A Practical Machine Learning-Based Framework to Detect DNS Covert Communication in Enterprises

Ruming Tang¹, Cheng Huang², Yanti Zhou³, Haoxian Wu², Xianglin Lu¹, Yongqian Sun⁴, Qi Li¹, Jinjin Li³, Weiyao Huang³, Siyuan Sun³, and Dan Pei¹

EAI SecureComm 2020 -16th EAI International Conference on Security and Privacy in Communication Networks, October 21-23, 2020, Cyberspace

Domain Name System

Domain Name System

Domain Name System

DNS Lookups

DNS Covert Communications

DNS Covert Communications

D²C² (D2C2): **D**etecting **DNS** Covert Communication

A practical framework with modular detection models to detect covert communication in DNS traffic in enterprise environments

Processing Stage

- Parsing raw data
- Extracting user demographics

Detection Stage

- Blacklist filters the logs
- Extracting features from logs
- Detecting anomalies by machine-learning models

#	Feature	Type
1	Length of domain name.	integer
2	Length of subdomain.	integer
3	No. of labels.	integer
4	Longest label length.	integer
5	Contains one-character label.	boolean
6	Contains IPv4.	boolean
7	Has "WWW" prefix.	boolean
8	Alphabet size.	integer
9	No. of uppercase characters.	integer
10	The ratio of digits.	float
11	Ratio of hexadecimal parts.	float
12	Ratio of vowels.	float
13	Ratio of underscore.	float
14	Ratio of repeat characters.	float
15	Ratio of consecutive consonants.	float
16	Ratio of consecutive digits.	float
17	Shannon entropy [16].	float
18	Gibberish score [26].	float
19	Bigram of domain name.	vector

Threat Scenarios

- Data Exfiltration
- C&C Communication (commonly seen as DGA)
- Other rare threats

Modular Detectors

- Supervised for known and common attacks
- Unsupervised for unknown and rare attacks
- Running in series

Investigation Stage

- Whitelist filters the logs
- Manually check results & feedback
- Visualized results on detected results

Evaluation Setup

Deployment

- In a large enterprise environment
- Including servers in IDC & desktops/laptops in office networks
- More than **25,000** hosts
- 100 millions DNS logs per day on average

Data

- One-month deployment data trace of over 5 billion logs
- A labeled dataset of 764k logs contains known attack examples to test performance & overhead
- Blacklist
- Whitelist

Model

- Random forest
- Support Vector Machine
- Multi-layer perceptron
- Isolation forest
- X-means

Dataset Statistics

Deployment Data Trace

- One-month dataset of over 5 billion logs
- 3 billion queries
- 90% queries are A/AAAA queries

Historical Labeled Data Trace

- Labeled & verified by operators
- 764k logs

Blacklist/Whitelist

• By operators & website ranking

Types	# of Queries (Responses)	Total	%
A	2,310,206,811 (2,175,715,764)	$4,\!485,\!922,\!575$	75.98%
AAAA	443,000,848 (441,857,308)	884,858,156	14.98%
PTR	$245,\!185,\!527\ (244,\!886,\!490)$	$490,\!072,\!017$	8.30%
SOA	5,751,338 $(5,722,695)$	$11,\!474,\!033$	0.19%
SRV	$5,\!651,\!489\ (5,\!611,\!368)$	$11,\!262,\!857$	0.19%
NS	4,790,185 $(4,788,276)$	$9,\!578,\!461$	0.16%
TXT	$3,392,785 \ (3,389,870)$	6,782,655	0.11%
CNAME	$630,\!267\ (630,\!246)$	1,260,513	0.02%
MX	$327,\!305\ (320,\!792)$	648,097	0.01%
Other	$958,983 \ (963,691)$	$1,\!922,\!674$	0.03%
Total	3,019,895,538 (2,883,886,500)	$5,\!903,\!782,\!038$	—

Evaluation on labeled dataset

Dataset

- In the same enterprise
- 764k logs

Label

• Labeled & verified by operators

Results

- RF & MLP have better performance
- iForest has better performance

Model

- Random forest
- Multi-layer perceptron
- Support Vector Machine
- Isolation forest
- X-means

Evaluation Results

Dete	ector	Precision	Recall	Accuracy	F1
	RF	1.0000	1.0000	1.0000	1.0000
D-Exfil	MLP	0.9999	0.9995	0.9995	0.9993
	SVM	0.9997	0.9998	0.9998	0.9997
	RF	0.9580	0.9787	0.9945	0.9682
D-DGA	MLP	0.9290	0.9660	0.9910	0.9471
	SVM	0.8049	0.9558	0.9765	0.8793
D-	iForest	0.8495	0.9190	0.9988	0.8829
Outlier	X-Means	0.6708	0.5371	0.9981	0.5965

Evaluation on labeled dataset

Dataset

- In the same enterprise
- 764k logs

Label

• Labeled & verified by operators

Results

- Average input: 1,200 logs/s
- All models have fast processing speed
- SVM's speed drops when size increases

Model

- Random forest
- Multi-layer perceptron
- Support Vector Machine
- Isolation forest
- X-means

Evaluation Results

Detector		Precision	Recall	Accuracy	F1
	RF	1.0000	1.0000	1.0000	1.0000
D-Exfil	MLP	0.9999	0.9995	0.9995	0.9993
	SVM	0.9997	0.9998	0.9998	0.9997
	RF	0.9580	0.9787	0.9945	0.9682
D-DGA	MLP	0.9290	0.9660	0.9910	0.9471
	SVM	0.8049	0.9558	0.9765	0.8793
D-	iForest	0.8495	0.9190	0.9988	0.8829
Outlier	X-Means	0.6708	0.5371	0.9981	0.5965

Overhead

Mode	el	Processing Speed (logs/s)
	\mathbf{RF}	49344.9
Supervised	MLP	9210.2
	SVM	24150.2*
Unsupervised	iForest	9149.0
	X-Means	4090.6

0(n²)

Deployment Results

Dataset

- One-month dataset of over
 5 billion logs
- Models chosen based on performance & overhead

Model

- Random forest
- Multi-layer perceptron
- Isolation forest

Evaluation Results

Dete	ector	Precision	#TP/day	#FP/day
D-Exfil	\mathbf{RF}	0.9755	155.6	3.9
	MLP	0.9934	1070.0	7.1
D-DGA	\mathbf{RF}	0.9986	3958.9	5.6
	MLP	0.9764	3871.0	93.5
D-Outlier	iForest	0.9214	29.3	2.5
Total (RF	+ iForest)	0.9971	4143.8	12.0

Deployment Results

Dataset

- One-month dataset of over
 5 billion logs
- Models chosen based on performance & overhead

Model

- Random forest
- Multi-layer perceptron
- Isolation forest

Evaluation Results

Det	ector	Precision	#TP/day	#FP/day
D-Exfil	RF	0.9755	155.6	3.9
	MLP	0.9934	1070.0	7.1
D-DGA	\mathbf{RF}	0.9986	3958.9	5.6
	MLP	0.9764	3871.0	93.5
D-Outlier	iForest	0.9214	29.3	2.5
Total (RF	+ iForest)	0.9971	4143.8	12.0

Results

- High precision over 0.92
- Low False Alerts

Deployment Results

Dataset

- One-month dataset of over
 5 billion logs
- Models chosen based on performance & overhead

Model

- Random forest
- Multi-layer perceptron
- Isolation forest

Evaluation Results

Det	ector	Precision	#TP/day	#FP/day
D-Exfil	\mathbf{RF}	0.9755	155.6	3.9
	MLP	0.9934	1070.0	7.1
D-DGA	\mathbf{RF}	0.9986	3958.9	5.6
	MLP	0.9764	3871.0	93.5
D-Outlier	iForest	0.9214	29.3	2.5
Total (RF	+ iForest)	0.9971	4143.8	12.0

Results

- High precision over 0.92
- Low False Alerts

Visualization

- Detected 4,000 anomalous logs/day
- Found 7 compromised hosts based on merging and visualization

Summary

- A practical, flexible and end-to-end ML-based framework
 - Detecting threats in enterprise environments, generic, easy to deploy
 - Modular detection models, flexible
- Deployment in a real-world enterprise
 - One-month dataset of over **5** billion logs
 - 4,000 anomalous logs detected per day and high precision
 - Low overhead
 - Visualized results, 7 compromised hosts found

Thanks! And Questions.

Ruming Tang: trm14@tsinghua.org.cn