
Real-Time Incident Prediction for Online Service Systems

Nengwen Zhao∗
Tsinghua University; BNRist

Beijing, China

Junjie Chen†
College of Intelligence and

Computing, Tianjin University
Tianjin, China

Zhou Wang
BizSeer; Beijing University of Posts

and Telecommunications
Beijing, China

Xiao Peng
Gang Wang

China EverBright Bank
Beijing, China

Yong Wu
Fang Zhou
Zhen Feng

China EverBright Bank
Beijing, China

Xiaohui Nie
Tsinghua University; BNRist

Beijing, China

Wenchi Zhang
BizSeer

Beijing, China

Kaixin Sui
BizSeer

Beijing, China

Dan Pei
Tsinghua University; BNRist

Beijing, China

ABSTRACT
Incidents in online service systems could dramatically degrade sys-
tem availability and destroy user experience. To guarantee service
quality and reduce economic loss, it is essential to predict the oc-
currence of incidents in advance so that engineers can take some
proactive actions to prevent them. In this work, we propose an effec-
tive and interpretable incident prediction approach, called eWarn,
which utilizes historical data to forecast whether an incident will
happen in the near future based on alert data in real time. More
specifically, eWarn first extracts a set of effective features (includ-
ing textual features and statistical features) to represent omen alert
patterns via careful feature engineering. To reduce the influence of
noisy alerts (that are not relevant to the occurrence of incidents),
eWarn then incorporates the multi-instance learning formulation.
Finally, eWarn builds a classification model via machine learning
and generates an interpretable report about the prediction result
via a state-of-the-art explanation technique (i.e., LIME). In this way,
an early warning signal along with its interpretable report can be
sent to engineers to facilitate their understanding and handling for
the incoming incident. An extensive study on 11 real-world online
service systems from a large commercial bank demonstrates the
effectiveness of eWarn, outperforming state-of-the-art alert-based
incident prediction approaches and the practice of incident predic-
tion with alerts. In particular, we have applied eWarn to two large

∗BNRist: Beijing National Research Center for Information Science and Technology
†Junjie Chen is the corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7043-1/20/11. . . $15.00
https://doi.org/10.1145/3368089.3409672

commercial banks in practice and shared some success stories and
lessons learned from real deployment.

CCS CONCEPTS
• Software and its engineering→Maintaining software.

KEYWORDS
Incident Prediction, Online Service Systems, Real-time Prediction
ACM Reference Format:
Nengwen Zhao, Junjie Chen, ZhouWang, Xiao Peng, Gang Wang, YongWu,
Fang Zhou, Zhen Feng, Xiaohui Nie, Wenchi Zhang, Kaixin Sui, and Dan
Pei. 2020. Real-Time Incident Prediction for Online Service Systems. In
Proceedings of the 28th ACM Joint European Software Engineering Conference
and Symposium on the Foundations of Software Engineering (ESEC/FSE ’20),
November 8–13, 2020, Virtual Event, USA.ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3368089.3409672

1 INTRODUCTION
Nowadays, online service systems, such as online shopping, E-
bank, and search engines, have become an indispensable part in
our daily life. Although tremendous efforts have been devoted to
software service maintenance (e.g., collecting various monitoring
data for a service system such asmetrics [44, 46, 54], logs [19, 31, 51],
traces [55], and alerts [29]), due to their large scale and complexity,
incidents (i.e., unplanned interruption/outage to a service [2, 16,
25]) are still inevitable, which could lead to system unavailability
and huge economic loss [32]. For example, according to a recent
survey [1], the average cost per hour of server downtime is between
$301,000 and $400,000.

To reduce the influence of incidents and guarantee the quality of
software services, there are two widely-used ways in both academia
and industry [32, 33], i.e., predicting the occurrence of an incident
in advance so that engineers can take some proactive actions to pre-
vent it [18, 43] and mitigate the already happened incident as soon
as possible [14, 15]. Our work focuses on the first way since this
way is able to directly avoid the occurrence of service unavailability
rather than reduce the time of service unavailability.

https://doi.org/10.1145/3368089.3409672
https://doi.org/10.1145/3368089.3409672


ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Nengwen Zhao and Junjie Chen, et al.

In the literature, many efforts have been devoted to the first way,
i.e., predicting the occurrence of incidents in advance [18, 41, 42, 48],
but they still suffer from various limitations in practice. First, the
vast majority of prediction approaches target at the prediction of a
specific type of failures (such as disk failures [48], node failures [30],
switch failures [50], and equipment failures [42]), and thus are re-
stricting in practice. Moreover, these prediction approaches utilize
logs or metrics to extract omen patterns for predicting the spe-
cific type of failures. However, tens of TBs of logs and more than
thousands of metrics tend to be generated per day for a large-scale
system [31], which could bring great challenges and costs to learn a
prediction model frommassive data. Second, AirAlert was proposed
recently to predict general incidents and relies on lightweight alert
data [18], but its performance is unsatisfactory since it just consid-
ers the number of different types of alerts for prediction, which has
been demonstrated to be ineffective in our study (to be presented in
§ 4.2). Therefore, designing an effective and lightweight prediction
approach for general incidents is very essential.

In this paper, we aim to propose a novel approach to predicting
general incidents in real time. Similar to AirAlert, we also utilize
lightweight alert data for prediction since alerts are more high-
level and comprehensive. More specifically, alerts are generated
to report anomalies from other monitoring data (e.g., metrics [46],
logs [19, 31], and traces [55]), and thus avoid processing massive
logs or metrics. However, predicting incidents based on alert data
in practice also faces several challenges as follows. 1) Practical
alert data contain tens of attributes (to be introduced in § 2.1), and
thus how to extract useful information from them is challenging.
2) Not all alerts before the occurrence of an incident are helpful
for prediction, and the existence of noisy alerts could destroy the
prediction performance, and thus how to reduce the influence of
noisy alerts is the second challenge. 3) In addition to accurately
predicting the occurrence of an incident, an interpretable prediction
result should be provided to engineers in order to facilitate them to
understand and handle this incident, which is also challenging.

To overcome these challenges, in this paper we propose eWarn
(short for earlyWarning), an approach utilizing historical data to
predicting incidents in real time based on alert data. In particular,
we formulate the problem of incident prediction as a binary clas-
sification task of observation windows (to be presented in § 2.3),
where positive and negative samples refer to whether an incident
will occur or not within a particular time horizon based on the
alert data within the corresponding observation window respec-
tively. In detail, eWarn first conducts feature engineering to ex-
tract a set of effective and interpretable features from alert data
within an observation window. Then, eWarn incorporates multi-
instance learning [11, 42] to reduce the influence of noisy alerts by
assigning smaller weights to noisy alerts. Next, eWarn processes
the data imbalance problem due to the small frequency of incidents
in practice and builds a classification model via machine learning
(XGBoost [17]). After getting the prediction result in real time by
the learned model, an early warning would be sent to engineers
if an incident is predicted to occur in the near future. Along with
the prediction result, eWarn also utilizes LIME [38], a state-of-the-
art explanation technique, to generate a report for engineers to
interpret the prediction result in a visualization manner.

We conducted an extensive study to investigate the performance
of eWarn based on 11 real-world online service systems in a large
commercial bank (named A in this paper due to the double-blind
policy), which supports more than one hundred million users and
includes hundreds of service systems. For each system, engineers
provided us three-year alert data and incidents. Our experimen-
tal results show that eWarn performs the best by comparing with
the state-of-the-art alert-based incident prediction approach (i.e.,
AirAlert [18]), a novel approach to predicting a specific type of
failures based on logs [49] (we adapted it to fit our problem, i.e.,
general incident prediction based on alerts), and the current prac-
tice of incident prediction with alerts in bank A. For example, the
average F1-score of eWarn is 0.82 while those of the other three
approaches are 0.51, 0.60, and 0.10 respectively. Also, our results
confirm the contributions of main components in eWarn (i.e., the
multi-instance learning component, the feature engineering com-
ponent, and the classification model building component) to the
overall performance of eWarn. In particular, we have applied eWarn
to two large commercial banks (including A) and indeed achieved
great effectiveness in practice. We have presented four specific
cases in practice and discussed lessons learned in § 5.

To sum up, this work has the following major contributions:
• We propose an effective and interpretable approach, called eWarn,
to predicting general incidents in real time based on alert data,
which could send an early warning signal about an incoming
incident including an interpretable prediction result for engineers
to facilitate them to adopt proactive actions to avoid the incident
in advance.

• We conduct an extensive study based on 11 real-world online
service systems (engineers provided us three-year alert data and
incidents for each system) by comparing state-of-the-art incident
prediction approaches and the current practice for incident pre-
diction based on alert data. Our experimental results demonstrate
the effectiveness of eWarn and confirm the contributions of main
components in eWarn.

• We have applied eWarn to two large commercial banks, both of
which support more than one hundred million users, and indeed
achieved great effectiveness. We also shared four specific cases
during the practical usage of eWarn.

2 MOTIVATION & PROBLEM FORMULATION
2.1 Background: Alert and Its Management
For online service systems, alerts are a key data source for recording
the anomalies generated from various system components. More
specifically, monitoring systems continuously collect various data
(e.g., metrics [46], logs [19, 31], and traces [55, 56]) from various
service components, and engineers manually define many rules to
check these monitoring data to ensure service availability. When a
certain rule is violated, an alert would be generated to report the
anomaly. For example, when a metric (e.g., CPU utilization) exceeds
a pre-defined threshold or some keywords (e.g., “error”, “failed” or
“timeout”) appear in logs, alerts would be generated. Table 1 shows
examples of alerts from EPAY service in bank A. Each alert has
many attributes, and we only show several important attributes due
to the space limit. In this table, the columns represent the occurring
time of an alert, the detailed textual description about an alert, the



Real-Time Incident Prediction for Online Service Systems ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

Table 1: Examples of alerts with multiple attributes

Time Content Server Service Severity Type Others
2020-02-03 08:24:11 Authentication failure for SNMP request from host P13. P10 EPAY 3 Network ...
2020-02-03 08:25:34 Can’t get Weblogic queue (EPAYAPP). Timeout. P31 EPAY 2 Middleware ...
2020-02-03 08:26:04 The utilization of file system /home/etl441 is 82%, exceeding 80%. P72 EPAY 2 OS ...
2020-02-03 08:26:51 Business success rate is 88%, lower than 90%. P2 EPAY 1 Application ...

server generating an alert1, the service generating an alert, the
severity of an alert (“1” refers to the highest severity), the type of
an alert, respectively.

Due to the importance of alerts, an alert management system is
important for service system maintenance. Usually, when alerts are
sent to the alert management system, the system handles them by
three main steps: 1) Alert pre-processing, which filters out duplicate
and redundant alerts by the means of alert denoising, compression,
and/or correlation [29, 35, 47]. 2) Alert diagnosis, which prioritizes
alerts [24], and then assigns each alert to the responsible team and
engineers in the team diagnose it as soon as possible [14]. 3) Alert
post-processing, which writes diagnosis reports and gains insights
to guide the future improvement of alert management.

2.2 Practice of Incident Prediction with Alerts
By communicating with our industry partners, i.e., two top com-
mercial banks A and B in the country, both of them confirmed the
importance and feasibility of incident prediction based on alerts
so that some proactive actions can be adopted in advance to avoid
incidents and the corresponding economic loss. Moreover, both of
them have tried to adopt some simple methods to predict incidents
based on alerts in practice.

The practice of incident prediction with alerts in A is that,
they use the technique of association rule mining [21] (e.g., FP-
Growth [22]) to automatically discover omen alerts for incidents.
For example, if an alert always happens before an incident, this
alert would be used to predict the incident. However, according
to feedback from engineers, this method can only cover a very
small set of incidents since most incidents do not have frequently
associated alerts and cannot be accurately predicted in this way.

The practice of incident prediction with alerts in B is that, they
devote many efforts to manually summarize a set of prediction rules
based on their experience and domain knowledge. Table 2 presents
some examples of rules summarized for incident prediction in B.
Taking the first one as an example (No.1), if the alerts with the
keyword “TCP is not responding” appear at least once (#Matching),
last for at least three minutes (Duration), involve four different
servers (#Servers), and do not happen in the period of software
change (Change), engineers infer that the involved servers would
be down (Incident). However, the rule-based incident prediction
method performs not well in practice due to the following reasons.
First, it is time-consuming and tedious tomanually summarize these
rules from a large amount of historical data. Second, the design
and maintenance of the rules require experienced experts with
rich domain knowledge, and in the meanwhile different engineers
tend to have their own preference when designing rules. Third, the
1Due to confidentiality, we do not disclose the IP addresses and use P* to denote
different servers.

Observation
window 𝑤

Prediction
window	𝑡$

Lead
Time 𝑡%

Current time

Time

？

𝑡 𝑡 + 𝑡% 𝑡 + 𝑡% + 𝑡$𝑡 − 𝑤
Figure 1: Problem formulation of incident prediction

rule-based method cannot adapt to the dynamic environment and
concept drift [45] can largely affect manually-summarized rules,
causing that engineers have to spend many efforts in manually
checking and re-summarizing the rules.

In summary, it is indeed important to predict incidents based on
alert data but the current practices are very unsatisfactory. Thus, it
is necessary to propose an effective automatic incident prediction
approach based on alert data, largely motivating our work.

2.3 Problem Formulation
Motivated by existing related works [37, 40, 50], we formulate the
problem of incident prediction as time window classification. We
use Figure 1 to illustrate the problem formulation. To ensure the
real-time online prediction, we adopt the strategy of moving time
window with size w and a fixed step ∆t . For the current time t ,
we get the observation window [t −w, t]. Then, we use alert data
within the observation window to predict whether an incident will
occur within the prediction window [t + tl , t + tl + tp ]. Lead time
(tl ) in Figure 1 is the minimum time interval that engineers need to
react to an early warning (e.g., master-standby switch). That is, we
have to leave enough time (i.e., Lead time) for engineers to handle
the early warning after predicting an incident. To complete the
prediction task, collecting training data is required. In historical
data, if there is an incident occurring within the prediction window,
the corresponding observation window is labeled as a positive
sample (i.e., an omen window). Otherwise, it is labeled as a negative
sample (i.e., a non-omen window).

Note that we adopt the moving window strategy to ensure real-
time prediction, and thus an incident could appear in several predic-
tion windows (since ∆t tends to be smaller than tp , some prediction
windows have overlaps). That is, we could obtain several adjacent
positive windows (omen windows) for an incident, and the number
of positive windows is tp/∆t . The larger/smaller the size of a pre-
diction window is, the more/less positive windows we can obtain.
That is, the value of tp could directly affect the labeling quality,
which will be discussed in detail in § 4.5. Other parameter settings
(i.e., ∆t ,w , and tl ) will be presented in detail in § 4.1.3.

3 APPROACH
In this section, we propose a real-time and lightweight approach,
named eWarn (short for early Warning), to predicting incidents



ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Nengwen Zhao and Junjie Chen, et al.

Table 2: Illustrating examples of rule-based incident prediction with alerts

No. Keywords #Matching Severity Duration #Servers Change Incident
1 TCP is not responding 1 2 3min 4 No Server may be down
2 CPU & currently 100% 2 2 5min 2 No System performance degradation
3 #Sessions exceeds threshold 2 2 5min 1 No Transaction with long response time

Historical
alert data

Incident
tickets

Training
data

Feature
extraction

Feature
aggregation

Feature engineering
with MIL

Online data

Classifier Early
warning

Training

Prediction

+
-

Interpretable
analysis

Figure 2: Overview of eWarn
in advance based on alert data. According to § 2.3, for a system,
we collect a set of time windows (i.e., observation windows) with
historical alert data and their labels as training data. However, to
solve the problem, eWarn has to overcome the following challenges:
1) Since an alert contains many attributes presented in § 2.1, which
alert information should be identified as the features for effectively
predicting incidents is the first challenge; 2) Since an observation
window contains a number of alerts and not all the alerts are help-
ful to anticipate incidents, how to reduce the influence of noisy
alerts is the second challenge; 3) After predicting an incident, it is
also important to interpret the relationship between the predicted
incident and the alerts in the observation window, which is helpful
for engineers to understand and handle this incident in practice
and is also the third challenge.

Figure 2 shows the overview of eWarn. eWarn consists of four
main steps. First, eWarn conducts feature engineering to identify
a set of effective and interpretable features from alert data in an
observation window to overcome the first challenge. Second, eWarn
incorporates multi-instance learning (MIL) [11, 42] to distinguish
helpful alerts and noisy alerts in an observation window to over-
come the second challenge. Third, based on the set of training data
with identified features and labels, eWarn further processes them
(i.e., dealing with class imbalance) and builds a classification model
via machine learning, which is used to predict whether an incident
will occur within a prediction window based on incoming alert data
in real time. Fourth, after predicting an incident, eWarn sends an
early warning to notify engineers. In the meanwhile, eWarn adopts
LIME [38], a state-of-the-art explanation technique, to interpret
the prediction results for engineers to facilitate the understanding
and handling of the incident, which is used to overcome the third
challenge. In the following, we present each step in detail.

3.1 Identifying Features
We identify two types of features from alert data to predict incidents
in eWarn, i.e., textual features and statistical features [53].

3.1.1 Textual Features. As shown in Table 1, the most informa-
tive attribute in alert data is its textual content, and the rule-based
incident prediction method also focuses on the alert content (Key-
words in Table 2). Therefore, we extract textual features from alert
contents as the first type of features in eWarn.

In the literature, many existing methods have been proposed
for textual feature extraction or text representation, which can

be divided into two categories. The first one is statistical method,
such as Term Frequency-Inverse Document Frequency (TF-IDF) [8]
and Topic Model [10], which are based on word frequency. The
second one is neural network based method, such as word2vec [34],
TextCNN [27], and FastText [26]. Here, we choose Topic Model in
the first category to extract textual features in eWarn due to the
following reasons. First, the neural network based methods depend
on a huge amount of training data and suffer from high computation
costs. Moreover, it is difficult to gain interpretable insights from
black-box models built via neural networks. Second, the classical
TF-IDF method could produce a very high-dimensional feature
vector, leading to the curse of dimensionality problem in machine
learning.

In particular, eWarn adopts the widely-used topic model, Latent
Dirichlet Allocation (LDA) [10], to extract textual features. In LDA,
each document (referring to all the alert contents within a time
window in eWarn) is viewed as a mixture of various topics with
different probabilities and the topic probability distribution is used
as the feature vector of the time window. Each topic is characterized
by a distribution of words that frequently co-occur in the document.
Hence, LDA can find hidden semantic information existing in the
window, which is helpful for incident prediction since positive
windows may have similar topic distributions. More specifically,
eWarn first treats all the alert contents within a time window as a
document by concatenating these contents after stopwords removal
and tokenization, then uses historical timewindows to build an LDA
model, and finally obtains feature vectors based on the LDA model
for both incoming time windows and historical time windows.

Note that LDA requires an input, i.e., the number of topics (de-
noted as K). The setting of K should consider the trade-off be-
tween more coarse-grained (smaller K ) and more fine-grained top-
ics (larger K). eWarn determines the number of topics based on
the coherence score [39], which is a popular metric to evaluate the
quality of output topics and the corresponding keywords. As a re-
sult, after feature representation via LDA, eWarn obtains the textual
feature vector with K dimensions for each time window, where
each element refers to the probability of each topic.

3.1.2 Statistical Feature. In addition to textual features extracted
from alert contents, inspired by Table 2, some other attributes are
also important for incident prediction and we identify them as the
second type of features in eWarn, called statistical features [53]. In
particular, we summarize the extracted statistical features in eWarn
into the following four categories:

• Alert count, refers to the number of alerts that occur within a
time window, including the total number of alerts, the number of
alerts with different severities (1 ∼ 3), the number of alerts with
different types (e.g., application, database, memory, middleware,
network, hardware, etc.). We infer that the more alerts there are
in the window, the more likely incidents will occur.



Real-Time Incident Prediction for Online Service Systems ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

• Window time, refers to the time of a window. Considering the oc-
currence of incidents may be related to time (e.g., some incidents
tend to occur during business hours), we collect a series of time
features, including hour of the day, weekend or not, day of week,
business hours or not, etc.

• Inter-arrival time, refers to the average time interval between
contiguous alerts in a time window. Intuitively, if alerts occur
more intensively, an incident is more likely to occur.

• Others. Inspired by Table 2 and domain knowledge, we also con-
sider additional features such as the number of alerting servers
during a time window (the more servers involved, the more likely
an incident will occur), whether in the software change period
(software change is error-prone and needs more attention).
In summary, all these features used in eWarn are identified based

on careful data analysis and domain knowledge from experts. Dis-
cussions with several industry partners demonstrate the generality
of these features in eWarn. Furthermore, eWarn also supports adding
or removing some features according to the application scenarios,
but the core idea and pipeline of eWarn are general. In particular,
we also conduct an experiment to investigate the performance of
each type of feature, which will be presented in § 4.3.2.

3.2 Bypassing Noisy Alerts via Multi-Instance
Learning

Usually, features are directly extracted from each observation win-
dow. However, not all alerts in an observation window are helpful
to predict incidents, and the omen alerts may be flooded in the non-
omen alerts. Due to the existence of noisy alerts in an observation
window, directly extracting features from the observation window
could lead to performance degradation [42, 50].

To reduce the influence of noisy alerts, eWarn adopts multi-
instance learning (MIL) [11]. It splits an observation window into
multiple small instance windows, where an observation window
is regarded as a bag and each bag contains multiple instances (i.e.,
instance windows). MIL explores more fine-grained time windows
(i.e., instance windows with size ti ) to bypass noisy alerts. That
is, under the framework of MIL, eWarn first extracts features from
each instance window instead of extracting features from the whole
observation window, and then aggregates the features of these in-
stances into the features of a bag that is used for building a clas-
sification model. If an instance window does not contain many
helpful alerts, it is feasible to assign a small weight to the instance
during the aggregation process and thus reduce the influence of
noisy alerts. In the following we present the brief background of
MIL and how to aggregate instance features to a bag feature.
Brief Background of MIL.MIL assumes that negative bags con-
tain only negative instances and positive bags contain at least one
positive instance. Formally, letY be the label of a bagX containing a
set of instancesX = {x1,x2, · · · ,xm }. Each instance xi corresponds
to a label yi . The label of the bag is given by:

Y =

{
+1, if ∃yi yi = +1,
−1, if ∀yi yi = −1. (1)

For incident prediction, it is also more reasonable to assume that
at least one instance before the occurrence of an incident carries
an omen signature than to assume that all the instances in the

observation window carry an omen signature, which is another
reason why MIL is helpful to reduce the influence of noisy alerts.
Clustering-Based Feature Aggregation. There are some exist-
ing works about bag feature aggregation in the field of MIL, e.g., sim-
ple feature averaging (or using minimum/maximum feature) [42],
using neural network to learn instance weights [36], and adopting
some statistical methods to compute instance weights [12].

In eWarn, it directly uses feature averaging to obtain bag features
for negative bags, since all the instances in a negative bag are non-
omen and they would share the same weight. For positive bags, the
instances that contain many omen alerts (omen instances) should
be assigned to larger weights, while the instances that contain
a lot of noisy alerts (non-omen instances) should be assigned to
smaller wights. Here, eWarn distinguishes omen alerts and noisy
alerts by the method of clustering based on the observation that
omen instances tend to be similar and appear more than once in
training data, while non-omen instances tend to be various and
even chaotic.

More specifically, eWarn adopts Hierarchical Clustering [20] to
cluster the instances from all the positive bags in training data.
Actually, eWarn is not specific to this clustering algorithm, and
we choose it since it does not require to pre-define the number
of expected groups. With our above-mentioned observation, we
suppose the clusters with more instances are more likely to be the
clusters of omen instances and thus the instances in these clusters
should get larger weights, while the clusters with few instances
(also called outliers in clustering) are more likely to be the clusters
of non-omen instances. Formally, for the bag X = {x1,x2, · · · ,xm },
the weight of the instance xi (i = 1, . . . ,m) is calculated as:

wi =
w ′
i∑m

j=1w
′
j
, w ′

i =
n(cxi )

n
(2)

where the left formula aims to normalize the weightw ′
i , cxi is the

cluster that xi belongs to, n(cxi ) is the size of the cluster cxi ,m is
the number of instances in this bag, and n is the total number of
instances from all the positive bags in training data. For the instance
windows in testing data with unknown bag labels, we assign each
instance window to the corresponding cluster based on the distance
between the instance to each cluster center, and the weight can
also be obtained using Eq.(2).

After obtaining the weight of each instance in a bag, the aggre-
gated feature for this bag is calculated as:

fb =
m∑
i=1

(wi × fi ) (3)

where fi is the feature of the instance xi . We also conduct an
experiment to investigate the necessity and effectiveness of MIL in
eWarn, which will be presented in § 4.3.1.

3.3 Building a Classification Model
After obtaining bag features, eWarnwill build a classification model
via machine learning. Before that, it first addresses the problem
of data imbalance. More specifically, for an online service system,
the occurring frequency of incidents is very low, otherwise the
service quality and user experience would be destroyed. Therefore,
the number of positive observation windows and negative ones
are very imbalanced, which leads to a significant challenge to the



ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Nengwen Zhao and Junjie Chen, et al.

Current time: 2020-02-22 10:20:00
Warning: There is a probability of 0.76 that incident of “Long response time of this
service” will occur during 10:30-11:00. Please take actions!

Prediction probability

Neg
Pos

0.24
0.76

Topic #27 Oracle, AAS (average active session), SQL, lock, connection…

Topic #5 switch, port, unaccessible, network, ping…
Topic #4 response, packet, order, accounting, communication…

Topic#27 0.5
Topic#5 0.08
Topic#4 0.01
level3 1
Weekend 0
Hour10 1
Topic#14 0.00
Server 2

Neg Pos

Topic#27 0.01
Topic#5 0.01
Topic#4 0.01

Level3 0.00
Weekend 0.00
Hour10 0.00
Topic#14 0.00Server 0.00

low

high

Feature contribution Feature value

Topic and keywords

1

4

2 3

Figure 3: An example interpretable report on a prediction

objective of simultaneously achieving both high precision and high
recall for machine learning based incident prediction.

To better handle imbalance data, eWarn adopts the widely-used
SMOTE [13] oversampling strategy to balance the positive samples
and negative ones, in which the minority class (positive windows)
is over-sampled by creating synthetic examples through finding
k-nearest neighbors along the minority class. In particular, we also
conduct an experiment to show the effectiveness and necessity of
adopting SMOTE in eWarn, which will be presented in § 4.3.3.

Based on the processed training set, eWarn adopts the gradient
boosting tree based model (XGBoost) [17] to build a classification
model. XGBoost is fundamentally a regression tree that has the
same decision rule as the traditional decision tree model. Some of
the major benefits of XGBoost are its high scalability/parallelism, ef-
ficiency, and outstanding performance. Besides, tree-based models
naturally have the ability of feature selection. With the built classifi-
cation model, in the running process of the system, eWarn predicts
whether an incident will occur within the prediction window in
real time based on the current observation window.

3.4 Interpretability Analysis
When an incident is predicted by eWarn, an early warning will be
sent to notify engineers, so that they can adopt some proactive
actions in advance. In addition, eWarn also provides an explanation
report about the prediction along with the early warning, to facili-
tate engineers to understand and handle this incident in practice.
Here, eWarn adopts Local Interpretable Model-agnostic Explana-
tions (LIME) [38] to explain a prediction result by providing relative
feature contributions for a single sample to the prediction result.
More specifically, LIME is developed to identify an interpretable
model that is locally faithful for each individual prediction. It learns
a locally weighted linear model on this neighborhood data to ex-
plain each of classes in an interpretable way.

We illustrate an example report for engineers generated by
eWarn in Figure 3. The generated report contains four parts. The
first part reports the predicted probability that an incident will oc-
cur within the prediction window based on an observation window.
The second part reports feature contributions, whose values are the
weights calculated by the linear model in LIME (approximating the

Table 3: Statistical information of datasets

System #Alerts #Incidents #Positive #Negative
S1 18,821 173 524 8,460
S2 13,315 214 392 7,907
S3 14,211 59 322 4,014
S4 9,499 27 161 6,176
S5 9,592 48 165 7,886
S6 13,811 39 101 8,603
S7 6,766 46 272 3,310
S8 9,808 26 149 1,873
S9 8,770 72 510 6,196
S10 127,619 227 1,125 15,035
S11 69,999 148 1,012 13,057

behavior of our XGBoost classifier). The value of each feature is pre-
sented in the third part ranking based on feature contributions. The
report also contains detailed information (corresponding keywords)
of each topic (the fourth part), so that engineers can understand
each topic intuitively. In particular, the most important feature may
be related to the root cause of the predicted incident, which may
assist engineers in incident troubleshooting. For example, the most
important feature in this example is Topic#27, whose keywords are
all related to database, and thus we infer that the root cause comes
from database (we will discuss the real case in detail in § 5.1).

Therefore, with an explainable report, engineers not only benefit
from early warnings of incidents, but also gain some inspiration
for incident diagnosis.

4 EVALUATION
In the study, we aim to address the following research questions:
• RQ1: How does eWarn perform in predicting incidents?
• RQ2: Does each main component in eWarn contribute to eWarn?
• RQ3: How does eWarn perform in terms of efficiency?
• RQ4: How the choice of parameters affects eWarn?

4.1 Experimental Setup
4.1.1 Dataset. In the study, we used 11 representative online ser-
vice systems from bankA, which supports more than one hundred
million users and includes hundreds of service systems (We do not
disclose the service names due to the confidentiality in the bank.).
For each system, engineers provided us three-year alert data and
incidents. Table 3 presents the details of the datasets used in our
study, including the number of alerts, the number of incidents, and
the number of positive/negative windows for each online service
system. Note that, if an observation window contains too few alerts
(i.e., less than 3 alerts), it is virtually impossible to extract either
the omen pattern or the non-omen pattern from it, and thus we
discarded these windows in the study. We split these data into
training, validation and testing sets with a ratio of 6: 2: 2 in the
chronological order. Note that, the positive samples and negative
samples are indeed imbalance, ranging from 1:10 to 1:100.

4.1.2 Measurements. In the study, we adopted the widely-used
classification metrics, i.e., precision, recall, and F1-score, as our
measurements. Precision ( T P

T P+F P ) measures the percentage of in-
cidents really occurring within the prediction windows among all
the predicted incidents. Recall ( T P

T P+FN ) measures the percentage



Real-Time Incident Prediction for Online Service Systems ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

of incidents that are correctly predicted in advance among all the
incidents. F1-score is the harmonic mean of precision and recall. In
addition, a classification threshold is required to give a binary result
from probability and compute precision/recall, and here we decided
the threshold based on the best performance on the validation set.
Actually, false negative is much severer than false positive for inci-
dent prediction, since the cost of missing an incident is much larger
than that of investigating a false alarm. Therefore, we pay more
attention to recall in our study.

Furthermore, considering the practicability of our proposed ap-
proach in the real world, we also measured the time efficiency of
eWarn. We recorded the time spent on the offline training stage,
which learns a classifier for observation window classification, and
the time spent on the online prediction stage, which provides a
prediction result for the current observation window in real time.

4.1.3 Parameters and Environment. There exist several parameters
in the problem formulation of eWarn, i.e., observation window size
(w), step of moving window (∆t ), lead time (tl ), prediction window
size (tp ) and instance size (ti ). Based on grid search of parameters
and the discussions with our industry partners (i.e., banksA andB),
we set ∆t = 10min (eWarn conducts a prediction every 10 minutes),
w = 60min, tl = 10min and ti = 10min. The selection of prediction
window size will be discussed in § 4.5.

About the parameters in eWarn, the number of topics is decided
based on coherence score [39] (presented in § 3.1.1). The positive
samples are oversampled by SMOTE with a 1:10 sampling rate. We
used the default settings of XGBoost provided by the xgboost li-
brary [7]. For the compared approaches (to be introduced in § 4.2),
we set the support threshold in FP-Growth to be 0.3 and used the pa-
rameter settings of AirAlert and TF-IDF-LSTM provided by their pa-
pers respectively [18, 49]. For the hyperparameters of TextCNN [27]
(§ 4.3.2), we set them as follows: the word-embedding size is 100,
the kernel size and stride of 1-D convolution layer are 8 and 1 re-
spectively, the pool size and stride of the average pooling layer are
2 and 1 respectively, the hidden size of the fully connected layer is
128. For the hyperparameters of FastText [26] (§ 4.3.2), we set them
as follows: the embedding model is cbow, the size of the context
window is 5, and the size of word vectors is 100. For the compared
Deep Neural Network method for building a classification model
(§ 4.3.3), we used three fully connected layers and the hidden size is
128. All these three neural network based methods adopt the adam
optimizer with the learning rate of 0.01 and 30 epochs. We set these
hyperparameters based on the grid search and the validation set.

eWarn and all the compared approaches are implemented by
Python with widely-used libraries, including NumPy [4],pandas [5],
scikit-learn [6], xgboost [7] and Keras [3]. Our study was conducted
on Ubuntu 18.04.1 with 24-core Intel Xeon(R) CPU E5-2620 v3 @
2.40GHz, 64 GB memory, 64-bit operating system.

4.2 Overall Performance of eWarn
To answer RQ1, we compared eWarn with the following existing
approaches to demonstrate the effectiveness of eWarn in incident
prediction based on alert data.

• AirAlert [18], which is the state-of-the-art alert-based incident
prediction approach, uses the number of different kinds of alerts

within an observation window as features and utilizes XGBoost
to conduct binary classification.

• TF-IDF-LSTM [49] is proposed to predict a specific type of failure
(cluster failure) based on log data, which can be adapted to our
problem (incident prediction based on alert data). It uses TF-IDF
to extract textual features from the observation window and
uses Long short-term memory (LSTM) [23] to predict incidents.
Although some other recent works also focus on predicting a
specific type of failures [28, 50], they are designed for a specific
scenario and thus cannot be applied to alert data.

• FP-Growth [22] is a classical association rule mining method [21],
and can be used to predict incidents by mining the correlated
alerts that always occur before incidents occur. This approach
is the practice of bank A presented in § 2.2. More specifically, it
mines the frequent alerts with high support and confidence from
historical data before the occurrence of incidents. During the
process of online prediction, once these alerts occur, it predicts
that an incident will occur within the prediction window.

Table 4 shows the precision, recall, and F1-score comparison
results between eWarn and these compared approaches for 11 online
service systems. From this table, we find that eWarn outperforms
all the three compared approaches on average in terms of all the
measurements (i.e., precision, recall, and F1-score). In particular,
the best F1-score of eWarn achieves 0.98 and its average F1-score
is 0.82, while the average F1-score of AirAlert, TF-IDF-LSTM, and
FP-Growth is only 0.51, 0.60, and 0.10, respectively. Please note that,
not the incidents of all systems can be predicted with very high
precision and recall (e.g., S3 and S8). This is because some incidents
may occur by chance due to some unexpected factors and thus can
not be predicted in advance, which will be discussed in detail in
§ 5.2. Besides, considering false negative is more important than
false positive in our problem, eWarn indeed achieves stably high
recall compared with the three compared approaches in general. In
particular, the worst recall of eWarn is 0.69, while the worst recall
of AirAlert, TF-IDF-LSTM, and FP-Growth is 0.24, 0.31, and even 0,
respectively. Actually, eWarn can achieve higher recall (e.g., 100%
recall with no false negatives) by tuning the classification threshold,
but this will also lead to precision degradation.

We further analyzed the reasons why the compared approaches
perform not well. For AirAlert, it only utilizes the number of each
kind of alert as features, which cannot represent the complex alert
data very well. The hidden semantic features of alerts, alert time
and some other information should also be considered. TF-IDF-
LSTM extracts textual features by TF-IDF, which is based on only
word frequency, and in the meanwhile TF-IDF could produce high-
dimensional feature vectors, which is unfriendly for classification.
Besides, the moving time window formulation in eWarn (presented
in Section 2.3) has considered the time dependency, and thus LSTM
cannot make additional contributions to the performance compared
with eWarn and it also increases the computation costs (to be pre-
sented in § 4.4). For FP-growth, it performs rather poorly since
omen patterns are very complicated and cannot be captured by
simple alert matching. Besides, since an alert data has multiple
attributes (shown in Table 1) and the alert content has many param-
eters (e.g., different metric values, ports, API names, IP addresses,
etc.), it is very hard to find frequent alerts from historical positive



ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Nengwen Zhao and Junjie Chen, et al.

Table 4: Precision (P), recall (R) and F1-score (F) comparison between eWarn and compared approaches

Approach eWarn AirAlert TF-IDF-LSTM FP-Growth W/o MIL
System P R F P R F P R F P R F P R F
S1 0.86 0.82 0.84 0.46 0.82 0.59 0.93 0.73 0.82 0.08 0.05 0.06 0.36 0.80 0.50
S2 0.86 0.97 0.91 0.81 0.94 0.87 0.80 0.88 0.84 0.25 0.22 0.23 0.82 0.97 0.89
S3 0.61 0.83 0.70 0.41 0.24 0.31 0.23 0.76 0.35 0.05 0.09 0.07 0.50 0.67 0.57
S4 0.92 0.84 0.88 0.34 0.81 0.48 0.58 0.39 0.46 0.16 0.27 0.20 0.97 0.52 0.68
S5 0.75 0.86 0.80 0.34 0.29 0.32 0.14 0.31 0.19 0.12 0.25 0.17 0.71 0.39 0.51
S6 0.96 1.00 0.98 0.21 1.00 0.35 0.91 1.00 0.95 1.00 0.05 0.09 0.96 1.00 0.98
S7 0.73 0.71 0.72 0.65 0.53 0.59 0.67 0.73 0.69 0.00 0.00 0.00 0.36 0.76 0.49
S8 0.56 0.92 0.69 0.22 1.00 0.36 0.17 1.00 0.30 0.13 0.10 0.11 0.60 0.61 0.61
S9 0.92 0.98 0.95 0.53 1.00 0.69 0.92 0.98 0.95 0.03 0.02 0.02 0.91 0.98 0.95
S10 0.70 0.79 0.76 0.55 0.86 0.67 0.52 0.90 0.66 0.53 0.06 0.11 0.51 0.92 0.66
S11 0.81 0.69 0.75 0.28 0.57 0.37 0.25 0.52 0.34 0.01 0.06 0.01 0.41 0.53 0.46

Average – – 0.82 – – 0.51 – – 0.60 – – 0.10 – – 0.66

windows. More importantly, all of the three approaches do not deal
with the negative effect caused by noisy alerts.

Overall, compared with the three approaches, eWarn is indeed
able to predict incidents with higher precision, recall, and F1-score.

4.3 Contributions of Main Components
To answer RQ2, we investigated the contributions of three main
components in eWarn to its overall performance, including the
multi-instance learning formulation, the feature engineering com-
ponent, and the classification model building component.

4.3.1 Contribution of Multi-instance Learning Formulation. As pre-
sented in § 3.2, eWarn adopts multi-instance learning [11, 42] to
reduce the influence of noisy alerts. To investigate the contribution
of MIL in eWarn, we compared eWarn with a variant of eWarn that
directly extracts features from each observation window without
splitting it into multiple instance windows. The last column (W/o
MIL) in Table 4 shows the performance of the variant of eWarn. We
find that the variant of eWarn without MIL indeed performs worse
than eWarn in terms of all the measurements (i.e., precision, recall,
F1-score) in general. In particular, the average F1-score drops from
0.82 to 0.66 after removing MIL from eWarn. In the meanwhile, the
performance of the variant of eWarn is the same as that of eWarn for
two online service systems (i.e., S6, and S9), probably because there
are little noisy data for them. Overall, our multi-instance learning
formulation is indeed effective to bypass noisy data and is able to
improve the F1-score by nearly 20% on average.

4.3.2 Contribution of Feature Engineering. Faced with complex
alert data with multiple attributes, eWarn extracts a set of powerful
features to represent alert patterns, including textual features and
statistical features. To demonstrate the contribution of our feature
engineering, we first investigated the effectiveness of each type of
feature used in eWarn (i.e., textual features and statistical features).
That is, we evaluated the effectiveness of eWarn using only one type
of feature, whose results are shown in Table 5 (the third and fourth
columns). We find that eWarn incorporating both kinds of features
achieves an average F1-score of 0.82 while the average F1-score
of eWarn with only textual features is 0.69 and that of eWarn with
only statistical features is only 0.36. The results demonstrate the

Table 5: F1-score comparisons to demonstrate the effective-
ness of feature engineering in eWarn

System eWarn
Only

Textual
Only sta-
tistical TextCNN FastText

S1 0.84 0.62 0.51 0.54 0.57
S2 0.91 0.88 0.19 0.34 0.40
S3 0.70 0.48 0.30 0.37 0.43
S4 0.88 0.73 0.26 0.45 0.47
S5 0.80 0.57 0.41 0.50 0.53
S6 0.98 0.90 0.38 0.61 0.65
S7 0.72 0.69 0.44 0.56 0.52
S8 0.69 0.48 0.37 0.38 0.41
S9 0.95 0.84 0.29 0.42 0.48
S10 0.76 0.70 0.49 0.64 0.69
S11 0.75 0.68 0.35 0.47 0.45

Average 0.82 0.69 0.36 0.48 0.51

contribution of each type of feature, and textual features are more
powerful than statistical features for incident prediction.

We then investigated the effectiveness of our white-box inter-
pretable method for textual feature representation (i.e., LDA) com-
pared with two popular black-box neural network based textual fea-
ture representation methods, i.e., TextCNN [27] and FastText [26],
whose results are shown in the last two columns in Table 5. We find
that eWarn using LDA significantly outperforms the two neural
network based methods. The average F1-score of the former is 0.82
while those of the latter two are only 0.48 and 0.51, respectively. This
is because the two methods designing for natural language rely on a
sufficiently large training corpus. However, strictly speaking, alert
contents are domain-specific (IT operations) and semi-structured
short texts, so the two methods perform not well in our scenario.
More importantly, eWarn does not use the two methods since fea-
tures extracted from these black-box models are hardly associated
with domain knowledge directly. In contrast, eWarn carefully de-
signs a set of effective textual features and statistical features based
on the white-box interpretable method and domain experience,
which not only have physical significance but also can be easily
understood by engineers.



Real-Time Incident Prediction for Online Service Systems ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11
System

0.0
0.2
0.4
0.6
0.8
1.0

F1
-s

co
re

eWarn DNN RF W/o SMOTE

Figure 4: F1-score comparisons to demonstrate the effective-
ness of the classification model building in eWarn

4.3.3 Effectiveness of Classification Model Building. We evaluated
the effectiveness of the classification model building in eWarn from
two aspects: building a classifier via XGBoost and handling the data
imbalance problem.

To investigate the effectiveness of building a classifier via XG-
Boost in eWarn, we compared XGBoost with two widely-used ma-
chine learning algorithms, i.e., Deep Neural Network (DNN) [9] (the
used network structure has been introduced in § 4.1.3) and Random
Forest (RF) [9], whose results are shown in Figure 4. We find that
XGBoost indeed outperforms the other two algorithms and RF also
performs well in terms of F1-score, indicating that our features can
be modeled well by tree structures. The results demonstrate the
effectiveness of XGBoost for incident prediction.

To investigate the necessity of dealing with the data imbalance
problem, we compared eWarnwith a variant of eWarn that does not
deal with this data imbalance problem (i.e., removing SMOTE from
eWarn), whose results are shown in Figure 4 (W/o SMOTE). We find
that eWarn performs better than its variant without SMOTE for all
the studied online service systems. Without SMOTE, the F1-score
of eWarn drops about 0.04 ∼ 0.16, demonstrating the contribution
of dealing with the data imbalance problem in eWarn.

To sum up, our classificationmodel building component in eWarn
is effective in both building a classifier via XGBoost and handling
the data imbalance problem.

4.4 Efficiency
As a real-time incident prediction approach, time efficiency is a
vital factor. For incoming alert data, if the prediction result cannot
be provided in time, it could cause that engineers cannot take imme-
diate actions to prevent the incident. Table 6 presents the average
time costs of eWarn and three compared approaches for all the
online service systems, including offline learning time and online
prediction time. We find that the average online prediction time of
all these approaches are quite small, i.e., no more than 1.13 seconds.
That is, it is very efficient for eWarn to provide the prediction result
for the current observation window. Although the training time
of eWarn (i.e., 9.07 minutes) is slightly larger than AirAlert (i.e.,
3.86 minutes) and FP-Growth (i.e., 2.70 minutes), the time cost is
actually acceptable since the training process is conducted offline.
Among these approaches, TF-IDF-LSTM has significantly longer
training time (up to 32.30 minutes), which could take up many
resources during training and cannot be conducive to efficiently
update the learned model. Overall, eWarn has acceptable offline
training time and negligible online prediction time, indicating that
eWarn is indeed practical in the real world.

Table 6: Average time cost comparison between eWarn and
compared approaches

Approaches Offline learning (min) Online prediction (s)
eWarn 9.07 0.04
AirAlert 3.86 0.06

TF-IDF-LSTM 32.30 1.13
FP-Growth 2.70 0.04

0 40 80 120 160 200 240
Prediction window size

0.0

0.2

0.4

0.6

0.8

1.0

F1
-s

co
re

(a) S2

0 40 80 120 160 200 240
Prediction window size

0.0

0.2

0.4

0.6

0.8

1.0

F1
-s

co
re

(b) S8

Figure 5: Two examples to show the effect of different pre-
diction windows sizes (minutes) on F1-score

4.5 Effect of Parameters
Some parameters in eWarn have been introduced in § 4.1.3. Here, we
mainly discuss the effect of the predictionwindow size on prediction
performance. As mentioned in § 2.3, the prediction window size (tp )
is a vital parameter since it directly affects the labeling quality. Due
to the space limit, we took two online service systems as examples
to illustrate the influence of tp on the performance of eWarn, whose
results are shown in Figure 5. In the figure, the x-axis represents
different prediction window sizes while the y-axis represents F1-
score. Intuitively, the size of prediction windows has a significant
influence on the performance of eWarn, since it directly affects
the quality of labeling. More specifically, too large tp may lead to
an increase of false-positive observation windows during labeling,
while too small tp may lead to missing some positive windows.
From Figure 5, the influence of tp is indeed confirmed, and also the
best tp varies for the incidents of different systems. For example,
the best tp for S2 and S8 is 70 and 90, respectively. Therefore, it is
necessary to set an appropriate prediction window size for each
system. In our study, we identified the best prediction window size
based on the performance on the validation set for each system,
which is also applicable in practice since the historical data is usually
accessible, especially in large companies. More discussions about
the prediction window size can be found in § 5.2.

5 DISCUSSION
5.1 Success Stories
5.1.1 Incident Prediction. We have successfully applied eWarn to
two top commercial banks (i.e., A and B) in the country. Based
on the feedback from engineers, eWarn is appreciated to be able to
successfully assist them to anticipate incidents in advance, so that
proactive actions can be taken to prevent system unavailability. In
the following, we present four success cases collected from practice.
Case I: Long service response time caused by slow SQL. Re-
sponse time is a key performance indicator of a service, and long
response time would destroy user experience. Root cause of this



ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Nengwen Zhao and Junjie Chen, et al.

Database ComputationWeb server

Long service
response time

• Server load
• Network
• I/O
• Log file
• …

• Database
metrics

• Waiting event
• Database

server metrics
• …

• Middleware
related metrics

• Related server
metrics

• Log file
• …

Incident

Root cause

Incident prediction Incident diagnosis

Service
component

Figure 6: An example to illustrate the relationship between
incident prediction and incident diagnosis

incident is database index fault, so it took a long time to execute
several large SQL statements. Before the incident happens, eWarn
successfully forecasted it based on database related alerts.
Case II: Frequent failed transactions caused by fullGC. Fre-
quent failed transactions in banks would lead to user complaint and
huge economic loss. More specifically, this incident was caused by
buggy code imported by a recent software change, which created
many objects occupying too much heap space and led to frequent
fullGC. It was successfully predicted in advance by eWarn based
on some resource metric alerts (e.g., memory usage and JVM heap
usage) and JVM garbage collection (GC) log alerts.
Case III: Success rate of service degradation due to unex-
pected stress. For business in banks, low success rate is critical
and would affect the amount of transactions, leading to economic
loss. Due to an unexpected burst of user requests, CPU utilizations
of related servers were influenced. eWarn effectively captured the
omen patterns and predicted the incident accurately in advance.
Case IV: Server hang-up due to scheduled tasks. Server hang-
up is a common incident in the real world because of system over-
load, which would cause related tasks on this server to fail. In this
case, running scheduled tasks led to system overload, and the server
was unresponsive. This incident was predicted accurately based on
the alerts of related server resource metrics (e.g., I/O waiting time
and CPU utilization).

In summary, eWarn has the ability to identify omen patterns
from alert data and forecast incidents accurately in practice, which
can earn some bonus time for engineers to take some proactive
actions to prevent the incidents as soon as possible.

5.1.2 Incident Diagnosis. Although eWarn is designed for incident
prediction, it can also assist engineers for incident diagnosis. Even
though interpretable results provided by eWarn may not directly
pinpoint the root cause (e.g. hardware errors, misconfigurations,
or software bugs) of an incident, they can provide useful clues to
narrow down the search space of diagnosis. When eWarn gives a
positive result, the interpretable analysis component will tell engi-
neers which feature makes the largest contribution to the predicted
result. The most important feature may be closely related to the
root cause of the incident.

Figure 6 takes case I above as an example to illustrate the rela-
tionship between incident prediction and incident diagnosis. eWarn
identifies the omen patterns from alert data to predict the incident of
“long service response time” precisely. Also, eWarn tells engineers
the most important feature (i.e., topic#27 with keywords “Oracle”,

“AAS (average active session)”, “SQL”, etc., shown in Figure 3). In
this way, engineers can infer that the possible root cause is related
to database, which indeed narrows down the search space of diag-
nosis. Subsequently, they can take further actions to locate the root
cause in database and prevent the incident as soon as possible.

5.2 Lessons Learned
We summarize some lessons learned from our study.
Not all incidents can be predicted well in advance. In spite
of the effectiveness of eWarn in predicting incidents, we have to
admit that not all incidents can be predicted well in advance. More
specifically, some sudden incidents caused by unexpected factors
(e.g., power outages) are difficult to be predicted. In our study, we
find that application-level (high-level) incidents are much easier
to be predicted. This is because high-level incidents are generally
caused by faults in low-level components, e.g., server, database and
network. Thus, eWarn can identify omen patterns from low-level
alerts to predict high-level incidents.
Prediction window size is important for incident prediction.
As presented in § 2.3 and § 4.5, the size of prediction windows
(tp ) has a significant influence on the performance of eWarn, since
it directly affects the quality of labeling. In general, increasing
the value of tp may increase the probability that an incident is
predicted (e.g., when tp is set to +∞, simply predicting that an
incident will occur would be always correct). If tp is too large, the
prediction is useless since it is not clear when exactly the incident
will occur. Therefore, it is important for incident prediction to set
an appropriate prediction window size.
Incremental Updating. Online service systems are complex and
dynamic as developers continuously commit code and introduce
new features. Consequently, new types of alerts and new omen
patterns of incidents may be introduced accordingly. This may
cause significant performance degradation if the prediction model
is trained based on a fixed set of historical data. To make eWarn
adapt to the dynamic environment and maintain the prediction
performance, we build an incremental training pipeline where our
model is trained with newly arriving alert data and incidents pe-
riodically, so that new patterns can be captured properly in time.
Besides, retraining a model on new data from scratch suffers from
high costs, but our XGBoost-based approach can be incrementally
updated to achieve stably good performance with negligible cost.

5.3 Threats to Validity
We identify the following threats to validity in our study:
Subject systems: In our study, we used alert data and incidents
from 11 different systems in a large commercial bank A. However,
the results might not represent other systems from other companies.
Actually, it is very challenging to get access to data from companies.
The bank we collaborate is very large-scale, which supports more
than one hundred million users and includes hundreds of service
systems, and thus we believe our results can demonstrate the value
of our proposed approach. Moreover, we have applied eWarn to
another large bank B (besidesA) presented in § 5.1, further demon-
strating the generality of eWarn. In the future, we will reduce this
threat by evaluating eWarn on more subject systems.
Measurements: To demonstrate the effectiveness of eWarn, we
used precision/recall/F1-score as measurements, which have been



Real-Time Incident Prediction for Online Service Systems ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

widely used in the prediction problem [42, 50]. Besides, we also con-
sider the efficiency of eWarn. In the future, we will reduce this threat
by considering more comprehensive metrics, such as precision-
recall curve, FPR/TPR metrics, and how far ahead we can raise a
true early warning.
Noisy in labeling: For a well-performing machine learning model,
the training set and testing set should follow the same data distribu-
tion. However, some incidents are caused by some other unexpected
or external factors, where there are no omen patterns before the
incidents. These cases violate the assumption of independent and
identical distribution and cannot be effectively predicted in advance.
In our study, we ignored the effect caused by other factors and re-
garded them as positive samples. In the future, we will reduce this
threat by incorporating detailed information of incident tickets and
engineers’ experience to remove noisy positive labels.

6 RELATEDWORK
Incident Prediction.Themost relatedwork to ours is AirAlert [18],
which also aims to predict general incidents based on alert data.
However, it just simply considers the number of different kinds of
alerts and does not deal with noisy alerts, which has been demon-
strated to be ineffective in our study. Different from it, eWarn sys-
tematically overcomes main challenges in alert-based incident pre-
diction by careful feature engineering, MIL for bypassing noisy
alerts, and an interpretable generated report for a prediction result,
significantly outperforming AirAlert in our study.

There are also a great deal of efforts spent on predicting a specific
type of failures (which tend to be designed for a specific domain).
Moreover, these works utilize system logs or metrics for prediction.
For example, Prefix proposed in [50] utilizes switch log data to
predict switch failures, CDEF [48] and MING [30] utilizes related
metrics to predict disk failures and node failures, respectively. It is
common for a large-scale system to generate tens of TBs of logs and
more than thousands of metrics per day [31], leading to bringing
great challenges to learn and incrementally update a prediction
model and consuming a large amount of storage space and com-
puting resources. Different from them, our work proposes a novel
approach to predicting general incidents based on lightweight alert
data, which are generated to report anomalies from other monitor-
ing data such as metrics and logs and thus avoid processing massive
raw monitoring data. Our experimental results have demonstrated
the effectiveness of eWarn.
Alert Management. In recent years, tremendous efforts have been
devoted into alert management in both academia and industry. As
introduced in § 2.1, alert management techniques can be categorized
into three stages: alert pre-processing, alert diagnosis and alert
post-processing. Existing works mainly focus on how to reduce
the number of alerts (alert pre-processing). This is because various
service components could generate an overwhelming number of
alerts and the majority of alerts are duplicate or correlated. The
popular techniques of alert reduction include alert correlation [35]
and alert clustering [29, 47, 52]. There are also some works about
alert prioritization [24, 53], which aims to recommend severe alerts
to engineers, because the number of alerts is much more than what
engineers can properly investigate in practice. Different from them,
our work aims to utilize alert data to conduct incident prediction.

7 CONCLUSION
We propose eWarn, a novel approach to predicting general inci-
dents based on alert data, so as to take proactive actions to prevent
the incoming incidents and ensure the quality of software services.
Three key ideas of eWarn are an effective feature engineering com-
ponent to deal with complex alert data, multi-instance learning
to handle noisy alerts, and interpretable analysis to generate an
interpretable report about the prediction result to facilitate the un-
derstanding and handling of incidents. An extensive study on 11
online service systems in a large commercial bank demonstrates the
effectiveness of eWarn (the average F1-score of 0.82), outperform-
ing three compared approaches. Besides, our results also confirm
the contributions of main components in eWarn. In particular, real
deployments of eWarn in the real world further demonstrating its
practical performance.

ACKNOWLEDGEMENT
We thank the anonymous reviewers for their valuable feedbacks.
This work has been supported by the Beijing National Research Cen-
ter for Information Science and Technology (BNRist) key projects
and National Key R&D Program of China 2019YFB1802504.

REFERENCES
[1] Average cost per hour of enterprise server downtime worldwide in

2019. https://www.statista.com/statistics/753938/worldwide-enterprise-server-
hourly-downtime-cost/. [Online; accessed 04-Mar-2020].

[2] Incident Management. https://en.wikipedia.org/wiki/Incident_management_
(ITSM). [Online; accessed 04-Mar-2020].

[3] Keras. https://keras.io/. [Online; accessed 04-Mar-2020].
[4] NumPy. https://numpy.org/. [Online; accessed 04-Mar-2020].
[5] pandas. https://pandas.pydata.org/. [Online; accessed 04-Mar-2020].
[6] scikit-learn. https://scikit-learn.org/.
[7] XGBoost. https://xgboost.readthedocs.io/. [Online; accessed 04-Mar-2020].
[8] Charu C Aggarwal and ChengXiang Zhai. 2012. Mining text data. Springer

Science & Business Media.
[9] Christopher M Bishop. 2006. Pattern recognition and machine learning. springer.
[10] DavidMBlei, Andrew YNg, andMichael I Jordan. 2003. Latent dirichlet allocation.

Journal of machine Learning research 3, Jan (2003), 993–1022.
[11] Marc-André Carbonneau, Veronika Cheplygina, Eric Granger, and Ghyslain

Gagnon. 2018. Multiple instance learning: A survey of problem characteristics
and applications. Pattern Recognition 77 (2018), 329–353.

[12] Marc-André Carbonneau, Eric Granger, and Ghyslain Gagnon. 2018. Bag-level
aggregation for multiple-instance active learning in instance classification prob-
lems. IEEE transactions on neural networks and learning systems 30, 5 (2018),
1441–1451.

[13] Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall, and W Philip Kegelmeyer.
2002. SMOTE: synthetic minority over-sampling technique. Journal of artificial
intelligence research 16 (2002), 321–357.

[14] Junjie Chen, Xiaoting He, Qingwei Lin, Yong Xu, Hongyu Zhang, Dan Hao, Feng
Gao, Zhangwei Xu, Yingnong Dang, and Dongmei Zhang. 2019. An empirical
investigation of incident triage for online service systems. In 2019 IEEE/ACM 41st
International Conference on Software Engineering: Software Engineering in Practice
(ICSE-SEIP). IEEE, 111–120.

[15] Junjie Chen, Xiaoting He, Qingwei Lin, Hongyu Zhang, Dan Hao, Feng Gao,
Zhangwei Xu, Yingnong Dang, and Dongmei Zhang. 2019. Continuous incident
triage for large-scale online service systems. In 2019 34th IEEE/ACM International
Conference on Automated Software Engineering (ASE). IEEE, 364–375.

[16] Junjie Chen, Shu Zhang, Xiaoting He, Qingwei Lin, Hongyu Zhang, Dan Hao, Yu
Kang, Feng Gao, Zhangwei Xu, Yingnong Dang, and Dongmei Zhang. 2020. How
Incidental are the Incidents? Characterizing and Prioritizing Incidents for Large-
Scale Online Service Systems. In The 35th IEEE/ACM International Conference on
Automated Software Engineering. to appear.

[17] Tianqi Chen and Carlos Guestrin. 2016. Xgboost: A scalable tree boosting system.
In Proceedings of the 22nd acm sigkdd international conference on knowledge
discovery and data mining. ACM, 785–794.

[18] Yujun Chen, Xian Yang, Qingwei Lin, Hongyu Zhang, Feng Gao, Zhangwei Xu,
Yingnong Dang, Dongmei Zhang, Hang Dong, Yong Xu, et al. 2019. Outage
Prediction and Diagnosis for Cloud Service Systems. In The World Wide Web

https://www.statista.com/statistics/753938/worldwide-enterprise-server-hourly-downtime-cost/
https://www.statista.com/statistics/753938/worldwide-enterprise-server-hourly-downtime-cost/
https://en.wikipedia.org/wiki/Incident_management_(ITSM)
https://en.wikipedia.org/wiki/Incident_management_(ITSM)
https://keras.io/
https://numpy.org/
https://pandas.pydata.org/
https://scikit-learn.org/
https://xgboost.readthedocs.io/


ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Nengwen Zhao and Junjie Chen, et al.

Conference. ACM, 2659–2665.
[19] Rui Ding, Hucheng Zhou, Jian-Guang Lou, Hongyu Zhang, Qingwei Lin, Qiang

Fu, Dongmei Zhang, and Tao Xie. 2015. Log2: A cost-aware logging mecha-
nism for performance diagnosis. In 2015 {USENIX} Annual Technical Conference
({USENIX}{ATC} 15). 139–150.

[20] John C Gower and Gavin JS Ross. 1969. Minimum spanning trees and single
linkage cluster analysis. Journal of the Royal Statistical Society: Series C (Applied
Statistics) 18, 1 (1969), 54–64.

[21] Jiawei Han, Jian Pei, and Micheline Kamber. 2011. Data mining: concepts and
techniques. Elsevier.

[22] Jiawei Han, Jian Pei, and Yiwen Yin. 2000. Mining frequent patterns without
candidate generation. ACM sigmod record 29, 2 (2000), 1–12.

[23] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-termmemory. Neural
computation 9, 8 (1997), 1735–1780.

[24] Guofei Jiang, Haifeng Chen, Kenji Yoshihira, and Akhilesh Saxena. 2011. Ranking
the importance of alerts for problem determination in large computer systems.
Cluster Computing 14, 3 (2011), 213–227.

[25] Jiajun Jiang, Weihai Lu, Junjie Chen, Qingwei Lin, Pu Zhao, Yu Kang, Hongyu
Zhang, Yingfei Xiong, Feng Gao, Zhangwei Xu, Yingnong Dang, and Dongmei
Zhang. 2020. How to Mitigate the Incident? An Effective Troubleshooting Guide
Recommendation Technique for Online Service Systems. In The 28th ACM Joint
European Software Engineering Conference and Symposium on the Foundations of
Software Engineering, Industry track. to appear.

[26] Armand Joulin, Edouard Grave, Piotr Bojanowski, Matthijs Douze, Hérve Jégou,
and Tomas Mikolov. 2016. FastText.zip: Compressing text classification models.
arXiv preprint arXiv:1612.03651 (2016).

[27] Yoon Kim. 2014. Convolutional neural networks for sentence classification. arXiv
preprint arXiv:1408.5882 (2014).

[28] Zhijing Li, Zihui Ge, AjayMahimkar, JiaWang, Ben Y Zhao, Haitao Zheng, Joanne
Emmons, and Laura Ogden. 2018. Predictive Analysis in Network Function
Virtualization. In Proceedings of the Internet Measurement Conference 2018. 161–
167.

[29] Derek Lin, Rashmi Raghu, Vivek Ramamurthy, Jin Yu, Regunathan Radhakr-
ishnan, and Joseph Fernandez. 2014. Unveiling clusters of events for alert and
incident management in large-scale enterprise it. In Proceedings of the 20th ACM
SIGKDD international conference on Knowledge discovery and data mining. ACM,
1630–1639.

[30] Qingwei Lin, Ken Hsieh, Yingnong Dang, Hongyu Zhang, Kaixin Sui, Yong
Xu, Jian-Guang Lou, Chenggang Li, Youjiang Wu, Randolph Yao, et al. 2018.
Predicting Node failure in cloud service systems. In Proceedings of the 2018 26th
ACM Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering. ACM, 480–490.

[31] Jinyang Liu, Jieming Zhu, Shilin He, Pinjia He, Zibin Zheng, and Michael R
Lyu. 2019. Logzip: Extracting Hidden Structures via Iterative Clustering for
Log Compression. In 2019 34th IEEE/ACM International Conference on Automated
Software Engineering (ASE). IEEE, 863–873.

[32] Jian-Guang Lou, Qingwei Lin, Rui Ding, Qiang Fu, Dongmei Zhang, and Tao
Xie. 2013. Software analytics for incident management of online services: An
experience report. In 2013 28th IEEE/ACM International Conference on Automated
Software Engineering (ASE). IEEE, 475–485.

[33] Jian-Guang Lou, Qingwei Lin, Rui Ding, Qiang Fu, Dongmei Zhang, and Tao Xie.
2017. Experience report on applying software analytics in incident management
of online service. Automated Software Engineering 24, 4 (2017), 905–941.

[34] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013.
Distributed representations of words and phrases and their compositionality. In
Advances in neural information processing systems. 3111–3119.

[35] Seyed Ali Mirheidari, Sajjad Arshad, and Rasool Jalili. 2013. Alert correlation
algorithms: A survey and taxonomy. In Cyberspace Safety and Security. Springer,
183–197.

[36] Nikolaos Pappas and Andrei Popescu-Belis. 2014. Explaining the stars: Weighted
multiple-instance learning for aspect-based sentiment analysis. In Proceedings of
the 2014 Conference on Empirical Methods In Natural Language Processing (EMNLP).
455–466.

[37] Parivash Pirasteh, Slawomir Nowaczyk, Sepideh Pashami, Magnus Löwenadler,
Klas Thunberg, Henrik Ydreskog, and Peter Berck. 2019. Interactive feature
extraction for diagnostic trouble codes in predictive maintenance: A case study
from automotive domain. In Proceedings of the Workshop on Interactive Data

Mining. 1–10.
[38] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. 2016. "Why should i

trust you?" Explaining the predictions of any classifier. In Proceedings of the 22nd
ACM SIGKDD international conference on knowledge discovery and data mining.
1135–1144.

[39] Michael Röder, Andreas Both, and Alexander Hinneburg. 2015. Exploring the
space of topic coherence measures. In Proceedings of the eighth ACM international
conference on Web search and data mining. ACM, 399–408.

[40] Felix Salfner, Maren Lenk, and Miroslaw Malek. 2010. A survey of online failure
prediction methods. ACM Computing Surveys (CSUR) 42, 3 (2010), 1–42.

[41] Mohammed Shatnawi and Mohamed Hefeeda. 2015. Real-time failure predic-
tion in online services. In 2015 IEEE Conference on Computer Communications
(INFOCOM). IEEE, 1391–1399.

[42] Ruben Sipos, Dmitriy Fradkin, Fabian Moerchen, and Zhuang Wang. 2014. Log-
based predictive maintenance. In Proceedings of the 20th ACM SIGKDD interna-
tional conference on knowledge discovery and data mining. 1867–1876.

[43] J Wang, C Li, S Han, S Sarkar, and X Zhou. 2017. Predictive maintenance based
on event-log analysis: A case study. IBM Journal of Research and Development 61,
1 (2017), 11–121.

[44] Lingzhi Wang, Nengwen Zhao, Junjie Chen, Pinnong Li, Wenchi Zhang, and
Kaixin Sui. 2020. Root-Cause Metric Location for Microservice Systems via Log
Anomaly Detection. In The 2020 IEEE International Conference on Web Services.
to appear.

[45] Gerhard Widmer and Miroslav Kubat. 1996. Learning in the presence of concept
drift and hidden contexts. Machine learning 23, 1 (1996), 69–101.

[46] Haowen Xu, Wenxiao Chen, Nengwen Zhao, Zeyan Li, Jiahao Bu, Zhihan Li, and
et.al. 2018. Unsupervised Anomaly Detection via Variational Auto-Encoder for
Seasonal KPIs in Web Applications. In WWW.

[47] Jingmin Xu, Yuan Wang, Pengfei Chen, and Ping Wang. 2017. Lightweight
and Adaptive Service API Performance Monitoring in Highly Dynamic Cloud
Environment. In 2017 IEEE International Conference on Services Computing (SCC).
IEEE, 35–43.

[48] Yong Xu, Kaixin Sui, Randolph Yao, Hongyu Zhang, Qingwei Lin, Yingnong Dang,
Peng Li, Keceng Jiang, Wenchi Zhang, Jian-Guang Lou, et al. 2018. Improving
service availability of cloud systems by predicting disk error. In 2018 {USENIX}
Annual Technical Conference ({USENIX}{ATC} 18). 481–494.

[49] Ke Zhang, Jianwu Xu, Martin Renqiang Min, Guofei Jiang, Konstantinos Pelechri-
nis, and Hui Zhang. 2016. Automated IT system failure prediction: A deep
learning approach. In 2016 IEEE International Conference on Big Data (Big Data).
IEEE, 1291–1300.

[50] Shenglin Zhang, Ying Liu,WeibinMeng, Zhiling Luo, Jiahao Bu, Sen Yang, Peixian
Liang, Dan Pei, Jun Xu, Yuzhi Zhang, et al. 2018. Prefix: Switch failure prediction
in datacenter networks. Proceedings of the ACM on Measurement and Analysis of
Computing Systems 2, 1 (2018), 2.

[51] Xu Zhang, Yong Xu, Qingwei Lin, Bo Qiao, Hongyu Zhang, Yingnong Dang,
Chunyu Xie, Xinsheng Yang, Qian Cheng, Ze Li, et al. 2019. Robust log-based
anomaly detection on unstable log data. In Proceedings of the 2019 27th ACM
Joint Meeting on European Software Engineering Conference and Symposium on
the Foundations of Software Engineering. 807–817.

[52] Nengwen Zhao, Junjie Chen, Xiao Peng, Honglin Wang, Xinya Wu, Yuanzong
Zhang, and et al. 2020. Understanding and Handling Alert Storm for Online
Service Systems. In 2020 IEEE/ACM 41st International Conference on Software
Engineering: Software Engineering in Practice (ICSE-SEIP). ACM.

[53] Nengwen Zhao, Panshi Jin, Lixin Wang, Xiaoqin Yang, Rong Liu, Wenchi Zhang,
Kaixin Sui, and Dan Pei. 2020. Automatically and Adaptively Identifying Severe
Alerts for Online Service Systems. In IEEE INFOCOM 2020-IEEE Conference on
Computer Communications. IEEE, 2420–2429.

[54] Nengwen Zhao, Jing Zhu, Yao Wang, Minghua Ma, Wenchi Zhang, Dapeng Liu,
Ming Zhang, andDan Pei. 2019. Automatic andGeneric Periodicity Adaptation for
KPI Anomaly Detection. IEEE Transactions on Network and Service Management
16, 3 (2019), 1170–1183.

[55] Xiang Zhou, Xin Peng, Tao Xie, Jun Sun, Chao Ji, and et al. 2019. Latent error
prediction and fault localization for microservice applications by learning from
system trace logs. In ESEC/FSE. ACM, 683–694.

[56] Xiang Zhou, Xin Peng, Tao Xie, Jun Sun, Chao Ji, Wenhai Li, and Dan Ding. 2018.
Fault analysis and debugging of microservice systems: Industrial survey, bench-
mark system, and empirical study. IEEE Transactions on Software Engineering
(2018).


	Abstract
	1 Introduction
	2 Motivation & Problem Formulation
	2.1 Background: Alert and Its Management
	2.2 Practice of Incident Prediction with Alerts
	2.3 Problem Formulation

	3 Approach
	3.1 Identifying Features
	3.2 Bypassing Noisy Alerts via Multi-Instance Learning
	3.3 Building a Classification Model
	3.4 Interpretability Analysis

	4 Evaluation
	4.1 Experimental Setup
	4.2 Overall Performance of eWarn
	4.3 Contributions of Main Components
	4.4 Efficiency
	4.5 Effect of Parameters

	5 Discussion
	5.1 Success Stories
	5.2 Lessons Learned
	5.3 Threats to Validity

	6 Related Work
	7 Conclusion
	References

