
LogTransfer: Cross-System Log Anomaly Detection
for Software Systems with Transfer Learning

Rui Chen §, Shenglin Zhang §, Dongwen Li§, Yuzhe Zhang§, Fangrui Guo§,
Weibin Meng†, Dan Pei†, Yuzhi Zhang ∗ §, Xu Chen §, Yuqing Liu §

§Nankai University, {rzchen, lidongwen, zyzcs, guofangrui, 1612839, 1612932}@mail.nankai.edu.cn,
{zhangsl, zyz}@nankai.edu.cn

†Tsinghua University, mwb16@mails.tsinghua.edu.cn, peidan@tsinghua.edu.cn

Abstract—System logs, which describe a variety of events of
software systems, are becoming increasingly popular for anomaly
detection. However, for a large software system, current unsu-
pervised learning-based methods are suffering from low accuracy
due to the high diversity of logs, while the supervised learning
methods are nearly infeasible to be used in practice because it
is time-consuming and labor-intensive to obtain sufficient labels
for different types of software systems. In this paper, we propose
a novel framework, LogTransfer, which applies transfer learning
to transfer the anomalous knowledge of one type of software
system (source system) to another (target system). We represent
every template using Glove, which considers both global word
co-occurrence and local context information, to address the
challenge that different types of software systems are different
in log syntax while the semantics of logs should be reserved.
We apply an LSTM network to extract the sequential patterns
of logs, and propose a novel transfer learning method sharing
fully connected networks between source and target systems,
to minimize the impact of noises in anomalous log sequences.
Extensive experiments have been performed on switch logs of
different vendors collected from a top global cloud service
provider. LogTransfer achieves an averaged 0.84 F1-score and
outperforms the state-of-the-art supervised and unsupervised log-
based anomaly detection methods, which are consistent with
the experiments conducted on the public HDFS and Hadoop
application datasets.

Index Terms—Transfer learning, system log, anomaly detec-
tion, word embedding, LSTM

I. INTRODUCTION

As the scale and complexity of software services increase
dramatically, a large number of software systems have been
deployed on different types of services, e.g., cloud comput-
ing, e-commerce, 5G, blockchain. They continuously provide
services for millions of users all over the world, and thus
reliability and availability are of vital importance to them.
However, anomalous behaviors may occur on these software
systems occasionally, which can affect system reliability and
availability, impact user experience, or even lead to economic
losses [1]. These anomalies could be introduced by various
types of causes, e.g., software bugs, malicious attacks, memory
leaks, disk failures, or misconfigurations. Therefore, operators
carefully monitor these software systems in order to rapidly
detect anomalies and timely mitigate them.

∗Yuzhi Zhang is the correspondence author.

[SIF pica_sif]Interface te-1/1/11, changed state to down
[SIF pica_sif]Interface te-1/1/11, changed state to up
[OSPF]Neighbour(rid:, addr:) on vlan20, changed state from Init to ExStart
[OSPF]Neighbour(rid:, addr:) on vlan20, changed state from ExStart to Exchange
[OSPF]Neighbour(rid:, addr:) on vlan20, changed state from Exchange to Loading
[OSPF]Neighbour(rid:, addr:) on vlan20, changed state from Loading to Full
[OSPF]Neighbour(rid:, addr:) on vlan20, changed state from Full to Down
[SIF]Vlan-interface vlan20, changed state to down
[SIF]Vlan-interface vlan20, changed state to up
%%10IFNET/3/LINK_UPDOWN(l): GigabitEthernet1/0/10 link status is DOWN.
%%10IFNET/3/LINK_UPDOWN(l): GigabitEthernet1/0/10 link status is UP.
%%10OSPF/3/OSPF_NBR_CHG(l): OSPF 1 Neighbor (Vlan-interface20) from Loading to Full.
%%10OSPF/3/OSPF_NBR_CHG(l): OSPF 1 Neighbor (Vlan-interface20) from Full to ExStart.
%%10OSPF/3/OSPF_NBR_CHG(l): OSPF 1 Neighbor (Vlan-interface20) from Full to Down.
%%10OSPF/3/OSPF_NBR_CHG(l): OSPF 1 Neighbor (Vlan-interface20) from Full to Init.
%%10IFNET/3/LINK_UPDOWN(l): Vlan-interface20 link status is DOWN.
%%10IFNET/3/LINK_UPDOWN(l): Vlan-interface20 link status is UP.

Fig. 1. The anomalous log sequences generated by two different types
of software systems. The two sequences are very similar in semantics but
different in syntax.

System logs have become increasingly popular for anomaly
detection recently [2]–[5], because they could not only reflect
the status of software systems but also reveal root causes.
For example, the log “Interface te-1/1/11, changed state to
down” tells us that an anomaly may occur on the system
since the state of an interface becomes down. This cannot be
obtained from performance counters (e.g., page view count),
usage statistics (e.g., CPU utilization), or system metrics (e.g.,
number of threads), which are usually time series data [6].

Due to the large scale and high diversity of logs in today’s
software services, it is very challenging to detect anomalies
based on logs. Specifically, a large software service typically
consists of various types of software systems, and each type
of software system would generate a specific type of logs.
Different types of logs are usually different in syntax. For
example, Fig. 1 shows two log sequences that are generated
by two different types of software systems. Both of the two
sequences indicate that the software systems are suffering
from interface flapping. They are different in syntax, although
they are very “similar” in semantics. Therefore, it is nearly
infeasible to use a log-based anomaly detection model to fit
all types of software systems. In other words, we have to train
a specific anomaly detection model for each type of software

system. A large software service usually includes tens to
hundreds of different types of software systems. For example,
operators can deploy different types of operating systems
(say Ubuntu, Redhat, CentOS) on servers, and each type of
operating system generates a specific type of logs. In addition,
a software service provider usually purchases devices from
different vendors with different models for commercial consid-
erations, and logs generated by those switches/routers/firewalls
of different vendors/models are typically different.

A large number of machine learning-based log anomaly
detection methods have been proposed over the years, and
they are either supervised methods [7]–[10] or unsupervised
methods [2], [11]–[15]. However, it is still challenging to
deploy these methods in a real-world large software service
with diverse types of software systems, where labelled data
is insufficient while accurate and rapid anomaly detection is
required. Although unsupervised learning methods do not need
any labels and thus they are applicable for large volumes of
logs, they usually suffer from low accuracy [10]. Supervised
methods, which usually require sufficient labels, can achieve
higher accuracy than those unsupervised ones. Nevertheless, it
is time-consuming and labor-intensive to label anomalous and
normal logs because of the large volume and high diversity of
logs. Therefore, supervised learning methods are very difficult,
if not impossible, to be deployed in large cloud systems in
practice.

To build an accurate and applicable log-based anomaly
detection model, we propose LogTransfer, which enables
cross-system anomaly detection for software systems in a
large software service. The core idea of the cross-system
is to conduct anomaly detection on a software system with
insufficient anomaly labels (target system) by learning from
a software system with sufficient anomaly labels (source sys-
tem). The intuition behind LogTransfer is that the anomalous
logs of different types of software systems usually share
similar patterns. For example, as shown in Fig 1, the two
anomalous log sequences generated by two different types of
software systems are quite similar. We can improve a target
system’s anomaly detection performance by “transferring” the
“similarity” from a source system to it.

However, the design of a cross-system log anomaly detec-
tion faces the following two challenges:
(1) Different types of systems are different in log syntax.
Cross-system transfer learning should measure the similarities
of logs between source and target system. However, the state-
of-the-art log representation method, which only considers lo-
cal context information, cannot robustly measure the similarity
of logs across multiple datasets with various syntax.
(2) Noises in anomalous log sequences. The anomalous log
sequences usually have noises that can degrade the perfor-
mance of anomaly detection. For example, in an anomalous
log sequence, there are usually one or more logs that are
irrelevant to this anomaly, which brings a great challenge to
identify anomalous log sequences [16].

To address the above two challenges, we design LogTransfer
as follows.

(1) An accurate representation construction method. We
first extract log templates from raw logs using FT-tree [17],
which has been demonstrated to be accurate and efficient on
real-world system logs. After that, we employ Glove [18],
a popular unsupervised word representation technique, to
represent every word in the templates by fixed-dimension
vectors. Glove combines the global word co-occurrence and
local context information of template words, which are in turn
integrated (e.g., averaged) to represent every template. In this
way, the representation of templates minimizes the impact of
syntax (i.e., the order of words) while preserving the semantics
information (i.e., the meaning of templates), and thus robustly
measures the similarities of cross-system logs.
(2) A novel transfer learning method. We apply Long Short
Term Memory (LSTM) networks to identify the sequential
patterns of template sequences. The output of LSTM is then
fed into fully connected networks for anomaly detection
(classification). LogTransfer uses a novel transfer learning
approach where the source and target system share the same
fully connected networks instead of the same LSTM networks,
which are more robust to the noises in log sequences because
the former way is more tolerant to the trivial differences of
log sequences than the latter case.

To demonstrate the performance of LogTransfer, we have
conducted extensive experiments on switch logs of different
vendors collected from a top global cloud service provider.
LogTransfer achieves an averaged accuracy of 0.84 (in terms
of F1-score) on these switch logs, which outperforms the state-
of-the-art supervised and unsupervised log anomaly detection
methods. Besides, we also perform experiments on public
HDFS and Hadoop application datasets to demonstrate Log-
Transfer’s generality.

The contributions of this paper are summarized as follows:
(1) To the best of our knowledge, we are the first to apply
transfer learning for log anomaly detection and identify the
challenges lying in that for a large software service.
(2) We propose to use Glove to construct logs’ representations
to accurately measure the similarities of cross-system logs.
(3) We propose a novel transfer learning approach that shares
fully connected networks between source and target systems,
addressing the impact induced by the noises in log sequences.
(4) We have conducted extensive evaluation experiments using
real-world logs to demonstrate LogTransfer’s performance.

The rest of this paper is organized as follows. We introduce
some preliminary knowledge of log-based anomaly detection
in Section II, and present the design of LogTransfer in
Section III. The evaluation experiments are described and
discussed in Section IV, followed by the discussion of re-
lated works in Section V. Finally, we conclude our work in
Section VI.

II. PRELIMINARY

A. System Logs and Templates

Each software system reports, from time to time, the
observed condition or (anomalous) event, in a system log.
Examples of such conditions or events include state changes

2

of interfaces, links, or neighbors (e.g., the state of an interface
changes from up to down), operational maintenance (e.g.,
operators log in/out), environmental condition alerts (e.g.,
high temperature), etc. Although logs are designed mainly for
debugging software and hardware problems, they can also be
used for detecting, diagnosing, and predicting anomalies [2]–
[5], [10], [16].

A log entry usually consists of two parts: constant part
(template) and parameter part. For instance, in the syslog
message Interface te-1/1/11, changed state to down shown
in Fig. 1, te-1/1/11 is a parameter that varies from one log
to another, whereas the rest, i.e., Interface ..., changed state
to down, sketches out the event, and hence is a template that
summarizes this and other similar logs. The logs and their
templates generated by different types of software systems
are different in syntax because they are usually designed by
different vendors/developers.

Several automatic template extraction approaches have
been proposed, which can be classified into four main cat-
egories [19]: longest common subsequence-based methods
(e.g., Spell [20]), frequent item mining-based methods (e.g.,
FT-tree [17]), heuristics-based methods (e.g., IPLoM [21] and
Drain [22]), and cluster-based methods (e.g., LogSig [23]). In
this work, we apply FT-tree, which has been demonstrated
to be accurate and efficient using real-world logs, to extract
templates from logs. Note that applying FT-tree is not one of
our contributions.

B. System Anomaly

System anomalies can be roughly classified into several
different types, including (1) external problems such as mali-
cious attacks, power down; (2) configuration problems such as
VPN tunneling errors; (3) hardware failures such as the crash,
induced by hardware errors, of a machine; and (4) software
crash due to bugs. These anomalies could lead to failures to
software systems and in turn impact user experience and/or
bring economic loss. Therefore, operators are paying much
attention to anomaly detection in order to mitigate anomalies
as quickly as possible.

Although a small part of service anomalies can be detected
through service metrics (e.g., average response time), a large
portion of service anomalies remain undetected. That is be-
cause only a small portion of anomalies lead to such service
anomalies that can be observed by these service metrics, and
most anomalies are underlying ones that deteriorate gradually
and degrade the performance of services finally. For example,
the memory leaking of a software system does not impact
service performance at the beginning, but it will eventually
degrade service performance if not fixed. Therefore, it is vitally
important for operators to proactively detect all anomalies
based on system logs and mitigate them before they impact
service performance.

For supervised log-based anomaly detection methods, man-
ually labeling logs indicating system anomalies is labor-
intensive, time-consuming and error-prone, because logs are

very large in quantity and diverse in represented events.
Therefore, in this paper, we try to apply transfer learning to
minimize this effort.
C. LSTM in Anomaly detection

A Recurrent Neural Network (RNN) is an artificial neural
network in which nodes are directionally connected. The
current internal state of an RNN block relies on both current
input and previous states. Long Short-Term Memory (LSTM))
networks are instances of RNNs, and they can solve the long-
term dependency issue in RNN (i.e., the current state may
be affected by the state a long time ago). Inspired by the
fact that system logs are essentially a series of log entries in
chronological order, and a log anomaly is usually identified
by a log sequence, DeepLog [2] applied LSTM to first extract
sequential patterns from log sequences, and then predict the
template of the next log given a log sequence. Moreover,
LogAnomaly [15] also leveraged LSTM to extract sequential
features from log sequences. Both DeepLog and LogAnomaly,
which have demonstrated their performance using real-world
logs, show LSTM’s superior performance in extracting sequen-
tial features from logs. Consequently, in this work, we also
apply LSTM to learn logs’ sequential patterns.

III. DESIGN OF LOGTRANSFER

A. Design Overview

The architecture of LogTransfer is shown in Fig. 2. In the
offline model training process, for both source system and
target system, LogTransfer first matches logs to templates,
constructs template vectors to represent templates and gener-
ates sequences of template vectors from raw logs and template
vectors. With the sufficient labels of source system, the insuf-
ficient labels of target system, and the above template vector
sequences, LogTransfer transfers the anomalous patterns from
the source system to the target system, so as to train an
accurate anomaly detection model for the target system. In the
online anomaly detection process, LogTransfer matches new
logs of the target system to template vector sequences based
on the template vectors learned in the offline training process.
After that, the LSTM networks and shared fully connected
networks trained in the offline learning process extract the
sequential features from these template vector sequences and
determine whether these sequences are anomalous, respec-
tively.

There are two main components in LogTransfer, namely
representation construction and transfer learning. In the repre-
sentation construction component, in order to simultaneously
avoid the impact of syntax and reserve the semantics informa-
tion, LogTransfer applies Glove [18], a robust word embedding
method, to robustly embed template words into vectors. In
the transfer learning component, LogTransfer first trains a
base model which is composed of source LSTM networks
and fully connected networks using the log sequences and
anomaly labels from the source system. Then, source LSTM
networks in the base model will be fine-tuned by the log
sequences and anomaly labels from the target system to

3

Transfer learningRepresentation construction

Transfer learning

Logs of
source
system

Logs of
target
system

Template vector
sequences of
source system

Labels of target
system

Labels of source
system

Template vector
sequences of
target system

Template
vectors

Anomaly
detection model
for target system

(a) Offline model training process

Target LSTM
networks

Shared fully
connected networks

Template vector
sequences

Anomaly
detection result

New logs of target
system

(b) Online anomaly detection process

Fig. 2. The architecture of LogTransfer

Raw system log:
[SIF pica_sif] Interface te-1/1/11, changed state
to down

Log template:
Interface *, changed state to down

Word embeddings:
Interface: 𝑉𝑉1→ (𝑣𝑣11, 𝑣𝑣12, 𝑣𝑣13,…, 𝑣𝑣1𝑛𝑛)
changed: 𝑉𝑉2→ (𝑣𝑣21, 𝑣𝑣22, 𝑣𝑣23,…, 𝑣𝑣2𝑛𝑛)
state: 𝑉𝑉3→ (𝑣𝑣31, 𝑣𝑣32, 𝑣𝑣33,…, 𝑣𝑣3𝑛𝑛)
to: 𝑉𝑉4→ (𝑣𝑣41, 𝑣𝑣42, 𝑣𝑣43,…, 𝑣𝑣4𝑛𝑛)
down: 𝑉𝑉5→ (𝑣𝑣51, 𝑣𝑣52, 𝑣𝑣53,…, 𝑣𝑣5𝑛𝑛)

Template embedding:
Interface *, changed state to down:
t → average(𝑉𝑉1+ 𝑉𝑉2+ 𝑉𝑉3+ 𝑉𝑉4+ 𝑉𝑉5)

Fig. 3. Example of how to generate a template embedding. In representa-
tion construction component, a single log entry is matched to its template
embedding following this procedure.

obtain target LSTM networks. Fully connected networks are
shared and connected to target LSTM networks. Sharing
the fully connected networks rather than the LSTM networks
makes LogTransfer more robust to the noises in log sequences
because it is more tolerant to the trivial differences of log
sequences.

B. Representation Construction

The representation construction component tries to represent
logs in order to reserve logs’ semantics information and
minimize the impact of syntax simultaneously for robustly
measuring the similarities of cross-system logs. These rep-
resentations are the input into machine learning models to
extract logs’ features and learn anomaly’s patterns. We present
an example of how to generate the template embedding for a
given log entry in the representation construction component
in Fig. 3.

It is a common practice to first extract templates from
logs and then matches logs to templates [19] for representing
logs. FT-tree [17], which is accurate, efficient, and supports

incremental learning, has demonstrated its good performance
on real-world system logs. Therefore, in this work, we apply
FT-tree to extract templates from logs. Note that applying FT-
tree is not one of our contributions.

Using embedding rather than indices of templates has been
demonstrated to be able to extract the semantics information
from logs and facilitate a more accurate anomaly detection
model [15]. Although LogAnomaly takes a first step towards
applying embedding to represent templates, the word embed-
ding method used in it, i.e., word2Vec, can only extract the
local context information of templates, without considering
the global information of the whole template set. Ignoring
global information can degrade the performance of measuring
the similarities of cross-system logs and their templates (more
details can be seen in Section IV-C).

Therefore, LogTransfer employs Glove [18], which not only
extracts the local context information but also considers the
global word co-occurrence information of template set, to
represent template words. Formally, in Glove, the objective
function is:

J =

V∑
i,j=1

f(Xij)(w
T
i w̃j + bi + b̃j − logXij)

2
(1)

where V is the size of the template set, wi and bi represent
the embedding and bias of word i, respectively, and w̃j and
b̃j represent the vector and bias of a separate context word j.
In addition, Xij denotes the number of occurrences of word
j within the context of the word i in the global occurrence
matrix X). Moreover, f(x) is the weighting function which is
defined as follows:

f(x) =

{
(x/xmax)α if x < xmax

1 otherwise
(2)

we set α = 3/4 following [18].
A template vector t is then calculated as:

t =

n∑
k=1

wk/n (3)

where n is the number of words in the template. In this way,
a template vector is irrelevant to the syntax (i.e., the order of
words) of logs and their templates.

4

Template vector
sequences of
source system

Source LSTM
networks

Target LSTM
networks

Shared fully
connected networks

Source system Target system

Template vector
sequences of
target system

Labels of
source system

Labels of
target system

Fig. 4. The architecture of transfer learning component

C. Transfer Learning

Because (1) target systems do not have sufficient anomaly
labels to train accurate anomaly detection models, (2) source
systems and target systems share the same or similar log
patterns when anomalies occur (e.g., the example shown in
Fig. 1), and (3) transfer learning enables learning patterns
from data across different domains and/or distributions [24],
LogTransfer applies transfer learning to “transfer” the learned
anomaly patterns from source system to target system.

LogTransfer applies LSTM to extract sequential features
from logs and uses fully connected layers to determine whether
the output is anomalous or not. The performance of transfer
learning depends on the layers used for transferring [25].
Because a source system usually has much more anomaly
labels than a target system, and the anomaly patterns of
the source system can cover those of the target system,
LogTransfer shares the fully connected networks, which are
essentially classifiers determining whether a log sequence is
anomalous or not, to transfer the learned anomaly patterns
from the source system to the target system. We do not share
the LSTM networks, which extract the sequential features of
logs, because the noises mingling in anomalous log sequences
can degrade the similarity between the sequences of the source
system and those of the target system. That is to say, if we
just copy the parameters of the LSTM networks learned in the
source system to the target system without further tuning these
parameters based on the logs of the target system, the anomaly
detection model will mistakenly determine some anomalous
log sequences of the target system as normal (more details
can be seen in Section IV-D).

Specifically, as shown in Fig. 4, for a source system
LogTransfer first applies source LSTM networks, which are
trained based on the labels of the source system, to extract
the sequential features from template vector sequences. The
outputs of the LSTM networks are then fed into the shared
fully connected networks, which are also trained based on the
labels of the source system. The fully connected networks
and source LSTM networks continuously train each other
until both of them achieve good performance. For the target
system, LogTransfer applies target LSTM networks, which
are initialized based on source LSTM networks, to learn the

sequential patterns of logs. The LSTM networks are fine-
tuned based on the labels of the target system and the shared
connected networks. Note that the shared connected networks
are “transferred” and fixed, and they will not be tuned like
LSTM networks, which is the core idea of transfer learning.

Sharing fully connected networks instead of LSTM net-
works facilitates LogTransfer more robust to the noises in
the anomalous log sequences of the target system because the
sequential features learned in the target LSTM networks are
fine-tuned based on these sequences. LogTransfer is, to the
best of our knowledge, the first work to combine LSTM with
transfer learning by sharing fully connected networks in the
anomaly detection domain.

Typically, LogTransfer can be applied to transfer anomalous
log patterns across different types of software systems within
the same domain. For example, Red Hat, Cent OS, Ubuntu,
and Windows are all operating systems; HDFS, WordCount
and PageRank are all Hadoop related application systems;
switches, routers, and firewalls are all network devices; search
engine, online video, and online shopping are all web services.
Therefore, LogTransfer can be used to transfer learning within
operating systems, Hadoop related applications, network de-
vices, or web services. It cannot be used to transfer learning
across different domains. However, LogTransfer takes the first
step towards applying transfer learning in log-based anomaly
detection, and it gives several insights for this direction.

IV. EVALUATION

A. Experimental Setup

1) Dataset: To evaluate the performance of LogTransfer,
we conduct our experiments on switch logs collected from a
top global cloud service provider with a 2-year period. These
switches belong to three types1. Logs of different types of
switches are different in syntax. Table I lists the detailed
information of the datasets. Since switch type A and type C
have much more anomalous chunks than switch type B, we
apply the software systems of switch type A and type C as
two individual source systems, and that of switch type B as
the target system. 200 anomalous chunks of the target system
are utilized to fine-tune LogTransfer (more details can be seen
in Fig. 11).

To demonstrate the generality of LogTransfer, we further
evaluated its performance using two public datasets: the
Hadoop application dataset which is collected from Hadoop
applications [14], and the HDFS dataset collected from
Hadoop file systems [11]. The detailed information of the
above two datasets is also listed in Table I. Note that the
anomalies of the two Hadoop application datasets, including
machine down, network disconnection, and disk full, are
manually injected by [14].

The distributions of anomalies in these datasets are shown
in Fig. 5. For each dataset, we calculate the percentage of
anomalous chunks across different switches/blocks as the

1A type of switch is a specific switch model produced by a specific
manufacturer.

5

TABLE I
DATASET OVERVIEW

Source of dataset Type of system Source of labels # chunks # anomalous chunks # switches/log files

Switch

Type A

Real-world anomalies

2,345,646 6,406 22

Type B 49,946 1,096 14

Type C 525,427 4,939 21

Hadoop application PageRank & WordCount [14] Manually injected 121,878 73,936 1008

Hadoop file system HDFS [11] Real-world anomalies 3,725,203 108,024 575,061

0 20 40 60 80 100
Relative sequential locations of log chunks(%)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Pe
rc

en
t o

f a
no

m
al

ou
s c

hu
nk

s

Switch type A
Switch type B

Switch type C
HDFS

Hadoop Applications

Fig. 5. The distribution of anomalies in the six datasets

relative sequential locations of chunks vary. For example,
28% of switches of type A suffer from anomalies when these
switches have generated 78% of total logs. We can see that in
general the anomalies are randomly distributed across all log
chunks.

2) Metrics: We apply precision, recall, and F1-score to
evaluate the performance of LogTransfer following [15]. They
are defined as:

Precision =
Anomalies detected

Anomalies reported
(4)

Recall =
Anomalies detected

Entire anomalies
(5)

F1-score =
2(Precision×Recall)
(Precision+Recall)

(6)

3) Parameters: We investigate three model-related parame-
ters (i.e., α, β, and L), and data-related parameters (i.e., W and
S). In LogTransfer, α and L are the number of memory units
and that of layers in one LSTM network, respectively. β is the
number of memory units in a fully connected layer, and W
and S are respectively the length and step size of each sliding
window forming a log chunk. As we can see from Fig. 6(a),
(b), (c), the performance of LogTransfer remains stable as
model-related parameters vary. On the contrary, data-related
parameters can impact the performance of LogTransfer. As

can be seen from Fig. 6(d), (e), the F1-score of LogTransfter
may decrease if W or S is set inappropriately. Intuitively, if
W is set too small, the sequential information of a log chunk
will be insufficient to detect anomalies. However, if W is set
too large, a log chunk may contain many noise log entries
which degrade detection accuracy. Similarly, although a larger
S may cause some anomalous logs to be undetected, it can
also skip some noise logs. Hence, both W and S need to be
adjusted carefully so as to achieve good performance. In our
evaluation experiments, we set α = 128, L = 2, β = 192,
S = 4, W = 20 to achieve a good LogTransfer performance.

4) Environmental Setting: Our experiments are conducted
on a server with Intel XeonE5 12 cores CPU with 128GB
memory. We have open-sourced LogTransfer2.

B. Evaluation of Overall Performance

To evaluate the performance of LogTransfer, we compare it
with four supervised log-based anomaly detection approaches,
including Linear regression [7], SVM [8], Decision tree [9],
and CNN-based model [10], as well as six unsupervised
approaches, including PCA [11], Isolation forest [12], IM [13],
LogCluster [14], DeepLog [2], and LogAnomaly [15]. We im-
plement DeepLog, LogAnomaly, and CNN-based model with
Python3.6. PCA, Invariant mining, SVM, Linear regression,
LogCluster, Isolation forest and Decision tree are evaluated
based on a popular open-source toolkit implemented in [26].
Note that the parameters of all the above methods are set best
for accuracy.

Fig. 7 shows the comparison results among LogTransfer,
four supervised methods, and six unsupervised methods, when
the software system of switch type A or type C is utilized
as source system, and that of type B as target system. As
shown in Fig. 7(a), (c), LogTransfer outperforms all the four
supervised methods in terms of precision, recall, and F1-score,
whether type A or type C as the source system. That is
because: (1) the target system does not have sufficient anomaly
labels to train these supervised methods, and (2) LogTransfer
utilizes template embeddings, which sufficiently extracts the
semantics information of logs, rather than template indexes,
to represent log entries. When we compare LogTransfer with
the six unsupervised methods, it still achieves better F1-score

2LogTransfer is available on
github:https://github.com/logtransfergit/LogTransfer.

6

 0.7

 0.8

 0.9

 1

 1 2 3 4

Precision
Recall

F1-score

(a)

 0.7

 0.8

 0.9

 1

 64 128 192 256

Precision
Recall

F1-score

(b)

 0.7

 0.8

 0.9

 1

 64 128 192 256

Precision
Recall

F1-score

(c)

 0.7

 0.8

 0.9

 1

 10 15 20 25

Precision
Recall

F1-score

(d)

 0.7

 0.8

 0.9

 1

 1 2 3 4 5

Precision
Recall

F1-score

(e)

Fig. 6. The performance of LogTransfer as: (a) the number of LSTM layers L; (b) the number of memory units in LSTM network α; (c) the number of
memory units in a fully connected network β; (d) window length W ; (e) step size S; vary. (switch type A as the source system, and type B as the target
system)

 0

 0.2

 0.4

 0.6

 0.8

 1

Precision Recall F1-score

LogTransfer
CNN-based model

Decision tree

Linear regression
SVM

(a) Supervised methods, type A

 0

 0.2

 0.4

 0.6

 0.8

 1

Precision Recall F1-score

LogTransfer
Invariant mining

PCA
LogCluster

LogAnomaly
DeepLog

Isolation forest

(b) Unsupervised methods, type A

 0

 0.2

 0.4

 0.6

 0.8

 1

Precision Recall F1-score

LogTransfer
CNN-based model

Decision tree

Linear regression
SVM

(c) Supervised methods, type C

 0

 0.2

 0.4

 0.6

 0.8

 1

Precision Recall F1-score

LogTransfer
Invariant mining

PCA
LogCluster

LogAnomaly
DeepLog

Isolation forest

(d) Unsupervised methods, type C

Fig. 7. The overall performance of LogTransfer, four supervised methods, and six unsupervised methods on switch datasets (switch type A or type C as the
source system, and type B as the target system)

7

TABLE II
THE AUC SCORES OF LOGTRANSFER, FOUR SUPERVISED METHODS, AND

SIX UNSUPERVISED METHODS

Type Method AUC Score
Transfer learning LogTransfer 0.892

Supervised

Decision tree [9] 0.745
SVM [8] 0.754

CNN-based model [10] 0.682
Linear regression [7] 0.663

Unsupervised

DeepLog [2] 0.5
LogAnomaly [15] 0.676
LogCluster [14] 0.578

Invariant mining [13] 0.592
PCA [11] 0.538

Isolation forest [12] 0.523

than these methods, mainly because these methods are not
robust to highly diverse real-world system logs. Some unsuper-
vised methods, e.g., DeepLog, Isolation forest, achieve better
Recall than LogTransfer. That is because neither DeepLog
nor Isolation forest can utilize the semantics information of
logs and they tend to mistakenly determine a large number of
normal log chunks as anomalous [15], resulting in that these
methods suffer from low precision and generate much more
false alarms. These false alarms will bring heavy works to
operators, and they are not willing to deploy these methods in
practice. More specifically, from Fig. 7(b), (d) we can see that
all unsupervised methods suffer from low precision. Generally,
the patterns of switch system logs are diverse, and a large
number of anomalous logs mingle in the training set, which
makes unsupervised methods difficult to precisely learn all the
normal patterns.

The precision-recall curve (PRC) has been widely used
to determine the reliability of a binary classifier. To further
demonstrate the robustness of LogTransfer, we plot the PRCs
of different methods by varying these methods’ thresholds as
shown in Fig. 8. We can see that LogTransfer is more robust
than both supervised and unsupervised methods.

To further evaluate the overall performance of LogTransfer,
we calculate the AUC (area under the curve) scores of it,
four supervised methods, and six unsupervised methods, using
the software system of switch type A as the source system
and that of switch type B as the target system, as listed in
Table IV-B. A higher AUC score generally means a better
anomaly detection performance. Clearly, LogTransfer achieves
the best performance among all the methods.

C. Evaluation of Word Embedding Methods

As introduced in Section III-B, LogTransfer applies
Glove [18] rather than word2Vec used in LogAnomaly [15],
because Glove extracts both local context and global word co-
occurrence information, making LogTransfer more robust to
measure the similarities of cross-system anomalous logs.

In order to evaluate the performance of Glove in repre-
sentation construction component, we compare the accuracy
of LogTransfer, with that of LogTransfer with word2Vec as

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Pr
ec

is
io

n

Recall

LogTransfer
Decision tree

CNN-based model

Linear regression
SVM

(a) The precision-recall curves of LogTransfer and supervised methods

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Pr

ec
is

io
n

Recall

LogTransfer
DeepLog

Isolation forest
Invariant mining

LogAnomaly
PCA

LogCluster

(b) The precision-recall curves of LogTransfer and unsupervised meth-
ods

Fig. 8. Precision-recall curves of LogTransfer, four supervised methods, and
six unsupervised methods (the switches of type A as source system and those
of type B as target system)

TABLE III
COMPARISON OF WORD EMBEDDING METHODS

Method F1-score AUC
score

#False
positive

#False
negative

LogTransfer
w/ word2Vec 0.8368 0.8881 88 84

LogTransfer 0.8606 0.9243 80 59

the word embedding method, using the software system of
switch type A as the source system and that of switch type
B as the target system, as listed in Table III. We can see that
Glove helps LogTransfer achieves a higher F1-score and AUC
score. That is because, as listed in Table III, Glove successfully
misses less anomalous log chunks than word2Vec since it can
more accurately measure the similarities of anomalous logs
between source system and target system (see Figure 1 for
more details).

D. Evaluation of Transfer Learning

LogTransfer shares fully connected networks instead of
LSTM networks because the former way is more tolerant
to the noises in anomalous log sequences and thus facili-
tates a more robust anomaly detection model, as described
in Section III-C. To demonstrate the benefit of the transfer

8

 0

 0.2

 0.4

 0.6

 0.8

 1

Precision Recall F1-score

LogTransfer
LogTransfer w/o transfer learning

LogTransfer w/ shared LSTM networks

Fig. 9. Evaluation of the transfer learning method

learning design, we compare the performance of LogTransfer,
with that of LogTransfer without transfer learning (i.e., the
LSTM networks and fully connected networks of the target
system are fine-tuned based on their counterparts of source
system, respectively), with that of LogTransfer sharing only
LSTM networks, as shown in Fig. 9. Apparently, sharing
fully connected networks improve accuracy for LogTransfer in
terms of both precision and recall. Without transfer learning,
the insufficient number of anomaly labels can lead the anomaly
detection model to be biased. Moreover, there are usually
noises in anomalous log sequences (e.g., the logs indicating
operators log in/out of a switch system are irrelevant to
anomalies and they are noises as shown in Fig. 10). Sharing
LSTM networks only transfer sequential knowledge from the
source system to the target system, the performance of which
is easily impacted by these noises. Therefore, LogTransfer
chooses to share fully connected networks and achieves better
performance.

*** logined the switch
*** logouted from the switch
PICALIBCOMM pica_login Fan is plugged in
PICALIBCOMM pica_login RPSU is plugged in serial number ***
Redundancy power supply unit RPSU is plugged in serial number ***
Receive SFP_PRE message module plugged into port ***
10SHELL SHELL_LOGINFAIL TELNET user *** failed to log in from ***
10DEVM POWER REMOVED Trap cPowerRemoved power ID is ***
10SHELL LOGIN Trap cLogIn *** login from ***
10SHELL LOGOUT Trap cLogOut *** logout from ***
10SHELL SHELL_CMD Task IPAddr User *** Command is ***
10LLDP LLDP_CREATE_NEIGHBOR New neighbor created on Port *** ID is ***

Fig. 10. Examples of noises in the anomalous log sequences generated by
different types of switches. The logs indicating operators log in/out a switch
system is irrelevant to anomalies and they are noises

In order to figure out how many anomalous chunks of
target system are needed to train LogTransfer, Fig. 11 shows
its accuracy as the number of anomalous chunks increases.
We can see that when the number approaches to 200, the
accuracy of LogTransfer tends to be stable. Comparing with
the total number of anomalous chunks of the target system

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300 350 400 450 500

Number of anomalous chunks

Precision Recall F1-score

Fig. 11. The accuracy of LogTransfer when the number of anomalous chunks
of target system used for training increases

(1000+), what LogTransfer needs for training is much less.
Consequently, LogTransfer significantly reduces the labelling
efforts for operators.

E. Performance on Hadoop Datasets

 0

 0.2

 0.4

 0.6

 0.8

 1

Precision Recall F1-score

LogTransfer
CNN-base model

Decision tree
Linear regression

PCA
Invariant mining

LogCluster
SVM

DeepLog
Isolation forest

LogAnomaly

Fig. 12. The performance of LogTransfer, four supervised methods, and six
unsupervised methods when HDFS serves as the source system and Hadoop
application is the target system.

To demonstrate the generality of LogTransfer, we compare
LogTransfer with the above four supervised methods and six
unsupervised methods on the HDFS and Hadoop datasets, as
shown in Fig. 12. We apply HDFS as the source system and
Hadoop application as the target system. LogTransfer achieves
the best F1-score (0.977) among all the methods, further
demonstrating its superior performance in anomaly detection.
More specifically, LogTransfer achieves better precision than
the four supervised methods and six unsupervised ones. It
is mainly because the novel transfer learning method in
LogTransfer enables LogTransfer to be more robust to noises
in system logs. Moreover, although some approaches such
as Deeplog, Invariant mining, and CNN-base model achieve
better recall than LogTransfer, a larger number of normal log
chunks are mistakenly determined as anomalous ones by these
approaches, resulting in much more false alarms and wasting
operators’ too much time.

9

We further evaluate how the novel transfer learning method
performs as follows. We gradually increase the number of
anomalous chunks of the target system in the training set, and
calculate the Precision, Recall and, F1-score of LogTransfer.
Fig. 13 shows the result. From the figure, we can conclude
that 100 anomalous logs of the target system are enough to
fine-tune LogTransfer and obtain a relatively high anomaly
detection accuracy. In this way, the manual labelling effort of
operators is significantly reduced, which enables LogTransfer
easily to be deployed for large-scale service systems.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300 350

Number of anomalous chunks

Precision Recall F1-score

Fig. 13. The accuracy of LogTransfer when the number of anomalous chunks
of target system used for training increase on HDFS and Hadoop datasets

V. RELATED WORKS

TABLE IV
SUMMARY OF CURRENT LOG BASED ANOMALY DETECTION METHODS

Type Input of Template Method

Supervised Template index

Decision tree [9]
SVM [8]

CNN-based model [10]
Linear regression [7]

Unsupervised

Template count PCA [11]

Template index

DeepLog [2]
LogCluster [14]

Isolation forest [12]
Invariant mining [13]

Template embedding LogAnomaly [15]

Anomaly detection for software services has attracted lots of
attention and a collection of methods have been proposed for
this purpose [27]–[34]. Since logs are able to describe a vast
range of events for software systems, recently many machine
learning methods have been presented to detect anomaly based
on logs, which can be classified into two categories: supervised
and unsupervised learning-based methods. These methods are
summarized in Table IV.

For supervised learning-based methods, Bodik et al. trained
a logistic regression model based on the event count vectors of
logs [7], and Liang et al. proposed an SVM based log anomaly
detection approach [8]. Moreover, Chen et al. classified the
predefined features using decision tree [9], and Lu et al.
utilized a convolutional neural network (CNN) to capture the

sequential features of logs [10]. These methods, however,
generally need lots of labelled anomalous logs for model
training. Because it is labor-intensive and time-consuming to
manually labelling anomalies, these methods are very difficult
to be applied in practice for large-scale software services. In
addition, since these methods consider only the indexes of log
templates, they fail to capture the semantics information of
logs.

For unsupervised learning-based methods, Xu et al. first
applied PCA to detect anomalies based on logs [11], and Liu
et al. presented isolation forest-based method which explicitly
isolated anomalies rather than profiled normal points [12]. In
addition, Lou et al. applied an invariant mining approach to
find the inherent relationships of logs [13], and Vaarandi et
al. tried to automatically mine the anomalous patterns of logs
based on LogCluster [35], [36]. Although no labelled data
is required in these methods, they usually suffer from low
accuracy in real-world service systems [2], [10], [15]. Du et
al. proposed DeepLog, an unsupervised LSTM-based method
which extracted the normal patterns of “log key” (an index of
a log template) sequences, and determined that a new-coming
log was anomalous if it violated the normal patterns learned in
the offline procedure [2]. LogAnomaly applied word2Vec to
embed templates and extracted the sequential and quantitative
features of normal logs [15]. Nevertheless, the word2Vec
based word embedding method is not as robust as Glove [18]
(more details can be seen in Section IV-C). In addition, both
DeepLog and LogAnomaly need a large number of normal
logs to train their models. Obtaining such a large scale normal
dataset still consumes operators tremendous amounts of time.
Consequently, neither DeepLog nor LogAnomaly is suitable
in our scenario.

VI. CONCLUSION

In this paper, we present a transfer learning-based log
anomaly detection framework, LogTransfer. It applies Glove
to accurately extract the global word co-occurrence and local
context information to robustly measure the similarities of
cross-system logs. Moreover, we propose to share fully con-
nected networks between source and target systems to facilitate
a more robust anomaly detection model to noises mingling
in logs. Experiments conducted on logs generated by switch
software systems demonstrate that LogTransfer outperforms
the existing supervised and unsupervised methods. In addi-
tion, these experiments also show that both Glove and the
novel transfer learning method improve the performance of
LogTransfer. We also experiment with LogTransfer on public
Hadoop datasets, showing its superior generality in anomaly
detection. In the future, we will test LogTransfer on more types
of log dataset, and improve it for the cross-domain transfer
learning scenarios.

VII. ACKNOWLEDGMENT

This work was supported by the the National Key R&D
Program of China under Grant No. 2018YFB0204304.

10

REFERENCES

[1] X. Zhang, Q. Lin, Y. Xu, S. Qin, H. Zhang, B. Qiao, Y. Dang, X. Yang,
Q. Cheng, M. Chintalapati et al., “Cross-dataset time series anomaly
detection for cloud systems,” in 2019 {USENIX} Annual Technical
Conference ({USENIX}{ATC} 19), 2019, pp. 1063–1076.

[2] M. Du, F. Li, G. Zheng, and V. Srikumar, “Deeplog: Anomaly detection
and diagnosis from system logs through deep learning,” in Proceedings
of the 2017 ACM SIGSAC Conference on Computer and Communica-
tions Security. ACM, 2017, pp. 1285–1298.

[3] B. Debnath, M. Solaimani, M. A. G. Gulzar, N. Arora, C. Lumezanu,
J. Xu, B. Zong, H. Zhang, G. Jiang, and L. Khan, “Loglens: A real-time
log analysis system,” in 2018 IEEE 38th International Conference on
Distributed Computing Systems (ICDCS). IEEE, 2018, pp. 1052–1062.

[4] S. He, Q. Lin, J.-G. Lou, H. Zhang, M. R. Lyu, and D. Zhang,
“Identifying impactful service system problems via log analysis,” in
Proceedings of the 2018 26th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering. ACM, 2018, pp. 60–70.

[5] X. Zhang, Y. Xu, Q. Lin, B. Qiao, H. Zhang, Y. Dang, C. Xie, X. Yang,
Q. Cheng, Z. Li et al., “Robust log-based anomaly detection on unstable
log data,” in Proceedings of the 2019 27th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the
Foundations of Software Engineering. ACM, 2019, pp. 807–817.

[6] H. Xu, W. Chen, N. Zhao, Z. Li, J. Bu, Z. Li, Y. Liu, Y. Zhao, D. Pei,
Y. Feng et al., “Unsupervised anomaly detection via variational auto-
encoder for seasonal kpis in web applications,” in Proceedings of the
2018 World Wide Web Conference. International World Wide Web
Conferences Steering Committee, 2018, pp. 187–196.

[7] P. Bodik, M. Goldszmidt, A. Fox, D. B. Woodard, and H. Andersen,
“Fingerprinting the datacenter: automated classification of performance
crises,” in Proceedings of the 5th European conference on Computer
systems. ACM, 2010, pp. 111–124.

[8] Y. Liang, Y. Zhang, H. Xiong, and R. Sahoo, “Failure prediction in ibm
bluegene/l event logs,” in Seventh IEEE International Conference on
Data Mining (ICDM 2007). IEEE, 2007, pp. 583–588.

[9] M. Chen, A. X. Zheng, J. Lloyd, M. I. Jordan, and E. Brewer,
“Failure diagnosis using decision trees,” in International Conference on
Autonomic Computing, 2004. Proceedings. IEEE, 2004, pp. 36–43.

[10] S. Lu, X. Wei, Y. Li, and L. Wang, “Detecting anomaly in big data
system logs using convolutional neural network,” in 2018 IEEE 16th
Intl Conf on Dependable, Autonomic and Secure Computing, 16th Intl
Conf on Pervasive Intelligence and Computing, 4th Intl Conf on Big
Data Intelligence and Computing and Cyber Science and Technology
Congress (DASC/PiCom/DataCom/CyberSciTech). IEEE, 2018, pp.
151–158.

[11] W. Xu, L. Huang, A. Fox, D. Patterson, and M. Jordan, “Online system
problem detection by mining patterns of console logs,” in 2009 Ninth
IEEE International Conference on Data Mining. IEEE, 2009, pp. 588–
597.

[12] F. T. Liu, K. M. Ting, and Z.-H. Zhou, “Isolation forest,” in 2008 Eighth
IEEE International Conference on Data Mining. IEEE, 2008, pp. 413–
422.

[13] J.-G. Lou, Q. Fu, S. Yang, Y. Xu, and J. Li, “Mining invariants
from console logs for system problem detection.” in USENIX Annual
Technical Conference, 2010, pp. 23–25.

[14] Q. Lin, H. Zhang, J.-G. Lou, Y. Zhang, and X. Chen, “Log clustering
based problem identification for online service systems,” in Proceedings
of the 38th International Conference on Software Engineering Compan-
ion. ACM, 2016, pp. 102–111.

[15] W. Meng, Y. Liu, Y. Zhu, S. Zhang, D. Pei, Y. Liu, Y. Chen, R. Zhang,
S. Tao, P. Sun, and R. Zhou, “Loganomaly: Unsupervised detection
of sequential and quantitative anomalies in unstructured logs,” in
Proceedings of the Twenty-Eighth International Joint Conference on
Artificial Intelligence, IJCAI-19. International Joint Conferences on
Artificial Intelligence Organization, 7 2019, pp. 4739–4745. [Online].
Available: https://doi.org/10.24963/ijcai.2019/658

[16] S. Zhang, Y. Liu, W. Meng, Z. Luo, J. Bu, S. Yang, P. Liang, D. Pei,
J. Xu, Y. Zhang et al., “Prefix: Switch failure prediction in datacenter
networks,” Proceedings of the ACM on Measurement and Analysis of
Computing Systems, vol. 2, no. 1, p. 2, 2018.

[17] S. Zhang, W. Meng, J. Bu, S. Yang, Y. Liu, D. Pei, J. Xu, Y. Chen,
H. Dong, X. Qu et al., “Syslog processing for switch failure diagnosis
and prediction in datacenter networks,” in 2017 IEEE/ACM 25th Inter-

national Symposium on Quality of Service (IWQoS). IEEE, 2017, pp.
1–10.

[18] J. Pennington, R. Socher, and C. Manning, “Glove: Global vectors
for word representation,” in Proceedings of the 2014 conference on
empirical methods in natural language processing (EMNLP), 2014, pp.
1532–1543.

[19] J. Zhu, S. He, J. Liu, P. He, Q. Xie, Z. Zheng, and M. R. Lyu,
“Tools and benchmarks for automated log parsing,” in Proceedings of
the 41st International Conference on Software Engineering: Software
Engineering in Practice. IEEE Press, 2019, pp. 121–130.

[20] M. Du and F. Li, “Spell: Online streaming parsing of large unstructured
system logs,” IEEE Transactions on Knowledge and Data Engineering,
2018.

[21] A. A. Makanju, A. N. Zincir-Heywood, and E. E. Milios, “Clustering
event logs using iterative partitioning,” in Proceedings of the 15th ACM
SIGKDD international conference on Knowledge discovery and data
mining. ACM, 2009, pp. 1255–1264.

[22] P. He, J. Zhu, Z. Zheng, and M. R. Lyu, “Drain: An online log parsing
approach with fixed depth tree,” in 2017 IEEE International Conference
on Web Services (ICWS). IEEE, 2017, pp. 33–40.

[23] L. Tang, T. Li, and C.-S. Perng, “Logsig: Generating system events
from raw textual logs,” in Proceedings of the 20th ACM international
conference on Information and knowledge management. ACM, 2011,
pp. 785–794.

[24] S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Trans-
actions on knowledge and data engineering, vol. 22, no. 10, pp. 1345–
1359, 2009.

[25] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson, “How transferable are
features in deep neural networks?” in Advances in neural information
processing systems, 2014, pp. 3320–3328.

[26] S. He, J. Zhu, P. He, and M. R. Lyu, “Experience report: system
log analysis for anomaly detection,” in 2016 IEEE 27th International
Symposium on Software Reliability Engineering (ISSRE). IEEE, 2016,
pp. 207–218.

[27] L. Wang, Y. Du, and L. Qi, “Efficient deviation detection between a
process model and event logs,” IEEE/CAA Journal of Automatica Sinica,
vol. 6, no. 6, pp. 1352–1364, 2019.

[28] P. Zhang, S. Shu, and M. Zhou, “An online fault detection model
and strategies based on svm-grid in clouds,” IEEE/CAA Journal of
Automatica Sinica, vol. 5, no. 2, pp. 445–456, 2018.

[29] R. Chalapathy, A. K. Menon, and S. Chawla, “Anomaly detection using
one-class neural networks,” arXiv preprint arXiv:1802.06360, 2018.

[30] A. Brown, A. Tuor, B. Hutchinson, and N. Nichols, “Recurrent neural
network attention mechanisms for interpretable system log anomaly
detection,” in Proceedings of the First Workshop on Machine Learning
for Computing Systems, 2018, pp. 1–8.

[31] R. Abdulhammed, M. Faezipour, A. Abuzneid, and A. AbuMallouh,
“Deep and machine learning approaches for anomaly-based intrusion
detection of imbalanced network traffic,” IEEE sensors letters, vol. 3,
no. 1, pp. 1–4, 2018.

[32] S. Zhang, Y. Liu, W. Meng, J. Bu, S. Yang, Y. Sun, D. Pei, J. Xu,
Y. Zhang, L. Song et al., “Efficient and robust syslog parsing for network
devices in datacenter networks,” IEEE Access, vol. 8, pp. 30 245–30 261,
2020.

[33] Z. Shenglin, L. Dongwen, S. Yongqian, M. Weibin, Z. Yuzhe, Z. Yuzhi,
L. Ying, and P. Dan, “Unified anomaly detection for syntactically
diverse logs in cloud datacenter,” Journal of Computer Research and
Development, vol. 57, no. 4, p. 778, 2020.

[34] W. Meng, Y. Liu, Y. Huang, S. Zhang, F. Zaiter, B. Chen, and D. Pei, “A
semantic-aware representation framework for online log analysis,” IEEE
International Conference on Computer Communications (ICCCN), 2020.

[35] R. Vaarandi and M. Pihelgas, “Logcluster-a data clustering and pattern
mining algorithm for event logs,” in 2015 11th International conference
on network and service management (CNSM). IEEE, 2015, pp. 1–7.

[36] R. Vaarandi, B. Blumbergs, and M. Kont, “An unsupervised framework
for detecting anomalous messages from syslog log files,” in NOMS 2018-
2018 IEEE/IFIP Network Operations and Management Symposium.
IEEE, 2018, pp. 1–6.

11

https://doi.org/10.24963/ijcai.2019/658

	Introduction
	Preliminary
	System Logs and Templates
	System Anomaly
	LSTM in Anomaly detection

	Design of LogTransfer
	Design Overview
	Representation Construction
	Transfer Learning

	Evaluation
	Experimental Setup
	Dataset
	Metrics
	Parameters
	Environmental Setting

	Evaluation of Overall Performance
	Evaluation of Word Embedding Methods
	Evaluation of Transfer Learning
	Performance on Hadoop Datasets

	Related Works
	Conclusion
	Acknowledgment
	References

