 1) the large number of underlying microservices, 2) the
complex call relationships between them, 3) the interdependency
between the response times and invocation paths. Our core idea
is to use machine learning to automatically learn the overall
normal patterns of traces during periodic offline training. In
online anomaly detection, a new trace with a small anomaly
score (computed based on the learned normal pattern) is con-
sidered anomalous. With our novel trace representation and
the design of deep Bayesian networks with posterior flow, our
unsupervised anomaly detection system, called TraceAnomaly,
can accurately and robustly detect trace anomalies in a unified
fashion. TraceAnomaly has been deployed on 18 online services in
a company S. Detailed evaluations on four large online services
which contain hundreds of microservices and a testbed which
contains 41 microservices show that the recall and precision of
TraceAnomaly are both above 0.97, outperforming the existing
approach in S (hard-coded rule) by 19.6% and 7.1%, and seven
other baselines by 57.0% and 41.6% on average.

Index Terms—Trace; Anomaly Detection; Microservice

I. INTRODUCTION

Recently, microservice [1] architecture has become more
and more popular for large-scale Web-based services, but
it poses additional challenges to guarantee the reliability
of services. This architecture decouples a Web service into
multiple microservices. For example, four large online services
studied by this paper in company S (which is a digital bank in
China and serves tens of millions of users) contain 61 to 344
microservices (see Table I). The top of Fig. 1 shows a service
in S. This service consists of many microservices, and some
microservices may call other external services (e.g., payment
service of the bank). Each microservice can be individually
upgraded, which enables more agile software development and
deployment, but makes the troubleshooting more challenging
due to the complex call relationships and large scale.

One important step in troubleshooting microservice-based
Web services is to detect anomalies (e.g., unexpected response
time or invocation path) when they first appear in the mi-
croservice invocation traces (recorded by Remote Procedure
Call (RPC) tracing framework such as Google Dapper [2]).
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Message | UUID Sendingtime of | Receiving time of Message (m—n)
order (m — n) at m (msec) | (m—n) at n (msec)

[§)] uUuID-1 - 1519747202138 | call(start—a)
@] UUID-1 | 1519747202144 | 1519747202146 | call(a—b)
3 UUID-1 | 1519747202149 | 1519747202151 | call(b—c)
Z], UUID-1 | 1519747202149 | 1519747202150 | call(b—d)
® UUID-1 | 1519747202155 | 1519747202156 | response(c—b)
® UUID-1 | 1519747202159 | 1519747202160 | call(d—e)
@ UUID-1 | 1519747202188 | 1519747202190 | response(e—d)
® UUID-1 | 1519747202194 | 1519747202196 | response(d—b)
9 UUID-1 | 1519747202253 | 1519747202256 | call(b—e)
10 UUID-1 | 1519747202323 | 1519747202324 | response(e—b)
(@) UUID-1 | 1519747202355 | 1519747202356 | response(b—a)
@ UUID-1 | 1519747202360 response (a—end)

Fig. 1: An example trace with UUID-1. The first column is
the message order based on the timestamps. The sending time
of first call message (message (1)) and the receiving time of
last response message (message (2) are not collected, which

T3]

are denoted by “-”.

If an anomalous trace is detected, operators will analyze the
microservices along the trace to localize the root cause. Fig. 1
shows how a simple real trace for one specific user request
is collected. When a user request is received, a Web service
will generate a UUID (Universally Unique Identifier) that
uniquely identifies all messages for this user request (e.g.,
UUID-1 in Fig. 1). When microservice m calls microservice
n, m sends a call message to n (denoted as call(m—n)).
After the processing at n is completed, n sends the response
message to m (denoted by response(n—m)). Both messages
are routed between m and n via the RPC framework, thus the
tracing mechanism can naturally record these messages with
timestamps and UUIDs. All messages with the same UUIDs
constitute one microservice invocation trace (trace for short
hereinafter). The table in Fig. 1 shows a real trace with UUID-
1. Note that call messages to external service do not go through
the RPC framework, thus are not monitored.

Given that the trace data are relatively new, the deployed
anomaly detection approaches in the industry are still manual



rules based, to the best of our knowledge. after a call ends,
each microservice will return a code reflecting the running
status of the microservice. Therefore, operators have designed
some fixed rules based on these return codes to detect anoma-
lies of traces. However, a Web service may contain hundreds
of microservices (e.g., Service-1 in company S contains 344
microservices, see Table I), and the values and meanings
of these microservices’ return codes can change over time,
making the rule-based maintenance very difficult.

To solve these problems, we proposed TraceAnomaly, which
can automatically learn the complex patterns of traces, and the
anomalous traces can be detected when their patterns deviate
from those of normal traces.

A. Related work

Multimodal LSTM [3] proposed a multimodal long short-
term memory (LSTM) model to learn the sequential nature
of both response time and calls in the normal traces. A
trace is anomalous if its pattern deviates from the learned
normal patterns. However, our evaluation in §V shows that
this approach has difficulty learning the relationships between
response time and invocation paths in an end-to-end way,
thus its performance suffers. Furthermore, this approach lacks
interpretability for the anomalous trace: i.e., which invoca-
tion paths are anomalous, or which microservices’ response
time is anomalous. AEVB [4] only focuses on the response
time anomalies of traces. It proposed an unsupervised deep
Bayesian networks model to detect the response time anoma-
lies of tracing data. However, this approach trains one model
for each microservice, and a trace is considered anomalous if
one of its constituent microservice’s response time is detected
as abnormal. Thus, its training overhead is too high: if a large
service contains hundreds of microservices (e.g., Service-1 in
Table I), then hundreds of models need to be trained.

Due to the difficulty of collecting trace data (the service’s
framework has to be changed) in legacy software services,
some previous works [5]-[8] extract log keys from system log
files firstly, then construct traces based on log keys. WFG-
based [5] approach detects trace anomalies by an offline
learned workflow graph (WFG), which is a Finite State Au-
tomaton (FSA) model. A trace has an execution path anomaly
if it cannot be accepted by the WFG. Meanwhile, WFG-
based [5] approach uses the 3-sigma method to detect time
consumption anomalies for each transition in the WFG. CFG-
based [6] approach detects anomalies of traces by an offline
learned control flow graph. A trace is anomalous when none of
the children of a parent node is seen within an expected time
lag interval. CPD-based [7] approach detects anomalies by
checking the similarity between different traces’ control flow
graph. The similarity is calculated based on the conditional
probability distribution of the next symbol given a preceding
log key sequence. A trace is anomalous when the trace’s
similarity is too small. DeepLog [8] uses a neural network
model utilizing LSTM to detect execution path anomaly. It
also trains an LSTM model for each node to detect time
consumption anomaly.

B. Challenges, Core Ideas and Contributions

Although aforementioned related works [3]-[8] have been
proposed in the literature, none of them has been deployed in
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Fig. 2: The distribution of traces’ response time without
anomalies from a small online service in company S. This
service only contain three microservices, and the three axes
denote the three microservices’ response time, respectively.

reality, due to high overhead and/or low accuracy (which will
be detailed in §V). We now present the main challenges, our
core ideas and major contributions.

Challenge 1 and our core idea: unify response time
and invocation paths of traces in an interpretable way
for anomaly detection. We have this challenge because: 1)
the response time of a microservice can change significantly
without being anomalous. Fig. 2 shows the distribution of
traces’ response time without anomalies from a small online
service. Although there are only three microservices in this
service, the response time varies significantly. For a microser-
vice, its response time is determined by both itself and the
invocation path from the entrance microservice to it. For
example, microservice e in Fig. 1 is invoked twice, with
different response time (see Fig. 4), making the microservice-
level modeling in AEVB [4] ineffective. This mandates that
response time modeling must consider the invocation path
from the service entrance to a microservice. However, the
number of individual paths is large (e.g., hundreds for one
service, and there are hundreds of services in company S).
This scale makes it infeasible to directly apply existing time
series anomaly detection on path individually because these
algorithms either require operators to manually pick algorithm
and tune parameters for each path [9]-[27], or need a dedicated
learned model for each path [28], [29]. 2) An anomalous trace
and a normal trace might have the same structure, and only
the difference of response time can help distinguish them (see
a detailed example in Fig. 6). 3) When an anomalous trace is
detected, the root cause of the trace has to be localized quickly.
So the unified way must be interpretable to help operators
localize root cause, which Multimodal LSTM [3] cannot do.

The above difficulties call for an anomaly detection ap-
proach which unifies response time and invocation paths of
traces at the trace level, as opposed to individual node, edge,
or path level. However, most previous works [4]—[8], [30] do
not try a unified detection approach. Although Multimodal
LSTM [3] tries a unified detection approach, it lacks inter-
pretability for the anomalous trace, and has difficulty learning
the relationships between response time and invocation paths.

Our core idea is to treat each trace for a service as one
training sample, and use machine learning to capture the
overall patterns of the traces of a service. Therefore, we have
one model for each service, as opposed to one model for
each microservice in AEVB [4]. To this end, we encode the



response time and invocation paths of a trace in a service into
a vector (called service trace vector or STV hereinafter), a
necessity required by most mature deep learning algorithms.
The encoded information should not only represent the traces’
overall patterns, but also can be easily interpreted by the
operators for root cause localization. Indeed, our interpretable
service trace vector enables us to develop a straightforward
but effective root cause localization algorithm. This is why
we choose to handcraft the service trace vector design with
physical significance, as opposed to using network/graph rep-
resentation learning (embedding) [3] to automatically learn the
vector which are not easy to interpret.

Challenge 2 and our core idea: designing an accurate,
robust, unsupervised learning architecture that captures
the characteristics of complex patterns of traces, with
reasonable training overhead. As described in Challenge 1,
a microservice’s response time is related to both itself and
its invocation path. For a single service which contains many
microservices, there can be hundreds of individual paths, thus
hundreds of response time distributions need to be learned con-
ditional on their invocation paths. With such a complexity, a
high-capacity model is needed. Furthermore, because anomaly
labels are infeasible to obtain in such a complex context with
vast amount of data, we have to use an unsupervised algorithm.
Above requirements overall call for an unsupervised high-
capacity model, such as deep Bayesian networks. The model
should also be robust in that its performance is not sensitive to
hyper-parameters. Our core idea to tackle this challenge is to
apply posterior flow [31], which can use nonlinear mappings to
increase the complexity of the latent variables in the Bayesian
networks, allowing the model to capture the complex patterns
in a robust, accurate and unsupervised manner.

Our ideas in a nutshell: (Fig. 3) Our proposed system
TraceAnomaly processes each trace as a whole, constructs a
service trace vector that encodes both invocation path and
response time (e.g., the information in the right table in Fig. 4),
then learns the overall normal trace patterns for a service
during offline training. After that, in online anomaly detection,
for each new trace, an anomaly score is computed based on
the learned model of the service, and a trace with a small
score is considered anomalous. Finally, the root cause of the
anomalous trace will be localized by an algorithm based on
the service trace vector.

The contributions of this paper are summarized as follows:

Contribution 1. We propose a novel approach to construct
feature vectors for traces of a service, called service trace
vector (STV), which efficiently encodes both the response time
information and the invocation path information of traces, and
enables both effective learning at the service-level, accurate
anomaly detection at the trace level, and effective localization
at the microservice level. We believe STV can be used as
the trace representation for other ML-based trace anomaly
detection and localization algorithms beyond the ones
proposed in this paper.

Contribution 2. We propose TraceAnomaly, an unsuper-
vised deep learning algorithm which can learn the complex
trace patterns in a service and accurately detect trace anoma-
lies, with our trace representation and our design of deep
Bayesian networks with posterior flows. TraceAnomaly has
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Fig. 3: The architecture of TraceAnomaly. Solid lines denote
offline flow, and dashed lines denote online flow.

been deployed on 18 online services in company S which
serves tens of millions of users, and is the first deployed trace
anomaly detection approach based on machine learning,
to the best of our knowledge.

Contribution 3. Detailed evaluations on four large on-
line services which contain hundreds of microservices and a
TrainTicket [32] testbed which contains 41 microservices show
that the recall and precision of TraceAnomaly are both above
0.97, outperforming the existing approach in S (hard-coded
rule) by 19.6% and 7.1%, and seven other baselines by 57.0%
and 41.6% on average. Moreover, we have open-sourced the
prototype of TraceAnomaly [33] to help researchers better
understand our work.

Contribution 4. We propose a root cause localizing algo-
rithm based on our designed service trace vector, which suc-
cessfully localized the correct root causes on all 73 anomalous
traces from four large services, and its localization accuracy
outperforms three baselines by 55% in testbed results.

The rest of the paper is organized as follows. §II presents
the overall design of TraceAnomaly, the details of service trace
vector construction and the root cause localization algorithm.
§III presents the design of our deep Bayesian networks with
posterior flows. §IV shows the details of deployment. §V
evaluates TraceAnomaly on four large online services and a
testbed. §VI evaluates and analyzes the internal mechanisms
of TraceAnomaly. §VII concludes the paper.

II. TRACEANOMALY OVERVIEW, SERVICE TRACE VECTOR
CONSTRUCTION AND LOCALIZATION ALGORITHM

This section first presents the overall TraceAnomaly design,
then we introduce how to construct service trace vector (STV)
for a service. Finally, we present the root cause localization
algorithm designed by STV.

A. TraceAnomaly Overall Architecture

Fig. 3 shows the architecture of TraceAnomaly. During
offline training for a service, training traces are encoded as
vectors, denoted by x, using the method shown in §II-C.
The vectors are then fed into our designed deep Bayesian
networks to learn the distribution p(x) (see §1II), and generate
a model. To adapt to potential service upgrade, the model will
be retrained periodically.

During online detection, each new trace is encoded as a vec-
tor. If a trace contains a previously unseen call path (see §1I-C),
TraceAnomaly declares it as an anomaly. The unseen call paths
are handled by a whitelist approach (see §IV-B). If there is no
unseen call path, then the trained model outputs a likelihood,
i.e., log p(X), for each vector, and use it as the anomaly score.



Fig. 4: An example of call path extraction (trace in Fig. 1).

If the anomaly score of a trace is too small, it is considered
an anomaly, and a localization algorithm can localize the root
cause of the anomalous trace.

B. Extracting call paths and response times from a trace

To address Challenge 1, our design goal for service trace
vector is that both the response time pattern and invocation
path pattern of traces for a given service can be learned from
the service trace vector data. In order to capture “what has
happened” in the trace which potentially had impacted on
microservices’ response time, we propose call path.

A call path of a microservice s in a trace, denoted as (s, call
path), is the sequence of call messages (sorted by sending time)
before s is called. Fig. 4 shows the process of extracting the
call path for each microservice in a trace, where a call message
is denoted by (m—n). First, all call messages are sorted by
their sending time. If two call messages have the same sending
time, then they are sorted by the IDs of callees (to ensure the
uniqueness of the order). As shown in the left half of Fig. 4,
the sending time of call(b — ¢) and call(b — d) are the same,
then the two call messages are sorted by the alphabetical order
(c is ranked ahead of d). Second, for a callee microservice n,
the call message sequence starts from the service entrance call
message and ends at the current call message (m—n), which
represents the call path of the callee microservice n. Fig. 4
shows call paths extracted from the trace in Fig. 1.

The response time rt of (s, call path) can be computed
by rt = srt — rct, where rct is the receiving time of the call
message of s, and srt is the sending time of the corresponding
response message. For example, in Fig. 4, the response time of
microservice b (209ms) is computed using the receiving time
of message (2) (1519747202146 in Fig. 1) and the sending
time of message @D (/1519747202355 in Fig. 1). Note that the
last two rows of the right table in Fig. 4 show that microservice
e’s two different call paths can have different response times.

C. Service Trace Vector Construction

We now introduce the details of encoding a trace as service
trace vector (STV). We choose to handcraft the vector design
based on our domain knowledge of trace (see §II-B), as op-
posed to applying representation learning, so that the resulting
vector has physical significance, thus is interpretable. We
believe STV can be used as the trace representation for other
ML-based trace anomaly detection and localization algorithms
beyond the ones proposed in this paper.

Before the periodic training time (see Fig. 3), all call paths
of the training traces from a service are extracted via the
method shown in §1I-B. The set of all unique call paths form
a call path list of the service. Given the large amount of
training trace data, we assume that all existing “normal” call

Microservice Call path of microservice s Response time of Microservice Call path of microservice s
Sending time of s (s, call path) (s, call path) (msec) s (s, call path) STV
(m-n) atm (msec) (m-n)
1 a (a, (start—=a)) 222 a (a, (start—a) ) l---| rt
- call(start—a) b (b, (start—a, a—b)) 209 «--| 1t
1519747202144 | call(a—b) c (o, (startoa, asb, bo0)) a b (b, (start—a, a—b))
1519747202149 | call(b—c) W d (d, (start—a, a—b, boc, bod) ) 2 T c (c, (start—a, a—b, b—c)) l---| 1t
4 4 z 4 races
1519747202149 | call(b—d) e (e, (start—a, a—b, b-c, b—d, 28 d (d, (start—a, a—b, b—c, b—d)) -t
1519747202159 | call(d—e) d-e)) e (e, (start—a, a—b, b—c, b—d, d—e)) «--| 1t
1519747202253 (b e e, (start—a, a—b, b—c, b—d, 67
call(b—e) g%e( boe) ) e (e, (start—a,a—b, b—c, b—d, d—e, b—e)) [« 1t
- -

Fig. 5: Process of STV construction.

paths are covered by the call path list that we constructed
during training time. Because the training set is updated at the
periodic training, the call path list is also updated periodically.
As the online service evolves, historical invalid call paths in
the call path list will disappear, and new call paths will occur.

A specific trace’s STV is constructed with the call path list.
As shown in Fig. 5, each (s, call path) of call path list is the
dimension 1D of the STV, and the value of each dimension is
the response time of corresponding (s, call path). If a (s, call
path) in call path list is not included by the specific trace, then
the value of the dimension corresponding to the (s, call path)
not included is set to -1, which denotes an invalid dimension
of the specific trace’s STV; Otherwise, the dimension whose
value is not -1 is a valid dimension. During online detection,
if the call path of a new trace is not in the call path list, then
the call path is an unseen call path, which are handled by a
whitelist approach (see §IV-B).

In summary, through call paths, the invocation paths are
naturally encoded in the dimension ID of the STV, and the
value of each dimension is the response time in a specific
trace. Above encoding approach enables TraceAnomaly to
unify invocation path patterns and response time patterns. Note
that, for the same service, two traces might have the same
“structure” (i.e., nodes and edges), and only the difference
of response times can help distinguish between normal and
anomalous traces. As shown in Fig. 6, the structures of trace
tl and trace t2 are the same, while t1 is normal because
its business logic to this service demands such a structure,
and t2 is anomalous because of some fault at microservice
e during runtime. The table in Fig. 6 shows the difference of
response times. The STV encoding can naturally deal with this
by declaring t2 as an anomaly.

D. Localizing Root Cause

For an anomalous trace ¢ in a given service C, the root
cause in our context is defined as a dimension ID of ¢’s
STV, i.e., the tuple (s, callpath), where callpath is the call
path of microservice s, and s is a problematic/failed internal
microservice in C, or a microservice (in C') which calls a
problematic/failed external services (not directly monitored)
(e.g., microservice e calls an external service S2 in Fig. 1).
Both above two types of root causes are very helpful to
operators. The root cause can be clearly interpreted by the
failed microservice s and the corresponding call path. Once a
root cause is localized, operators can then just focus on this
(s, callpath) to further (maybe manually) figure out the exact
root cause (bugs in codes, error configuration etc.).

Our root cause localization algorithm is enabled by the clear
physical significance of service trace vector (each dimension
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Microservice Call path of microservice s (t1) Responsetimeof | (t2) Responsetime of
s (s, call path) (s, call path) (msec) (s, call path) (msec)
a (3, (start—a) ) 222 1002
b (b, (start—a, a—=b)) 209 909
c (c, (start—a, a—b, b—c)) 4 6
d (d, (start—a, a—b, b—c, b—d)) 44 53
e (e, (start—a,a—b, b—c, b—d, d—e)) 28 528

Fig. 6: Trace t1 and t2 have the same structures, but tl is
normal while t2 is anomalous.

ID is a call path, and each dimension’s value is a response
time). Before we introduce the algorithm details, we first
introduce the concept of homogeneous service trace vector
(HSTV). If trace t,’s STV has the same valid dimensions (see
§II-C) as trace t,’s, then ¢,’s STV is a HSTV of ¢,’s, and
vice versa. Fig. 7 shows an example of a HSTV.

When an anomalous trace t is detected online,
TraceAnomaly checks the training set to find all the
traces whose STVs are the HSTVs of ¢’s STV. For a valid
dimension d of ¢, we calculate the mean and standard
deviation (std) of values from all found HSTVs’ dimension
d. If the value of the dimension d in t’s STV is greater
than mean + 3 * std or less than mean — 3 * std, then the
dimension d of ¢’s STV is an anomalous dimension. Because
the response time anomalies propagate from callees to callers
by nature, all the response times of root cause’s upstream
(who directly or indirectly call it) will have response time
anomalies as well. Therefore, given ¢, there will be multiple
anomalous dimensions in ¢’s STV, including those of the root
cause and its upstream dimension. Among these anomalous
dimensions, the one with the longest call path is considered
by our algorithm as the root cause because it naturally reflects
the response time propagation pattern. As shown in Fig. 7,
Three anomalous dimensions are detected (dimensions 1, 2,
6 in Fig. 7), and the dimension with the longest call path
is the right root cause, see the dimension 6. If no HSTV is
found, the trace ¢ may have invocation path anomaly (e.g.,
call interrupt). Then TraceAnomaly finds the longest common
path between trace ¢’s longest call path and all call paths in
the call path list (see §1I-C). The longest common path and
the next called microservice of the longest common path are
the possible root cause.

III. ANOMALY DETECTION ALGORITHM DESIGN

This section presents the design of training and detection,
and explains how Challenge 2 mentioned in §I-B is addressed.

A. Learning Data Distribution

Variational Auto-Encoders (VAE) [34] is a latent probabilis-
tic model [34]. By introducing an auxiliary latent variable
z with prior py(z), VAE fits the data distribution p(x) by
po(x) = [ po(x|z) po(2z) dz, where 6 is the parameters of the
model. py(z) is usually a unit Gaussian A (0,I). py(x|z) is

Dimension (s, (call path)) of valid dimension AHSTV | STV | Anomalous | Root
D value value | dimension ? | cause ?
1 (a, (start—a)) 222 1302 yes no
2 (b, (start—a, a—b)) 209 1138 yes no
3 (c, (start—a, a—b, b—c)) 4 9 no no
4 (d, (start—a, a—b, b—c, b—d)) 44 36 no no
5 (e, (start—a,a—b, b—c, b—d, d—e)) 30 32 no no
6 (e, (start—a, a—b, b—c, b—d, d—e, b—e)) 67 980 yes yes

Fig. 7: A example of root cause localizing from a real
anomalous trace. The root cause is a response time anomaly
at microservice e when microservice b calls microservice e.

a diagonal Gaussian N (uy(z),03(z)I) in our paper, where

o (z) and og(z) are neural networks to be learned.

A VAE is usually learned by using the variational approxi-
mation technique. A separated variational posterior distribution
¢s(z|x) is introduced to approximate the computationally
intractable true posterior py(z|x). Then VAE is trained by
maximizing the ELBO L(¢, ), a lower-bound of log py(x):

L(¢,0;%) = logpo(x) — D (¢4 (2lx) || po(z]x))
= B, (zx) [log pe(x|2) + log pe(2) — log ¢4 (z|x)] (1)
A popular method to compute py(x) is Monte Carlo inte-
gration with importance sampling [35]. L, samples are drawn
from g4 (z|x), denoted as z(;), then py(x) is computed as:
L

1 5 po(x|z)) po(z))
L. &= qs(z@lx)

It is crucial for ¢4(z|x) to approximate pg(z|x) well. The
closer gy(z|x) is to py(z|x), the tighter L£(¢,6) is as a
lower-bound (thus serves better to train logpg(x)), and the
better pg(x) is computed [35]. g4(z|x) is chosen to be a
diagonal Gaussian V' (p4(x), o3 (x) I) in a vanilla VAE which
is proven to be insufficient [31], [36]. One approach to better
approximate py(z|x), is to use a flow-transformed posterior
¢4(z|x), instead of using a diagonal Gaussian. By applying
an invertible mapping z' = f,(z) on the diagonal Gaussian
¢, (zlx) = N(py(x),03(x)I), a more flexible posterior
46 (2'|X) = q4(2|x) |det(df(z)/0z)| " can be obtained, thus
have the ability to approximate py(z|x) better [31].

In this paper, we choose to use a modified version of Glow’s
flow [37] along with VAE.

B. Model Architecture

The design of our model is shown in Fig. 8. x denotes the
service trace vectors, while z and z(F) are latent variables. The
service trace vectors x are fed into the variational net, passing
through hidden layers h4(x), to obtain hidden features. These
features are then used to derive the mean g1,y and the stan-
dard deviation o, of z(?): p ) = Wi 0 he(x) + by
and 0,0 = SoftPlus (Wczm) he(x) + baz<0)) + €, where
SoftPlus(a) = log(1+exp(a)), applied on each element of a.
Wuz(m s buz@, W, © and b,,z(o) are network param.et.ers to
be learned. € is a small constant vector, chosen as the minimum
value for o,©), which can help avoid numerical issues in
training (see §III-C), as is adopted in [28]. z® is sampled
from N (sz) , ai(m I), then passed through the posterior flow
of length K, to obtain z%).

The output z5) of the posterior flow is used as the latent
variable z, and fed into the generative net, passing through the

po(x) ~
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Fig. 8: The architecture of our model.

hidden layers hy(z), to again obtain hidden features. These
features are then used to derive the mean p, and the standard
deviation o« of x, just like for 79, The reconstructed x are
then sampled from N (px, 0x°T).

The re-parameterization trick [34] is applied on the initial
z(9), Since the Glow’s flow [37] are continuous and determin-
istic mappings, the whole model can be viewed as having only
one re-parameterized latent variable:

K) _ (f(K) ° -~of<1>)(z<0))

(k) )
¢ @ x) H det ol ( . 1)

Oz(k—1)

-1

0y (=)o) =

This largely reduces our effort to derive our training objective
in§III-C, and our detection output in §III-D.

C. Training

It is straightforward to train our model with SGVB [34], by
maximizing the ELBO L(¢, 8;x) over the training data:

K
£(9,0:%) = E 5010 | 10820 (x] ")
(K)( (K)\x)
@)

In actual deployment, the training data are obtained from the
large number of traces data. Our anomaly detection must be
unsupervised, but the training data may contain a few anoma-
lous traces. However, our observation and assumption is that
there are a few anomalies in the traces. We train our model by
stochastic gradient descent (SGD), which can naturally tolerate
rare anomalies. It updates the model parameters according to
mini-batch samples of the input data, thus only captures the
most significant patterns of the data distribution.

+log pe(z™)) —logq

D. Anomaly Detection

To detect whether or not a service trace vector is anomalous,
we use its log-likelihood against the model, i.e., logpy(x).
As mentioned in §III-A, it can be computed by importance
sampling as Eq. (3):

pg(XlZ(l) ) po(z E{)Q)
log pe(x logL Z (K) 00 3)
d4 (l) ‘X)
The criterion of judging a trace to be anomalous is that
the pattern of the trace is significantly different from the
normal traces’ patterns. The criterion can be quantified as

the differences of log py(x). Thus a trace is anomalous if the
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Fig. 9: Data pipeline in deployment at company S

value of the trace’s log pp(x) is significantly smaller than the
values of normal traces’ log py(x). Instead of manually setting
a threshold on log py(x) to split the normal traces and anoma-
lous traces, we use Kernel Density Estimation (KDE) [38] to
learn the distribution of normal traces’ log py(x). If a trace’s
log pg(x) does not follow the learned distribution with high
probability, then the trace is an anomalous trace. We use
p-value [39], which is widely used in statistical hypothesis
testing, to judge whether the trace’s logpp(x) follows the
trained KDE model. We set the significance level of p-value
as 0.001, which is a commonly used value.

IV. IMPLEMENTATION AND DEPLOYMENT
A. Deployment at online services

TraceAnomaly has been deployed on 18 real online services
for about two months in company S. Fig. 9 shows the
data pipeline in the deployment. 1) Data Collection modules
collect RPC log data from different Data Centers, then push
these collected log data into Kafka [40], which is a widely
used open-source distributed streaming platform for building
real-time data pipelines and stream processing applications.
2) Batch Aggregation module obtains log data from Kafka,
then periodically aggregates them to extract the trace data.
3) The raw log data and the trace data are then stored
into Ceph [41] database to be used by the Offline Training
module (no labeling is needed for training as TraceAnomaly
is unsupervised). To adapt to potential service upgrade, the
model will be retrained every day at 00:00 based on the traces
in the last one day. The average training time per day is
1.5 hours. We have three Tesla P40 GPUs in company S,
thus models for at most three services (each for one service)
can be trained in parallel. After a new model is trained, the
trained model and the call path list (see §II-C) are stored in
Ceph, then the Online Detection module is updated. 4) Online
Detection directly gets log data from Kafka, performs real-
time trace aggregation and then conducts detection using the
latest model for a service to detect anomalies in the service,
which are stored in MySQL database. Offfine Training module
and Online Detection module can plug in different approaches
for parallel detection to facilitate our evaluation of baseline
and alternative approaches in §V-B and §VI-A. According to
our measurement, the average detection overhead of one trace



TABLE I: Details of the four large evaluation services from company S.

No. of Evaluation Average No. No. of STV No. of No. of Description
Microservices duration of traces/day | Dimensions | call graph | manually confirmed (all for
structures anomalous traces mobile users)
Service-1 344 5 days (Sun. - Thu.) 801,021 690 368 108 transaction query.
Service-2 61 4 days (Sun. - Wed.) 600,806 173 61 68 account opening.
Service-3 233 4 days (Wed. - Sat.) 502,408 508 302 81 repayment.
Service-4 113 4 days (Wed. - Sat.) 500,921 412 186 66 account balance query.

is only 0.004 second. For a service that has about 800,000
traces per day, the total detection overhead per day is only
3200 seconds, which is acceptable to company S.

B. Dealing with Unseen Call Paths

We now present how to deal with false alarms caused by
the unseen call paths after a service upgrade. If a service
upgrade introduces previously unseen call paths, these call
paths will accumulate sufficiently during the day and will
be automatically treated as the “new normals” by the daily
retrained model next day. What remains to be solved is how
to deal with the false alarms before the daily retraining. We
tackle this problem using a simple whitelist approach, shown
in the top left of Fig. 9. The developers of the upgraded service
are the ones who initiated the upgrade, thus they are asked to
manually validate the previously unseen call paths detected by
TraceAnomaly. Those validated new call paths are stored into a
whitelist so that no more alarms are raised for them before the
next daily retraining. Note that the manual validation overhead
in practice is not much for the developers since 1) they wrote
the code that generates the new call paths, and 2) the number
of unseen call paths in our practice is very small. In fact,
during the two-month deployment, we observe that the average
total number of unseen call paths per day is ~ 4 per service.
Therefore, the validation overhead is acceptable.

V. EVALUATION

In this section, we will introduce the evaluation on four
large online services (shown in Table I) from company S and a
testbed. 1) §V-A introduces the methodology of our evaluation.
2) §V-B describes the baselines. 3) The evaluation results are
presented in §V-C. 4) §V-D analyzes the improvement over
a hard-coded rule approach. 5) §V-E evaluates the root cause
localization algorithm. 6) §V-F summarizes TraceAnomaly’s
impact on company S’s troubleshooting.

A. Evaluation Methodology

For evaluation purpose, ideally we should label each trace
as either “anomalous” or “normal” to obtain the ground truth.
However, it is infeasible to manually label online services trace
data (each with hundreds of thousands of traces per day). We
thus choose to construct a testbed to generate accurately la-
beled traces for evaluation firstly, then some better-performing
approaches are selected for the large-scale online evaluation.

1) Testbed Evaluation: We choose a benchmarking mi-
croservice system, TrainTicket [32], as our testbed. TrainTicket
is a train ticket booking system based on microservice archi-
tecture which contains 41 microservices. Each microservice is
deployed on a Docker [43] container.

The traces for evaluation are generated by simulating dif-
ferent user requests randomly visiting different functions of
TrainTicket. We simulate one day’s traffic for training data
with 40 peak periods and about 380,000 normal traces. Fig.
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Fig. 10: Number of visits per 1 minute in the simulated traffic.

10 shows number of visits per 1 minute in the simulated traffic.
Note that, although these training traces are collected without
any intentional anomaly injection, a small number of traces
are still anomalous due to occasional system glitches.

To obtain the testing set, we inject anomalies to each of
the 41 microservices with simulated traffic similar to the
training set one by one. In reality, anomalies are more likely
to occur during peak traffic periods, thus the anomalies are
injected during the simulated peak periods to obtain the testing
set. During a peak period, firstly the system runs normally,
resulting normal test traces. Then one microservice is selected
to first inject response time anomaly to it, by controlling the
network card latency of the Docker container for 5 minutes.
Then after less than 30 seconds, an invocation path anomaly
is injected to it, by removing a microservice node from
TrainTicket system for 5 minutes. Then the system is rebooted
and let system run for 10 minutes to settle down in order to
restore the system to normal. Then, another microservice is
chosen to inject anomalies into. Overall, the above anomaly
injection process runs for about 24 hours, and we collected
30,356 normal traces, 2,699 response time anomaly traces and
2380 invocation path anomaly traces as the testing set.

2) Obtaining Labeling of Online Traces: During online
evaluation, it is infeasible to manually label all 18 services
in which TraceAnomaly is deployed (each with hundreds of
thousands of traces per day) for 2 months. Therefore, we
obtained the ground truth as follows.

As described in §IV-A, Offline Training module and Online
Detection module in Fig. 9 allow us to plug in all baselines
in parallel. The union of all detected anomalous traces by
all these baselines during the evaluation period was con-
sidered as the candidate anomaly trace set, and manually
validated by two experienced operators separately. Finally,
all the anomalous traces confirmed by both operators are
labeled as anomalous, and labeled as normal otherwise. For
the evaluation of various approaches using such an ground
truth set, the precision is accurate but the recall might be
biased towards 1 for all approaches, since some anomalous
traces might be missed by all above approaches thus do not
make it to the candidate anomaly ground truth set.

B. Anomaly Detection Baseline Approaches

We first introduce eight baseline approaches that conduct
end-to-end trace anomaly detection. The details of Multimodal
LSTM [3], AEVB [4], WFG-based [5], CFG-based [6] and
CPD-based [7] have been introduced in related work (§I-A).
The remaining baseline approaches are:



TABLE II: Evaluation results of different approaches on a TrainTicket testbed which contains 41 microservices. The test set
contains 30,356 normal test traces, 2,699 response time anomaly traces and 2380 invocation path anomaly traces.

Overall Response Time Anomaly | Invocation Path Anomaly | Training (minutes) Test (seconds)

Precision | Recall | Precision Recall Precision Recall for 24-hour traces | for 4-hour traces
WEFG-based [5] 0.76 0.92 0.65 0.96 0.96 0.87 0.06 0.4
DeepLog* [8] 0.52 0.71 0.65 0.96 0.34 0.42 306 78
CPD-based [7] 0.30 0.47 N/A N/A 0.30 1.0 N/A 9
CFG-based [6] 0.70 0.49 0.70 0.94 N/A N/A N/A 0.1
AEVB [4] 0.17 0.52 0.17 0.98 N/A N/A 6120 121
OmniAnomaly [42] 0.45 0.49 0.45 0.93 N/A N/A 530 113
Multimodal LSTM [3] 0.60 0.96 N/A 0.94 N/A 0.97 9.5 109
TraceAnomaly 0.98 0.97 N/A 0.94 N/A 0.99 94 19

TABLE III: Online evaluation results of different approaches on four large online services which contain hundreds of

microservices, whose statistics are shown in Table 1.

Service-1 Service-2 Service-3 Service-4 Overall
(Union of 4 services)

Precision | Recall | Precision | Recall | Precision | Recall | Precision | Recall | Precision Recall

Hard-coded Rule 0.910 0.800 0.920 0.792 0911 0.812 0.930 0.800 0.910 0.804
WEG-based [5] 0.020 0.500 0.012 0.323 0.050 0.410 0.032 0.300 0.031 0.386
DeepLog* [8] 0.270 0.680 0.241 0.560 0.320 0.643 0.302 0.601 0.290 0.628
CPD-based [7] 0.52 0.063 0.43 0.090 0.57 0.110 0.64 0.072 0.531 0.081
CFG-based [6] 0.170 0.610 0.250 0.570 0.102 0.503 0.180 0.630 0.164 0.562
TraceAnomaly 0.980 1.000 0.982 1.000 0.981 1.000 0.973 1.000 0.981 1.000

Hard-coded Rule. Company S adopts an approach based
on the microservices’ return codes. This approach was the
practice of trace anomaly detection at company S prior to
TraceAnomaly’s deployment. For each call it serves, a mi-
croservice is required to return a status code to indicate its
status during the call (e.g., whether the response time is
above a fixed threshold 2000ms, or some error has occurred).
The return codes of all the microservices involved in a trace
constitute its code set. The developers of a service manually
design some fixed rules based on the code set to conduct
anomaly detection of each trace. We call such a detection
approach as Hard-coded Rule.

OmniAnomaly [42]. It proposed a stochastic recurrent
neural network for multivariate time series anomaly detection.
The response time data of traces’ microservices can form a
multivariate time series, thus multivariate time series anomaly
detection can be used to detect response time anomalies.

DeepLog* [8]. DeepLog [8] uses a Long Short-Term Mem-
ory (LSTM) model to detect execution path anomaly. How-
ever, DeepLog trains an LSTM model for each microservice
to detect response time anomaly while TraceAnomaly trains
a model for each service . If we use LSTM to detect response
time anomalies of microservices, then hundreds of LSTM
models have to be trained in our scenario (e.g., Service-1 has
344 microservices in Table I). Due to the resource limitation
of online services, we replace the response time anomaly
detection with the 3-sigma method (same as WFG-based’s),
and denote the modified approach DeepLog*.

C. Results

Table II shows the evaluation results of various approaches
on a testbed which contains 41 microservices, and Table III
shows the evaluation results of various approaches on four
large online services which contain hundreds of microservices.
The detection performance of different approaches can be
measured by precisions and recalls. Because the ground truth
of anomalous traces from testbed is known, we also calculate
the precisions and recalls of the response time anomaly

and invocation path anomaly. CPD-based, CFG-based, AEVB
and OmniAnomaly only detect invocation path anomalies or
response time anomalies, so some precisions and recalls cannot
be calculated in Table II. TraceAnomaly and Multimodal
LSTM cannot distinguish the anomaly type (response time
anomaly or invocation path anomaly), so the precisions of
response time anomaly and invocation path anomaly cannot
be calculated. In reality, the anomalous traces usually contain
both response time anomalies and invocation path anomalies.
It is distinguished in testbed only for evaluation purpose.

The response times of a normal microservice can change
significantly with different invocation paths. As shown in
Fig. 4, the microservice e is invoked twice, with differ-
ent response times. Although WFG-based, DeepLog*, CFG-
based, AEVB and OmniAnomaly also detect microservice-
level response time anomalies, they do not consider the
different invocation paths of a microservice, which causes
the bad performance. CPD-based only detects invocation path
anomalies. However, only analyzing invocation path is not
suitable to detect trace anomalies. A real example in Fig. 6
shows that an anomalous trace and a normal trace can have
the same invocation paths. These baselines’ performance
demonstrates the value of a unified detection approach.
Furthermore, due to the various structures of traces, the time
series data of microservices’ response time contain many
missing data points. These missing data points make the
performance of AEVB and OmniAnomaly worse. Although
Multimodal LSTM tries a unified approach, it is hard to learn
the relationships between response times and invocation paths
in an end-to-end way. Due to the bad performance and relative
long training time (6120 minutes and 530 minutes), AEVB,
OmniAnomaly and Multimodal LSTM are not selected in
online evaluation. It takes TraceAnomaly about 90 minutes to
train for one-day traces for both testbed and online, and this
training overhead is acceptable in practice.

The hard-coded rule is inferior to TraceAnomaly, especially
in the recall metric (an improvement of ~ 0.2). Since in real



TABLE 1IV: The evaluation results of root cause localization
approaches on a TrainTicket testbed.

Precision@1 | Precision@2 | Precision@3
MonitorRank [44] 0.35 0.47 0.53
RCSF [45] 0.29 0.41 0.47
MEPFL [46] 0.44 0.62 0.67
TraceAnomaly 0.99 N/A N/A

applications like ours, the number of anomalous traces is far
less than normal traces’, it would require much more efforts
to manually fix the false negatives than the false positives.
Thus, the recall metric is much more important than precision.
According to this, we conclude that the TraceAnomaly works
far better than hard-coded rules.

As mentioned in §V-A, the precision using the approximate
ground truth is accurate, but the recall might be biased towards
1 for all approaches in Table IIl. Note that although the
recall metrics of TraceAnomaly are 1.0 on all four services,
there might actually still be some anomalies not successfully
detected. Nevertheless, Table III is still a good evidence of
the superiority of TraceAnomaly, in that it can detect all
the anomalies reported by all other algorithms, with higher
precision than all baselines.

D. Improvement Over Hard-coded Rule

As described in §V-B, Hard-coded Rule is the most widely
used method in company S production systems. We thus pro-
vide some detailed comparison between it and TraceAnomaly.
Some false positives of hard-coded rule approach were due to
its not-well-designed rules. For example, a developer designed
a rule r; on Service-1 (see Table I) to detect anomalous
traces: the trace is anomalous if any of its microservices
returns a “fault” return code. During our evaluation, we
found that some traces detected by r; were not detected by
TraceAnomaly. After analyzing the detailed source codes with
developers, we found that r; mistakenly declares the follow-
ing normal case as anomalous. A microservice of Service-
1 regularly calls an external API which has a rate limit,
exceeding of which results in a fault return code of the API but
the corresponding trace should not be considered anomalous,
according to the application developers. TraceAnomaly suc-
cessfully determines such traces as normal since similar traces
appears not uncommonly, yet hard-coded rule approach simply
considers the trace with a fault return code as anomalous.

Hard-coded Rule cannot detect some response time anoma-
lies. For example, a developer set a (conservative) timeout
threshold of microservice g to 2 seconds. The normal response
times of g are smaller than 0.3 seconds. TraceAnomaly de-
tected some anomalous traces, and we found that the microser-
vice g’s response times of these detected traces are greater
than 1 second and less than 1.5 seconds. When we presented
these traces by TraceAnomaly, the operators thought that these
traces are anomalous and need to be detected.

E. Localizing Root Cause

We firstly compare the root cause localization performance
of TraceAnomaly with three baseline approaches on the
testbed, these baseline approaches are:

MonitorRank [44] generates personalized pagerank vector
by adjacency matrix and time series correlation among nodes,
then uses pagerank algorithm to localize root causes.

TABLE V: The evaluation results of TraceAnomaly for local-
izing root causes on four large services.

#anomalous TraceAnomaly root cause localization
traces internal microservice external service
(successful) (successful)
Service-1 18 18(18) 0
Service-2 8 6(6) 2(2)
Service-3 27 24(24) 3(3)
Service-4 20 18(18) 2(2)

RCSF [45] aggregates error paths from alarming frontend
nodes to error backend nodes, and mines frequent sequential
patterns from collecting paths to localize root cause.

MEPFL [46]. Based on a set of features defined on the
traces, MEPFL trains prediction models in supervised way to
localize the faulty microservices.

Table IV shows the results. Precision@K (Precision at top
K) is a commonly used metric for ranking, and it indicates the
probability that top K results given by an approach contain
the root cause. The localization results of MonitorRank [44],
RCSF [45] and MEPFL [46] are ranking lists, so Precision@K
are used to measure their performance. Due to the localization
result of TraceAnomaly are not ranking list, we only compute
Precision@1 for TraceAnomaly.

MonitorRank [44] localizes the root cause by analyzing the
time series response time data of traces’ microservices. Due to
the various trace structures, microservices’ response time data
contain many irregular fluctuations and missing data points,
which makes the algorithms’ performance worse. RCSF [45]
only mines the frequent sequence of trace paths to localize the
root cause, which is not enough to handle the various structures
of traces and response time anomalies. The defined features of
MEPFL [46] cannot reflect the invocation path anomaly, which
leads to the bad performance. Therefore, we only evaluate
TraceAnomaly localization in online evaluation.

For online evaluation, we collected all 73 recorded anoma-
lous traces from four large services which have been analyzed
by operators. As shown in Table V, the root causes of these
traces includes internal microservice and external service, and
TraceAnomaly successfully localizes the root causes of all 73
anomalous traces. In the future, we plan to analyze the exact
reasons of the root causes by analyzing more information,
includes the logs, configurations, source codes, efc..

F. Impacts

Thanks to the good performance of TraceAnomaly, it has
been used as an important alerting building block for moni-
toring and troubleshooting systems at company S:

Early fault warning. Some faults will show evidences in the
traces much earlier before the service is significantly hurt. For
example, a microservice’s response time becomes very large
due to a deteriorating fault, then some traces will be anomalous
immediately. However, it may take minutes to hours before the
deteriorating fault could influence the average response time
of the service, because the average response time changes
very slowly due to the large number of traces. For another
example, a small number of trace anomalies might reveal some
hidden bugs, discovering of which can help developers to fix
the bug before it eventually triggers severe damage.

Real-time fault detection. If a service has a fault, a batch of
similar anomalous traces may appear in a short time (e.g. 1



TABLE VI: The evaluation results of the explored approaches on four large services and a TrainTicket testbed.

Service-1 Service-2 Service-3 Service-4 TrainTicket
Precision | Recall | Precision | Recall | Precision | Recall | Precision | Recall | Precision | Recall
TraceAnomaly with GMM 0.700 0.540 0.670 0.500 0.713 0.551 0.690 0.564 0.890 0.850
TraceAnomaly with KDE 0.660 0.392 0.593 0.300 0.600 0.410 0.530 0.332 0.820 0.75
TraceAnomaly with Vanilla VAE 0.910 0.800 0.900 0.810 0.890 0.792 0.913 0.800 0.930 0.910
TraceAnomaly 0.980 1.000 0.982 1.000 0.981 1.000 0.973 1.000 0.980 0.970
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Fig. 11: Density/heat maps of: (a) the 2-d dataset; (b) log pg(x)
of TraceAnomaly; (c) logpg(x) of VAE; (d) log density of
KDE,; (e) log density of GMM.

minute). Then the monitoring system will immediately alarm,
and operators can quickly mitigate and troubleshoot the faults.

VI. ANALYSIS

Recall that our core idea is to learn the distribution p(x) of
the service trace vectors (STVs) by an unsupervised learning
algorithm, and apply the learned model to detect anomalies.
Some unsupervised algorithms can potentially serve as drop-
in replacements of the Bayesian networks proposed in this
paper: Gaussian Mixture Model (GMM) [47], Kernel Density
Estimation (KDE) [38] and Vanilla VAE [34]. In this section,
we replace the Bayesian networks with these alternatives
in TraceAnomaly, and then compare their performances and
analyze why TraceAnomaly works better than the alternatives.

A. Explored Alternative Approaches

Table VI shows the evaluation results of the explored
approaches. Firstly, among our explored approaches, deep
models consistently outperform non-deep models (i.e., KDE,
GMM), which strongly supports our intuition that deep learn-
ing techniques are necessary to learn p(x) from complicated
data. The second observation is that, TraceAnomaly consis-
tently outperforms Vanilla VAE, as what we have expected in
§III-A. This highlights the need of a strong (i.e., having large
modeling capacity) posterior g4(z|x) when applying VAE on
trace anomaly detection. We thus conclude that among all
learned models, TraceAnomaly is the best one to choose.

B. Internal Mechanisms Analysis

To analyze the internal mechanisms of the algorithms in
§VI-A, we plot the density of a 2-d dataset (Fig. 11a) and the
heat maps of the models trained on this dataset (Figs 11b
to 1le). The data come from an online service for one
day, whose number of STV dimensions is two. We choose
this dataset because higher dimensional datasets are hard
to analyze through visualization. The density of the dataset
(Fig. 11a) is plotted by directly drawing each STV as a 20%
transparent point on the figure. The heat maps of trained
models are plotted as follows. First, we pick 500 values along
each of the x-axis and y-axis, with equal intervals, and obtain
250,000 points from the Cartesian product of x- and y-values.
These points are the input for the models. We then compute
the score (logpy(x) or log density, respectively) of each x
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corresponding to each model. Finally, we plot these scores as
the heat maps in Fig. 11.

There is a sharp contrast between the deep models (Figs 11b
and 11c) and non-deep models (Figs 11d and 11e). The deep
models manage to learn a smooth p(x), where the non-deep
models are only able to obtain a non-smooth p(x), leaving
“holes” on areas not covered by training samples. Since the
values of STVs are response times, it is reasonable to believe
these values are continuous by nature, thus having a smooth
p(x) should benefit the detection performance (which is indeed
the situation in Table VI). As the dimension grows, non-deep
models will struggle even harder to learn a smooth, transient,
or realistic p(x). This fact strongly supports our preference to
use deep models in §III-A. As for the deep models (Figs 11b
and 1lc), we can see that the vanilla VAE fails to capture
the fine-grained patterns of data. This is because the lack of
a good posterior makes the ELBO (Eqn (1)) fail to serve as a
tight lower-bound of log pg(x) in training, resulting in a sub-
optimal model, as suggested in §1II-A. We thus conclude that
TraceAnomaly can effectively learn p(x) of STVs.

VII. CONCLUSION

This paper presents TraceAnomaly, an unsupervised
anomaly detection approach that can automatically learn the
overall normal patterns of the traces for a service, and detect
anomalies via computing the likelihood based on the learned
normal pattern. TraceAnomaly has a novel service trace vec-
tor encoding and deep variational Bayesian networks with
posterior flow. TraceAnomaly has been deployed on 18 large
online services in a company S which serves tens of millions
of users. Detailed evaluations on four large online services
(with 61 to 344 microservices) and a testbed show that the
recall and precision of TraceAnomaly are both above 0.97,
outperforming the existing approach in § (hard-coded rule)
by 19.6% and 7.1%, and seven other baselines by 57.0%
and 41.6% on average. Furthermore, TraceAnomaly localized
the correct root causes on all 73 anomalous traces from four
large services, and its localization accuracy outperforms three
baseline approaches by 55% in testbed results. Thanks to
the good performance of TraceAnomaly during two-month
deployment, more monitoring and troubleshooting systems are
planned to be develop based on TraceAnomaly in S.
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