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Abstract. Learn the prior of VAE is a new approach to improve the
evidence lower-bound. We show that using learned RealNVP prior and just
one latent variable in VAE, we can achieve test NLL comparable to very
deep state-of-the-art hierarchical VAE, outperforming many previous
works with complex hierarchical VAE architectures. We provide the
theoretical optimal decoder for Benoulli p(x|z). We demonstrate that,
with learned RealNVP prior, β-VAE can have better rate-distortion curve
than using fixed Gaussian prior.

1 Introduction

Variational auto-encoder (VAE) [12] is a powerful deep generative model, trained
by variational inference, which demands the intractable true posterior to be
approximated by a learned distribution, thus many different variational posteriors
have been proposed [12, 16, 11].Alongside, some previous works further improved
the variational lower-bound by learning the prior [9, 10, 17, 2].

Despite the achievements of these previous works on posteriors and priors,
the state-of-the-art VAE models with continuous latent variables all rely on deep
hierarchical latent variables3, although some of them might have used complicated
posteriors/priors as components in their architectures. Most latent variables in
such deep hierarchical VAEs have no clear semantic meanings, just a technique for
reaching good lower-bounds. We thus raise and answer a question: with the help
of learned priors, can shallow VAEs achieve performance comparable
or better than deep hierarchical VAEs? This question is important because
a shallow VAE would be much more promising to scale to more complicated
datasets than deep hierarchical VAEs. To answer this question, we conduct
comprehensive experiments on several datasets with learned RealNVP priors and
just one latent variable, which even shows advantage over some deep hierarchical
VAEs with powerful posteriors. In summary, our contributions are:

3 The term “hierarchical latent variables” refers to multiple layers of latent variables,
while “one latent variable” refers to just one z in standard VAEs. “deep” refers to
many hierarchical latent variables, while “shallow” refers to few latent variables.
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– We conduct comprehensive experiments on four binarized datasets with four
different network architectures. Our results show that VAE with RealNVP
prior consistently outperforms standard VAE and RealNVP posterior.

– We are the first to show that using learned RealNVP prior with just one
latent variable in VAE, it is possible to achieve test negative log-likelihoods
(NLLs) comparable to very deep state-of-the-art hierarchical VAE on these
four datasets, outperforming many previous works using complex hierarchical
VAE equipped with rich priors/posteriors.

– We provide the theoretical optimal decoder for Bernoulli p(x|z).
– We demonstrate that, with learned RealNVP prior, β-VAE can have better

rate-distortion curve [1] than using fixed Gaussian prior.

2 Preliminaries

2.1 Variational Auto-encoder

Variational auto-encoder (VAE) [12] uses a latent variable z with prior pλ(z),
and a conditional distribution pθ(x|z), to model the observed variable x. pθ(x) =∫
Z pθ(x|z) pλ(z) dz, where pθ(x|z) is derived by a neural network with parameter
θ. log pθ(x) is bounded below by evidence lower-bound (ELBO):

log pθ(x) ≥ L(x;λ, θ, φ) = Eqφ(z|x) [log pθ(x|z)]−DKL(qφ(z|x)‖pλ(z)) (1)

where qφ(z|x) is the variational posterior to approximate pθ(z|x), derived by a
neural network with parameter φ. Optimizing qφ(z|x) and pθ(x|z) w.r.t. empirical
distribution p?(x) can be achieved by maximizing the expected ELBO w.r.t. p?(x):

L(λ, θ, φ) = Ep?(x) Eqφ(z|x) [log pθ(x|z) + log pλ(z)− log qφ(z|x)] (2)

A hyper-parameter β can be added to L(λ, θ, φ), in order to control the trade-off
between reconstruction loss and KL divergence, known as β-VAE [8, 1]:

Lβ(λ, θ, φ) = Ep?(x) Eqφ(z|x) [log pθ(x|z) + β (log pλ(z)− log qφ(z|x))] (3)

[9] suggested an alternative decomposition of Eq. (2):

L(λ, θ, φ) = Ep?(x) Eqφ(z|x) [log pθ(x|z)]︸ ︷︷ ︸
1©

−DKL(qφ(z)‖pλ(z))︸ ︷︷ ︸
2©

− Iφ[Z;X]︸ ︷︷ ︸
3©

(4)

where Iφ[Z;X] =
∫∫

qφ(z,x) log
qφ(z,x)

qφ(z) p?(x)
dz dx is the mutual information. Since

pλ(z) is only in 2©, ELBO can be enlarged if pλ(z) is trained to match qφ(z).

2.2 RealNVP Prior

As a universal density estimator, RealNVP [6] can be readily adopted to derive a
learnable prior pλ(z) from a simple prior pξ(w) (e.g., unit Gaussian) as follows:

pλ(z) = pξ(w)

∣∣∣∣det

(
∂fλ(z)

∂z

)∣∣∣∣ , z = f−1λ (w) (5)
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where det (∂fλ(z)/∂z) is the Jacobian determinant of fλ(z) = (fK ◦ · · · ◦ f1)(z),
with each fk being invertible. [6] introduced the affine coupling layer as fk, while
[13] further introduced actnorm and invertible 1x1 convolution.

3 The Optimal Decoder for Bernoulli p(x|z)

Proposition 1. Given a finite number of discrete training data, i.e., p?(x) =
1
N

∑N
i=1 δ(x − x(i)), if pθ(x|z) = Bernoulli(µθ(z)), where the Bernoulli mean

µθ(z) is produced by the decoder, and 0 < µkθ(z) < 1 for each of its k-th dimen-
sional output, then the optimal decoder µθ(z) is:

µθ(z) =
∑
i

wi(z) x(i), where wi(z) =
qφ(z|x(i))∑
j qφ(z|x(j))

and
∑
i

wi(z) = 1 (6)

Proof. See [18] due to page limitations.

4 Experiments

4.1 Setup

Datasets We use statically and dynamically binarized MNIST (denoted as
StaticMNIST and MNIST in our paper), FashionMNIST and Omniglot.

Models We perform systematically controlled experiments, using the fol-
lowing models: (1) DenseVAE, with dense layers; (2) ConvVAE, with convolu-
tional layers; (3) ResnetVAE, with ResNet layers; and (4) PixelVAE [7], with
several PixelCNN layers on top of the ResnetVAE decoder. For RealNVP [6],
we use K blocks of invertible mappings (K is called flow depth hereafter), while
each block contains an invertible dense, a dense coupling layer, and an act-
norm [13]. The dimensionality of z are 40 for StaticMNIST and MNIST, while
64 for FashionMNIST and Omniglot.

Training and evaluation Unless specified, all experiments are repeated
for 3 times to report metric means. We perform early-stopping using negative
log-likelihood (NLL), to prevent over-fitting on StaticMNIST and on all datasets
with PixelVAE. We use 1,000 samples to compute various metrics on test set.

4.2 Quantitative Results

In Tables 1 and 2, we compare ResnetVAE and PixelVAE with RealNVP prior to
other approaches on StaticMNIST and MNIST. Due to page limitations, results
on Omniglot and FashionMNIST are omitted, but they have a similar trend. All
models except ours and that of [10] used at least 2 latent variables. Notice that,
although [10] also adopted RealNVP prior, we have better test NLLs than their
work, as well as solid analysis on our experimental results.

Our ResnetVAE with RealNVP prior is second only to BIVA among all models
without PixelCNN decoder, and ranks the first among all models with PixelCNN
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Table 1. Test NLL on StaticMNIST. “†”
indicates a hierarchical model with 2 la-
tent variables, while “‡” indicates at least
3 latent variables. K = 50 in our models.

Model NLL

Models without PixelCNN decoder

ConvHVAE + Lars prior† [2] 81.70

ConvHVAE + VampPrior† [17] 81.09
ResConv + RealNVP prior [10] 81.44

VAE + IAF‡ [11] 79.88

BIVA‡ [14] 78.59
Our ConvVAE + RNVP p(z) 80.09
Our ResnetVAE + RNVP p(z) 79.84

Models with PixelCNN decoder

VLAE‡ [4] 79.03

PixelHVAE + VampPrior† [17] 79.78
Our PixelVAE + RNVP p(z) 79.01

Table 2. Test NLL on MNIST. “†” and “‡”
has the same meaning as Table 1.

Model NLL

Models without PixelCNN decoder

ConvHVAE + Lars prior† [2] 80.30

ConvHVAE + VampPrior† [17] 79.75

VAE + IAF‡ [11] 79.10

BIVA‡ [14] 78.41
Our ConvVAE + RNVP p(z) 78.61
Our ResnetVAE + RNVP p(z) 78.49

Models with PixelCNN decoder

VLAE‡ [4] 78.53

PixelVAE† [7] 79.02

PixelHVAE + VampPrior† [17] 78.45
Our PixelVAE + RNVP p(z) 78.12

decoder. On MNIST, the NLL of our model is very close to BIVA, while the
latter used 6 latent variables and very complicated architecture. Meanwhile,
our ConvVAE with RealNVP prior has lower test NLL than ConvHVAE with
Lars prior and VampPrior. Since the architecture of ConvVAE is simpler than
ConvHVAE (which has 2 latent variables), it is likely that our improvement
comes from the RealNVP prior rather than the different architecture.

Tables 1 and 2 show that using RealNVP prior with just one latent variable,
it is possible to achieve NLLs comparable to very deep state-of-the-art VAE
(BIVA), ourperforming many previous works (including works on priors, and
works of complicated hierarchical VAE equipped with rich posteriors like VAE +
IAF). This discovery shows that shallow VAEs with learned prior and
a small number of latent variables is a promising direction.

4.3 Qualitative Results

Figure 1 samples images from ResnetVAE with/without RealNVP prior. Com-
pared to standard ResnetVAE, ResnetVAE with RealNVP prior produces fewer
digits that are hard to interpret. The last column of each 6x6 grid shows the
training set images, most similar to the second-to-last column in pixel-wise L2
distance. There are differences between the last two columns, indicating our
model is not just memorizing the training data.

4.4 Ablation Study

RealNVP prior leads to substantially lower NLLs than standard VAE
and RealNVP posterior Table 3 shows the NLLs of DenseVAE, ResnetVAE
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standard RealNVP p�(z)
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Fig. 1. Sample means from pλ(z) of
ResnetVAE with: (left) Gaussian prior;
(right) RealNVP prior. The last column
of each 6x6 grid shows the training set
images, most similar to the second-to-last
column in pixel-wise L2 distance.

standard RealNVP p�(z)

log p(z)
<latexit sha1_base64="Mhpq4c+lQVvQMHDo85JUp0s3SJ4="></latexit>

Fig. 2. Interpolations of z from Resnet-
VAE, between the centers of qφ(z|x) of two
training points, and heatmaps of log pλ(z).
The left- and right-most columns are the
training points.

Table 3. Average test NLL (lower is better) of different models, with Gaussian prior &
Gaussian posterior (“normal”), Gaussian prior & RealNVP posterior (“RNVP q(z|x)”),
and RealNVP prior & Gaussian posterior (“RNVP p(z)”). K = 20.

DenseVAE ResnetVAE PixelVAE

Datasets normal
RNVP
q(z|x)

RNVP
p(z)

normal
RNVP
q(z|x)

RNVP
p(z)

normal
RNVP
q(z|x)

RNVP
p(z)

StaticMNIST 88.84 86.07 84.87 82.95 80.97 79.99 79.47 79.09 78.92
MNIST 84.48 82.53 80.43 81.07 79.53 78.58 78.64 78.41 78.15

FashionMNIST 228.60 227.79 226.11 226.17 225.02 224.09 224.22 223.81 223.40
Omniglot 106.42 102.97 102.19 96.99 94.30 93.61 89.83 89.69 89.61

and PixelVAE with K = 20. We see that RealNVP prior consistently outperforms
standard VAE and RealNVP posterior in test NLL, with as large improvement as
about 2 nats (compared to standard ResnetVAE) or 1 nat (compared to Resnet-
VAE with RealNVP posterior) on ResnetVAE, and even larger improvement on
DenseVAE. The improvement is not so significant on PixelVAE, likely because
less information is encoded in the latent variable of PixelVAE [7].

Using RealNVP prior only has better NLL than using both Real-
NVP prior and posterior, or using RealNVP posterior only, with the
same total number of RealNVP layers, as shown in Table 4.

Active units Table 5 counts the active units [3] of different ResnetVAEs,
which quantifies the number of latent dimensions used for encoding information
from input data. We can see that, both RealNVP prior and posterior can make all
units of a ResnetVAE to be active (which is in sharp contrast to standard VAE).
This in conjunction with Tables 3 and 4 indicates that, the good regularization
effect, “a learned RealNVP prior can lead to more active units than a fixed
prior” [17, 2], is not the main cause of the huge improvement in NLLs, especially
for the improvement of RealNVP prior over RealNVP posterior.
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Table 4. Test NLL of ResnetVAE on MNIST,
with RealNVP posterior (“q(z|x)”), Real-
NVP prior (“p(z)”), and RealNVP prior &
posterior (“both”). Flow depth K is 2K0 for
the posterior or the prior in “q(z|x)” and
“p(z)”, while K0 for both the posterior and
the prior in “both”.

K0

ResnetVAE & 1 5 10 20

q(z|x), K = 2K0 80.29 79.68 79.53 79.49
both, K = K0 79.85 79.01 78.71 78.56
p(z), K = 2K0 79.58 78.75 78.58 78.51

Table 5. Average number of active units
of ResnetVAE, with standard prior &
posterior (“normal”), RealNVP poste-
rior (“RNVP q(z|x)”), and RealNVP
prior (“RNVP p(z)”).

ResnetVAE

Dataset normal
RNVP
q(z|x)

RNVP
p(z)

StaticMNIST 30 40 40
MNIST 25.3 40 40

FashionMNIST 27 64 64
Omniglot 59.3 64 64

Table 6. Average test ELBO (“elbo”), reconstruction loss (“recons”),
Ep?(x)DKL(qφ(z|x)‖pλ(z)) (“kl”), and Ep?(x)DKL(qφ(z|x)‖pθ(z|x)) (“klz|x”) of
ResnetVAE with different priors.

standard RealNVP p(z)

Dataset elbo recons kl klz|x elbo recons kl klz|x

StaticMNIST -87.61 -60.09 27.52 4.67 -82.85 -54.32 28.54 2.87
MNIST -84.62 -58.70 25.92 3.55 -80.34 -53.64 26.70 1.76

FashionMNIST -228.91 -208.94 19.96 2.74 -225.97 -204.66 21.31 1.88
Omniglot -104.87 -66.98 37.89 7.88 -99.60 -61.21 38.39 5.99

4.5 Reconstruction Loss and Posterior Overlapping

Better reconstruction loss In Table 6, ELBO and reconstruction loss (“re-
cons”, which is 1© in Eq. (4)) of ResnetVAE with RealNVP prior are substantially
higher than standard ResnetVAE, just as the trend of test log-likelihood (LL)
in Table 3. On the contrary, Ep?(x)DKL(qφ(z|x)‖pλ(z)) (“kl”, which is 2©+ 3©)
happens to be larger. Since ELBO equals to 1©− ( 2©+ 3©), this suggests that in
our experiments, the improvement in ELBO (and also NLL) of ResnetVAE with
RealNVP prior all comes from the improved reconstruction loss.

Smaller standard deviation of Gaussian posterior with RealNVP
prior In Fig. 3, we plot the histograms of per-dimensional stds of qφ(z|x), as
well as the distances and normalized distances (which is roughly distance/std)
between each closest pair of qφ(z|x) (see Appendix A for formulations). The stds
of qφ(z|x) with RealNVP prior are substantially smaller, and the normalized
distances are larger. Larger normalized distances indicate less density of qφ(z|x) to
be overlapping. We discussed one possible theoretical reason of this phenomenon
in [18], on the basis of our Proposition 1.

Appropriate overlapping among qφ(z|x) with learned prior To demon-
strate that the stds of qφ(z|x) with RealNVP prior are reduced according to the
dissimilarity between x rather than being reduced equally (i.e., qφ(z|x) exhibits



Shallow VAEs with RealNVP Prior 7
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Standard RealNVP p(z)

Fig. 3. Histograms of: (left) per-dimensional stds of qφ(z|x); (middle) distances between
closest pairs of qφ(z|x); and (right) normalized distances. See Appendix A.

Fig. 4. Rate (DKL(qφ(z|x)‖pθ(z)) and dis-
tortion (i.e., the negate of reconstruction
loss) of β-ResnetVAE trained with differ-
ent β and prior flow depth K.

Fig. 5. Average normalized distance of β-
ResnetVAE trained with different β and
prior flow depth K.

“appropriate overlapping”), we plot the interpolations of z between the centers of
qφ(z|x) of two training points, and log pλ(z) of these interpolations in Fig. 2, We
visualize pλ(z), because it is trained to match qφ(z), and can be computed much
more reliable than qφ(z); and because the density of qφ(z) between z correspond-
ing to two x points can be an indicator of how qφ(z|x) overlap between them.
The RealNVP pλ(z) scores the interpolations of z between the centers of qφ(z|x)
of two training points, giving low likelihoods to hard-to-interpret interpolations
between two dissimilar x (the first three rows), while giving high likelihoods
to good interpolations between two similar x (the last three rows). In contrast,
the unit Gaussian prior assigns high likelihoods to all interpolations, even to
hard-to-interpret ones. This suggests that the posterior overlapping is “more
appropriate” with RealNVP prior than with unit Gaussian prior.

Learned prior influences the trade-off between reconstruction loss
and KL divergence We plot the rate-distortion curve (RD curve) [1] of
β-ResnetVAE trained with different β and flow depth K in Fig. 4. Rate is
DKL(qφ(z|x)‖pθ(z)), while distortion is negative reconstruction loss. Each con-
nected curve with the same shape of points in Fig. 4 correspond to the models
with the same K, but different β. We can see that the curves of K = 1 is closer
to the boundary formed by the green line and the x & y axes than K = 0, while
K = 20 & 50 are even closer. According to [1], points on the RD curve being
closer to the boundary suggests that the corresponding models are closer to
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the theoretical optimal models on a particular dataset, when traded between
reconstruction loss and KL divergence. Given this, we conclude that learned prior
can lead to a “better” trade-off from the perspective of RD curve.

We also plotted the average normalized distance of β-ResnetVAE trained
with different β and flow depth K in Fig. 5. Learned prior can encourage less
posterior overlapping than unit Gaussian prior for various β, not only for β = 1.

5 Related work

Learned priors, as a natural choice for the conditional priors of intermediate
variables, have long been unintentionally used in hierarchical VAEs [11, 14]. A few
works were proposed to enrich the prior, e.g., Gaussian mixture priors [5], and
auto-regressive priors [7, 4], without the awareness of its relationship with the
aggregated posterior , until [9]. Since then, attempts have been made in matching
the prior to aggregated posterior , by using RealNVP [10], variational mixture of
posteriors [17], and learned accept/reject sampling [2]. However, none of these
works recognized the improved reconstruction loss induced by learned prior.
Moreover, they did not show that learned prior with just one latent variable can
achieve comparable results to those of many deep hierarchical VAEs.

The trade-off between reconstruction loss and KL divergence was discussed in
the context of β-VAE [8, 1, 15], however, they did not further discuss the impact
of a learned prior on this trade-off. [15] also discussed the posterior overlapping,
but only within the β-VAE framework, thus was only able to control the degree
of overlapping globally, without considering the local dissimilarity between x.

6 Conclusion

In this paper, using learned RealNVP prior with just one latent variable in
VAE, we managed to achieve test NLLs comparable to very deep state-of-the-art
hierarchical VAE, outperforming many previous works of complex hierarchical
VAEs equipped with rich priors/posteriors. We provide the theoretical optimal
decoder for Benoulli p(x|z). We showed that with learned RealNVP prior, β-VAE
can have better rate-distortion curve [1] than with fixed Gaussian prior. We
believe this paper is an important step towards shallow VAEs with learned prior
and a small number of latent variables, which potentially can be more scalable
to large datasets than those deep hierarchical VAEs.

A Formulation of closest pairs of qφ(z|x) and others

qφ(z|x(j)) is the closest neighbor of qφ(z|x(i)) if j = arg minj 6=i ‖µφ(x(j)) −
µφ(x(i))‖. Such pairs of qφ(z|x(i)) and qφ(z|x(j)) are called closest pairs of qφ(z|x).

The distance dij and the normalized distance d̃ij of a closest pair qφ(z|x(i)) and

qφ(z|x(j)) are defined as dij = µφ(x(j)) − µφ(x(i)), dij = ‖dij‖, and d̃ij =
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2dij
Std[i;j]+Std[j;i] Roughly speaking, the normalized distance d̃ij can be viewed as

“distance/std” along the direction of dij , which indicates the scale of the “hole”
between qφ(z|x(i)) and qφ(z|x(j)).
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